Что такое вакцинация и история вакцинации
Что такое вакцинация и история вакцинации
Министерство здравоохранения Республики Беларусь
Вехи истории вакцинологии
ИНФЕКЦИОННЫЕ БОЛЕЗНИ – ПРОШЛОЕ, НАСТОЯЩЕЕ, БУДУЩЕЕ.
Микроорганизмы сопровождают человека всю его жизнь. С самого рождения малыш начинает знакомиться с миром вирусов и бактерий. И, помимо, положительных и необходимых для жизни контактов, микроорганизмы могут представлять опасность для человека, вызывая различные инфекционные заболевания.
До определенного времени инфекции являлись главной причиной высокой смертности и малой продолжительности жизни человека, поражая огромное количество людей и обширные территории земного шара.
В истории человечества первая пандемия чумы в середине VI века – «Юстинианова чума» – привела к смерти около 100 миллионов человек, убив от 50 до 60% населения Европы. Вторая пандемия чумы, названная «Чёрная смерть», возникла в середине XIV века и стала причиной гибели 30% населения Азии и до 50% жителей Европы. Третья пандемия чумы началась в Китае в середине XIX века и за несколько десятков лет охватила всю Землю.
В январе 1897 года человеку впервые была введена вакцина от чумы. Именно благодаря вакцине, разработанной учеником Л.Пастера русским ученым В.Хавкиным, была остановлена последняя пандемия чумы.
Распространение натуральной оспы в Европейском регионе связано с походами крестоносцев XI-XIII веков. В XVI века вирус оспы был занесен в Англию, а вскоре вызвал эпидемию в Центральной и Южной Америке, приведшую к гибели до 90% населения. В отдельные годы следующих двух веков в странах Европы заболевало оспой 10-12 миллионов человек, смертность составляла до 25-40%.
Первую прививку от натуральной оспы сделал в конце XVIII века английский врач Э.Дженнер, положив тем самым начало будущей ликвидации этого страшного заболевания, последний случай которого был зарегистрирован в мире в октябре 1977 г. в Сомали.
В 1882 г. Р.Кох выделил бактерию, вызывающую туберкулёз – микобактерию, и создал вещество для диагностики туберкулеза – туберкулин. Всемирная организация здравоохранения (далее – ВОЗ) объявила день открытия микобактерии туберкулеза Р.Кохом 20 марта Всемирным днем борьбы с туберкулезом. О возможности предотвращать туберкулез и уменьшать риск возникновения тяжелых форм заговорили, когда в начале XX века французские ученые Альбер Кальметт и Камиль Герен создали первую человеческую вакцину на основе штамма ослабленной живой коровьей туберкулезной бациллы – вакцину БЦЖ (BCG – Bacille Calmette-Guerin).
В XIX – первой половине ХХ веков полиомиелит бушевал в Европе и США, поражая десятки тысяч людей ежегодно.
Начало масштабного использования полиомиелитной вакцины привело к резкому сокращению заболеваемости. В настоящее время местная передача дикого вируса сохраняется на территории только трех государств – Афганистана, Пакистана и Нигерии.
Во время последней эпидемии краснухи в США (60-е годы ХХ века), заболело 12,5 миллионов человек, более чем у 2 тысяч человек развился энцефалит и более 11 тысяч женщин вынуждены были прервать беременность по причине риска развития у детей синдрома врожденной краснухи (далее – СВК). Было рождено более 20 тысяч детей с СВК. При этом имели глухоту более 11 тысяч детей, были слепые от рождения более 3,5 тысяч детей, развилась умственная отсталость почти у 2 тысяч малышей. Только широкомасштабная вакцинация последнего десятилетия смогла привести к практически полной ликвидации краснухи и СВК во многих развитых и в отдельных развивающихся странах.
Две крупные вспышки эпидемического паротита были зарегистрированы в США: в 2006 г. – более 6,5 тысяч случаев среди студентов университетов Среднего запада и в 2010 г. – более 3,5 тысяч случаев среди старшеклассников нескольких школ, членов религиозной общины ортодоксальных евреев-хасидов. Риск формирования урона в виде возможного, прежде всего «мужского» бесплодия, которым осложняются средние и тяжелые формы эпидемического паротита в 20-50% случаев, нанесенный данной общине, достаточно велик.
