Что такое rest приложение
Архитектура REST
Введение
В русскоязычной части Интернета присутствует большое количество статей, посвященных веб-службам на основе SOAP и XML-RPC, но почему-то почти ничего нет про вполне заслуживающую внимания (но менее распространенную) архитектуру RESТ.
В данной статье описываются основы этой архитектуры, возможности и примеры её использования.
Что такое REST
REST (Representational state transfer) – это стиль архитектуры программного обеспечения для распределенных систем, таких как World Wide Web, который, как правило, используется для построения веб-служб. Термин REST был введен в 2000 году Роем Филдингом, одним из авторов HTTP-протокола. Системы, поддерживающие REST, называются RESTful-системами.
В общем случае REST является очень простым интерфейсом управления информацией без использования каких-то дополнительных внутренних прослоек. Каждая единица информации однозначно определяется глобальным идентификатором, таким как URL. Каждая URL в свою очередь имеет строго заданный формат.
А теперь тоже самое более наглядно:
Отсутствие дополнительных внутренних прослоек означает передачу данных в том же виде, что и сами данные. Т.е. мы не заворачиваем данные в XML, как это делает SOAP и XML-RPC, не используем AMF, как это делает Flash и т.д. Просто отдаем сами данные.
Каждая единица информации однозначно определяется URL – это значит, что URL по сути является первичным ключом для единицы данных. Т.е. например третья книга с книжной полки будет иметь вид /book/3, а 35 страница в этой книге — /book/3/page/35. Отсюда и получается строго заданный формат. Причем совершенно не имеет значения, в каком формате находятся данные по адресу /book/3/page/35 – это может быть и HTML, и отсканированная копия в виде jpeg-файла, и документ Microsoft Word.
Как происходит управление информацией сервиса – это целиком и полностью основывается на протоколе передачи данных. Наиболее распространенный протокол конечно же HTTP. Так вот, для HTTP действие над данными задается с помощью методов: GET (получить), PUT (добавить, заменить), POST (добавить, изменить, удалить), DELETE (удалить). Таким образом, действия CRUD (Create-Read-Updtae-Delete) могут выполняться как со всеми 4-мя методами, так и только с помощью GET и POST.
Вот как это будет выглядеть на примере:
GET /book/ — получить список всех книг
GET /book/3/ — получить книгу номер