В Республике Беларусь в довакцинальном периоде ежегодно около 1 тысячи детей заболевало полиомиелитом и значительная часть из них оставалась инвалидами, более 50 тысяч малышей заражались корью и краснухой, около 33 тысяч – эпидемическим паротитом и более 11 тысяч человек заболевало дифтерией.
В современности причиной эпидемий и пандемий остается вирус гриппа. Эпидемии гриппа многим известны, например, «Испанский грипп» в 1918–1919 гг. – унес жизни 50-100 миллионов человек; Азиатский грипп в 1957 г. – около 2 миллионов человек, Гонконгский грипп в 1968 г. – около 34 тысяч человек.
Согласно обновленным в 2017 г. данным ВОЗ респираторные заболевания, вызываемые сезонным гриппом, ежегодно приводят к смерти от 290 до 650 тысяч человек во всем мире.
Для нашей страны также продолжает оставаться актуальным грипп и острые респираторные инфекции, как самые массовые инфекционные заболевания современности. В последние пять эпидемических сезонов заболеваемости (с 2012 г.) ОРИ и гриппом заболевало около 1,8 миллионов человек. При этом число заболевших гриппом колебалось в широком диапазоне: от нескольких десятков до более 47 тысяч случаев.
Ближайшее будущее человечества, несмотря на развитие систем здравоохранения, появление новейших средств и способов диагностики, лечения и профилактики, будет сопряжено с инфекционными болезнями. Их распространению будут способствовать вооруженные конфликты, экономические кризисы, глобальные миграционные процессы, изменения климата и т.д.
От человечества в целом и каждого гражданина в отдельности зависит, сколько будет возникать случаев инфекционных заболеваний – единицы, десятки, сотни или тысячи. Увеличение количества заболеваний будет неизбежно приводить к большему риску возникновения тяжелых случаев, приводящих к инвалидности и летальному исходу, несмотря на своевременно и в полном объеме оказанную современную медицинскую помощь.
Первые опыты вакцинации
1796 год стал переломным в истории вакцинации, и связан он с именем английского врача Э. Дженнера. Во время практики в деревне Дженнер обратил внимание, что фермеры, работающие с коровами, инфицированными коровьей оспой, не болеют натуральной оспой. Дженнер предположил, что перенесенная коровья оспа является защитой от человеческой, и решился на революционный по тем временам эксперимент: он привил коровью оспу мальчику и доказал, что тот стал невосприимчивым к натуральной оспе – все последующие попытки заразить мальчика человеческой оспой были безуспешными. Так появилась на свет вакцинация (от лат. vacca – корова), хотя сам термин стал использоваться позже. Благодаря гениальному открытию доктора Дженнера была начата новая эра в медицине. Однако лишь спустя столетие был предложен научный подход к вакцинации. Его автором стал Луи Пастер.
В 1880 году Пастер нашел способ предохранения от заразных заболеваний введением ослабленных возбудителей. Французский ученый Луи Пастер стал человеком, который совершил прорыв в медицине (и иммунологии, в частности). Он первым доказал, что болезни, которые мы сегодня называем инфекционными, могут возникать только в результате проникновения в организм микробов из внешней среды. В 1880 году Пастер нашел способ предохранения от заразных заболеваний введением ослабленных возбудителей, который оказался применимым ко многим инфекционным болезням. Пастер работал с бактериями, вызывающими куриную холеру. Он концентрировал бактериальные препараты настолько, что их введение даже в ничтожных количествах вызывало гибель кур в течение суток. Однажды, проводя свои эксперименты, Пастер случайно использовал культуру бактерий недельной давности. На этот раз болезнь у кур протекала в легкой форме, и все они вскоре выздоровели. Ученый решил, что его культура бактерий испортилась и приготовил новую. Но и введение новой культуры не привело к гибели птиц, которые выздоровели после введения им «испорченных» бактерий. Было ясно, что инфицирование кур ослабленными бактериями вызвало появление у них защитной реакции, способной предотвратить развитие болезни при попадании в организм высоковирулентных микроорганизмов.
Если вернуться к открытию Дженнера, то можно сказать, что Пастер привил «коровью оспу» для того, чтобы предотвратить заболевание обычной «оспой». Отдавая долг первооткрывателю, Пастер также назвал открытый им способ предупреждения инфекционной болезни вакцинацией, хотя, конечно же, никакого отношения к коровьей оспе его ослабленные бактерии не имели.
«Думать, что открыл важный факт, томиться лихорадочной жаждой сообщить о нём и сдерживать себя днями, неделями, годами, бороться с самим собой и не объявлять о своём открытии, пока не исчерпал всех противоположных гипотез – да, это тяжёлая задача»
В 1881 году Пастер произвел массовый публичный опыт, чтобы доказать правильность своего открытия. Он ввел нескольким десяткам овец и коров микробы сибирской язвы. Половине подопытных животных Пастер предварительно ввел свою вакцину. На второй день все невакцинированные животные погибли от сибирской язвы, а все вакцинированные – не заболели и остались живы. Этот опыт, протекавший на глазах у многочисленных свидетелей, был триумфом ученого.
В 1885 году Луи Пастером была разработана вакцина от бешенства – заболевания, которое в 100% случаев заканчивалось смертью больного и наводило ужас на людей. Дело доходило до демонстраций под окнами лаборатории Пастера с требованием прекратить эксперименты. Ученый долго не решался испробовать вакцину на людях, но помог случай. 6 июля 1885 года в его лабораторию привели 9-летнего мальчика, который был настолько искусан, что никто не верил в его выздоровление. Метод Пастера был последней соломинкой для несчастной матери ребенка. История получила широкую огласку, и вакцинация проходила при собрании публики и прессы. К счастью, мальчик полностью выздоровел, что принесло Пастеру поистине мировую славу, и в его лабораторию потянулись пострадавшие от бешеных животных не только из Франции, но и со всей Европы (и даже из России).
«Думать, что открыл важный факт, томиться лихорадочной жаждой сообщить о нём и сдерживать себя днями, неделями, годами, бороться с самим собой и не объявлять о своём открытии, пока не исчерпал всех противоположных гипотез – да, это тяжёлая задача»
С тех пор появилось более 100 различных вакцин, которые защищают от сорока с лишним инфекций, вызываемых бактериями, вирусами, простейшими.
Что такое вакцинация и история вакцинации
Первые прообразы вакцин появились еще в древности. Тогда люди не знали ни о бактериях, ни о вирусах, а основывали свои профилактические мероприятия на наблюдениях. Вакцины появились только три столетия назад, а создал их английский врач Эдвард Дженнер. На тот момент в Европе бушевала натуральная оспа, но простые доярки зачастую ей не болели. Все дело в коровьей оспе, которая передавалась им во время доения коров. Доярки болели в легкой форме и к натуральной оспе были уже не восприимчивы. Дженнер создал препарат на основе выделений из гнойничков на руках доярок и вколол его мальчику Джеймсу Фиппсу. Спустя некоторое время он использовал препарат на основе натуральной оспы, но мальчик не заболел. Так началась история профилактических прививок. Само слово вакцина происходит от латинского vaccinus — коровий.
Конечно, не все с радостью побежали делать себе прививки на основе гнойников доярок. Также нередки были случаи ошибок при приготовлении препаратов. Поэтому со временем были разработаны методики позволяющие подтвердить безопасность вакцин и вообще всех лекарств перед тем как они попадут в больницы и аптеки.
Вакцинация сегодня
Современные вакцины, в отличие от вакцины Дженнера, проходят несколько стадий проверки. Сначала их испытывают на животных, обычно это мыши или крысы: не убьет ли состав препарата, достаточна ли дозировка антигенов и тд. После того как пройден этап с животными лекарство доводят до ума и начинаются проверки на людях. К этому моменту вакцина на 99% безопасна и испытания проводят для выявления побочных реакций именно у людей, так как обмен веществ у мышей и людей отличается.
Если опасных побочных реакций для человека не выявлено начинают проверять эффективность прививки. Испытания проводят на многотысячной группе людей, которых делят на две группы: контрольную и экспериментальную. Первая группа получает вместо вакцины пустышку-плацебо. Вторая получает уже саму прививку. О том в какой группе находится испытуемый знает только организатор. Это нужно для того, чтоб сравнить насколько хорошо работает препарат и избежать подтасовок. Например, если в контрольной группе заболело гриппом столько же людей, сколько и в экспериментальной, испытываемую вакцину можно считать бесполезной.
В конечном итоге все вакцины, которые используются для профилактики, эффективны и безопасны. А вот эффективность вакцин от одного заболевания относительно друг друга может отличаться. Вакцина, которая содержит четыре антигена называется четырехвалентной и она гораздо более эффективная, чем трехвалентная, просто потому что может защитить от большего количества штаммов.
Для того чтобы люди знали от чего и когда вакцинироваться был составлен Национальный календарь профилактических прививок. В нем указан возраст, заболевание от которого нужно привиться и количество нужных инъекций.
Аргументы против
Конечно и во времена Дженнера и сегодня есть люди, которых научное сообщество не смогло убедить в безопасности вакцинации.
Так как большую часть вакцин вводят в детском возрасте появилось мнение, что организм не способен выдержать такое вторжение. На самом же деле организм в реальном времени сражается с тысячами вирусов и вакцинация не мешает работе иммунной системы.
Другой не менее редкий тезис — у вакцин много опасных побочных эффектов. Это тоже неверно. Изменения которые происходят после вакцинации можно разделить на два типа: поствакцинальные реакции и поствакцинальные осложнения. Поствакцинальные реакции это покраснение в месте укола, небольшой зуд, легкое повышение температуры. Они проходят через 2-3 дня без какого либо вмешательства и совершенно не опасны для жизни. Поствакцинальные осложнения это судороги, анафилактический шок или паралич, которые возникают крайне редко. И вероятность получить осложнение гораздо ниже, чем вероятность летального исхода от самого заболевания.
ВОЗ утверждает: «Тяжёлые или долгосрочные побочные эффекты встречаются крайне редко. Шанс столкнуться с серьезной неблагоприятной реакцией организма на введение вакцины составляет 1 к миллиону», «Вакцины могут вызывать легкие побочные эффекты, такие как субфебрильная температура и боль или покраснение в месте инъекции. Такие проявления, как правило, проходят сами в течение нескольких дней»
Многие антивакцинаторы считают, что эти самые осложнения вызываются консервантами, которые содержатся во всех вакцинах. Они нужны для того, чтобы вакцина доехала до своего потенциального получателя и не потеряла своих свойств. В качестве консервантов используют алюминий или тиомерсал. Но содержание консервантов в вакцинах ничтожно мало, например алюминия с грудным молоком ребенок может получать гораздо больше, чем из прививки.
К чему приводит массовый отказ от вакцинации
Когда вакцинация происходит массово, некоторые болезни исчезают из поля зрения простых людей и больше не кажутся чем то опасным. Это заставляет людей думать, что прививки не так уж и важны.
Например в России и странах СНГ в 90-е годы произошла вспышка дифтерии, в результате погибло около 5 тысяч человек, а всего заболело 150-200 тысяч. Связано это с общим развалом системы здравоохранения и общей незаинтересованностью государства в массовой вакцинации на тот момент.
В 2000 году в Нидерландах в религиозной общине, которая не приемлет вакцинацию в целом произошла вспышка кори. Это событие можно назвать экспериментом в реальных условиях: большинство населения Нидерландов было привито и это позволило сохранить множество жизней и показать эффективность вакцинации.
Тоже самое произошло и в 2005 году в США в штате Индиана. В сообществе антивакцинаторов произошла вспышка кори, которая не распространилась за пределы этого общества, благодаря всеобщей иммунизации.
Массовая иммунизация позволяет обезопасить не только самого себя, но защитить тех людей, которые не могут быть привиты по медицинским показаниям. Всеобщая вакцинация формирует социальный иммунитет и дает шанс однажды избавить мир от самых страшных болезней.
Развитие вакцинопрофилактики
24 марта 1882 года, когда Роберт Кох объявил о том, что сумел выделить бактерию, вызывающую туберкулёз, ученый достиг величайшего за всю свою жизнь триумфа.
Почему все же именно открытие возбудителя туберкулеза называют научным подвигом?
Дело в том, что возбудители болезни туберкулеза – чрезвычайно трудный объект для исследования. В первых препаратах для микроскопии, сделанных Кохом из легочной ткани молодого рабочего, умершего от скоротечной чахотки, ни одного микроба обнаружить не удалось. Не теряя надежды, ученый провел окраску препаратов по собственной методике и впервые под микроскопом увидел неуловимого возбудителя туберкулеза.
На следующем этапе необходимо было получить пресловутые микробактерии в чистой культуре. Еще несколько лет назад Кох нашел способ культивирования микробов не только на подопытных животных, но и в искусственной среде, например, на разрезе сваренного картофеля или в мясном бульоне. Он попытался таким же способом культивировать и бактерии туберкулеза, но они не развивались. Однако когда Кох впрыснул содержимое раздавленного узелка под кожу морской свинки, та погибла в течение нескольких недель, а в ее органах ученый нашел огромное количество палочек. Кох пришел к выводу, что бактерии туберкулеза могут развиваться только в живом организме.
Желая создать питательную среду, подобную живым тканям, Кох решил применить сыворотку животной крови, которую ему удалось раздобыть на бойне. И действительно, в этой среде бактерии быстро размножались. Полученными таким образом чистыми культурами бактерий Кох заразил несколько сотен подопытных животных разных видов, и все они заболели туберкулезом. Ученому было ясно, что возбудитель заболевания найден. В это время мир был возбужден открытым Пастером методом предупреждения заразных болезней с помощью прививок ослабленных культур бактерий, вызывающих данную болезнь. Поэтому Кох считал, что ему удастся тем же способом спасти человечество от туберкулеза.
«Я предпринял свои исследования в интересах людей. Ради этого я трудился. Надеюсь, что мои труды помогут врачам повести планомерную борьбу с этим страшным бичом человечества»
Он приготовил вакцину из ослабленных бактерий туберкулеза, но предупредить заболевание с помощью этой вакцины ему не удалось. Вакцина эта под названием «туберкулина» до сих пор применяется как вспомогательное средство при диагностике туберкулеза. Кроме этого, Кох открыл бациллу сибирской язвы, холерный вибрион. В 1905 году за «исследования и открытия, касающиеся лечения туберкулеза» ученый был удостоен Нобелевской премии по физиологии и медицине.
«Я предпринял свои исследования в интересах людей. Ради этого я трудился. Надеюсь, что мои труды помогут врачам повести планомерную борьбу с этим страшным бичом человечества»
26 декабря 1891 года Эмиль фон Беринг спас жизнь больному ребенку, сделав ему первую прививку от дифтерии.
До начала XX века дифтерия ежегодно уносила тысячи детских жизней, а медицина была бессильна облегчить их страдания и спасти от тяжелой агонии.
Немецкий бактериолог Фридрих Лёффлер в 1884 году сумел открыть бактерии, вызывающие дифтерию — палочки Corynebacterium diphtheriae. А ученик Пастера Пьер Эмиль Ру показал, как действуют палочки дифтерии и доказал, что все общие явления дифтерии — упадок сердечной деятельности, параличи и прочие смертельные последствия – вызваны не самой бактерией, а вырабатываемым ею ядовитым веществом (токсином), и что вещество это, введенное в организм, вызывает эти явления само по себе, при полном отсутствии в организме дифтерийных микробов.
Воодушевленный первой удачей, Беринг, дождавшись выздоровления подопытных свинок, сделал им прививку, содержавшую дифтерийный токсин. Животные превосходно выдержали прививку, несмотря на то, что получили огромную дозу токсина. Затем ученый выяснил, что если сыворотку крови перенесших дифтерию и выздоровевших морских свинок ввести заболевшим животным, те выздоравливают. Значит, в крови переболевших появляется какой-то антитоксин, который нейтрализует токсин дифтерийной палочки.
В конце 1891 года в клинике детских болезней в Берлине, переполненной детьми, умирающими от дифтерии, была сделана прививка с антитоксином – и ребенок выздоровел. Эффект опыта был впечатляющим, многие дети были спасены, но все же успех был лишь частичным, и сыворотка Беринга не стала надежным средством, спасавшим всех детей. И тут Берингу помог его коллега и друг Пауль Эрлих – будущий изобретатель «препарата 606» (сальварсана) и победитель сифилиса. А тогда он сумел наладить масштабное производство сыворотки, рассчитать правильные дозировки антитоксина и повысить эффективность вакцины.
Уже позже, в 1913 году, Беринг предложил введение смеси токсина и антитоксина для выработки у детей активного иммунитета. И это оказалось наиболее действенным средством защиты (пассивный иммунитет, возникающий после введения одного только антитоксина, недолговечен). Профилактическая сыворотка, которая употребляется теперь против дифтерии, была найдена доктором Гастоном Рамоном, работником Пастеровского института в Париже, много лет спустя после открытия Лефлера, Ру и Беринга.
Пытаясь найти возбудителя опасной болезни – табачной мозаики (проявляется на многих, особенно тепличных растениях в виде скручивающихся трубочкой, желтеющих и опадающих листьев, в некрозе плодов, нарастающих боковых почек), Ивановский несколько лет занимался исследованиями в Никитском ботаническом саду под Ялтой и в ботанической лаборатории АН.
Зная из работ голландского ботаника А.Д. Майера о том, что мозаичную болезнь табака можно вызвать переносом сока больных растений здоровым, ученый растирал листья больных растений, процеживал сок через полотняный фильтр и впрыскивал его в жилки здоровых листьев табака. Как правило, инфицированные растения перенимали болезнь.
Ботаник тщательно изучал под микроскопом больные листья, но не обнаружил ни бактерий, ни еще каких-либо микроорганизмов, что неудивительно, так как вирусы размером от 20 до 300 нм (1 нм = 109 м) на два порядка меньше бактерий, и их в оптический микроскоп увидеть нельзя. Считая, что в инфицировании виноваты все-таки бактерии, ботаник стал пропускать сок через специальный фарфоровый фильтр Э. Шамберлана, но, вопреки ожиданиям, инфекционные свойства отфильтрованного сока сохранялись, то есть, фильтр не улавливал бактерии.
Попытка вырастить возбудителя мозаики на обычных питательных средах, как это делается с теми же бактериями, не увенчалась успехом. Обнаружив в клетках инфицированных растений кристаллические включения (кристаллы «И»), ученый пришел к выводу, что возбудителем мозаичной болезни является твердое инфекционное начало – либо фильтрующиеся бактерии, не способные расти на искусственных субстратах, либо неведомые и невидимые микроорганизмы, выделяющие токсины.
О своих наблюдениях Ивановский доложил в 1892 г. на заседании Императорской АН. Исследования Ивановского подхватили ученые во всем мире. Использовав метод фильтрации русского ученого, немецкие врачи Ф. Лефлер и П. Фрош в 1897 г. обнаружили возбудителя ящура крупного рогатого скота. Затем последовал бум открытий вирусов – желтой лихорадки, чумы, бешенства, натуральной оспы, полиомиелита и т. д. В 1917 году были открыты бактериофаги – вирусы, разрушающие бактерии. Естественно, каждое открытие не было задачей «чистой» науки, за ним тут же следовало приготовление противоядия – вакцины, лечение и профилактика заболевания.
1921 год ознаменовался изобретением живой бактериальной вакцины против туберкулеза (БЦЖ).
Туберкулез перестал считаться смертельно опасным заболеванием, когда микробиолог Альбер Кальметт и ветеринар Камиль Герен разработали во Франции в 1908-1921 годах первую вакцину для человека на основе штамма ослабленной живой коровьей туберкулезной бациллы.
В 1908 году они работали в Институте Пастера в Лилле. Их деятельность охватывала получение культур туберкулёзной палочки и исследования различных питательных сред. При этом ученые выяснили, что на питательной среде на основе глицерина, жёлчи и картофеля вырастают туберкулёзные палочки наименьшей вирулентности (от лат. virulentus— ядовитый, сумма свойств микроба, определяющая его болезнетворное действие).
Вакцина БЦЖ выдержала испытание временем, ее эффективность проверена и доказана практикой. В наши дни вакцина БЦЖ является основным препаратом для специфической профилактики туберкулеза, признанным и используемым во всем мире. Попытки приготовления противотуберкулезной вакцины из других ослабленных штаммов или отдельных фракций микробных клеток пока не дали значимых практических результатов.
В 1923 году французский иммунолог Г. Рамон получил столбнячный анатоксин, который стал применяться для профилактики заболевания. Научное изучение столбняка началось во второй половине XIX века. Возбудитель столбняка был открыт почти одновременно русским хирургом Н. Д. Монастырским (в 1883 году) и немецким ученым А. Николайером (в 1884 году). Чистую культуру микроорганизма выделил в 1887 г. японский микробиолог С. Китазато, он же в 1890 г. получил столбнячный токсин и (совместно с немецким бактериологом Э. Берингом) создал противостолбнячную сыворотку.
Когда Солка спросили, кому принадлежит патент на средство, он ответил: «Патента нет. Разве вы могли бы запатентовать солнце?»
В исследовании приняло участие около 1 млн детей в возрасте 6-9 лет, из которых 440 тыс. получили вакцину Солка. По свидетельству очевидцев, родители с воодушевлением делали пожертвования на исследование и охотно записывали своих детей в ряды его участников. Сейчас это трудно представить, но в то время полиомиелит был самой грозной детской инфекцией, и родители со страхом ожидали прихода лета, когда регистрировался сезонный пик инфекции.
Результаты пятилетнего, с 1956 по 1961 год, массового применения вакцины превзошли все ожидания: среди детей в возрастных группах, особенно подверженных инфекции, заболеваемость снизилась на 96%.
В 1954 г. в США было зарегистрировано более 38 тыс. случаев полиомиелита, а спустя 10-летие применения вакцины Солка, в 1965 г., количество случаев полиомиелита в этой стране составило всего 61.
В 1991 году Всемирная организация здравоохранения объявила, что в Западном полушарии полиомиелит побежден. В странах Азии и Африки, благодаря массовым вакцинациям, заболеваемость также резко снизилась. Позже вакцина Солка была заменена на более совершенную, разработанную Альбертом Сэйбином. Однако вклад Джонаса Солка в борьбу с полиомиелитом это ничуть не приуменьшило: в этой области он по сей день считается первопроходцем.
Когда Солка спросили, кому принадлежит патент на средство, он ответил: «Патента нет. Разве вы могли бы запатентовать солнце?»
В 1981-82 гг. стала доступной первая вакцина против гепатита В. Тогда в Китае приступили к использованию вакцины, приготовленной из плазмы крови, полученной от доноров из числа больных, которые имели продолжительную инфекцию вирусного гепатита В. В том же году она стала доступна и в США. Пик её применения пришёлся на 1982-88 гг. Вакцинацию проводили в виде курса из трёх прививок с временным интервалом. При постмаркетинговом наблюдении после введения такой вакцины отметили возникновение нескольких случаев побочных заболеваний центральной и периферической нервной системы. В исследовании привитых вакциной лиц, проведённом через 15 лет, подтверждена высокая иммуногенность вакцины, приготовленной из плазмы крови.
С 1987 г. на смену плазменной вакцине пришло следующее поколение вакцины против вируса гепатита В, в которой использована технология генной модификации рекомбинантной ДНК в клетках дрожжевого микроорганизма. Её иногда называют генно-инженерной вакциной. Синтезированный таким способом HBsAg выделяли из разрушаемых дрожжевых клеток. Ни один способ очистки не позволял избавляться от следов дрожжевых белков. Новая технология отличалась высокой производительностью, позволила удешевить производство и уменьшить риск, происходящий из плазменной вакцины.
В 1983 году Харальд цур Хаузен ему обнаружил ДНК папилломавируса в биопсии рака шейки матки, и это событие можно считать открытием онкогенного вируса ВПЧ-16.
Еще в 1976 году была выдвинута гипотеза о взаимосвязи вирусов папилломы человека (ВПЧ) с раком шейки матки. Некоторые разновидности ВПЧ безвредны, некоторые вызывают образование бородавок на коже, некоторые поражают половые органы (передаваясь половым путем). В середине семидесятых Харальд цур Хаузен обнаружил, что женщины, страдающие раком шейки матки, неизменно заражены ВПЧ.
В то время многие специалисты полагали, что рак шейки матки вызывается вирусом простого герпеса, но цур Хаузен нашел в раковых клетках не вирусы герпеса, а вирусы папилломы и предположил, что развитие рака происходит в результате заражения именно вирусом папилломы. Впоследствии ему и его коллегам удалось подтвердить эту гипотезу и установить, что большинство случаев рака шейки матки вызваны одним из двух типов этих вирусов: ВПЧ-16 и ВПЧ-18. Эти типы вируса обнаруживаются примерно в 70% случаях рака шейки матки. Зараженные такими вирусами клетки с довольно большой вероятностью рано или поздно становятся раковыми, и из них развивается злокачественная опухоль.
Исследования Харальда цур Хаузена в области ВПЧ-инфекции легли в основу понимания механизмов канцерогенеза, индуцированного вирусом папилломы. Впоследствии были разработаны вакцины, которые позволяют предотвратить инфекцию вирусами ВПЧ-16 и ВПЧ-18. Это лечение позволяет сократить объем хирургического вмешательства и в целом снизить угрозу, представляемую раком шейки матки.
В 2008 году Нобелевский комитет присудил Нобелевскую премию в области физиологии и медицины Харальду цур Хаузену за открытие того, что вирус папилломы может вызывать рак шейки матки.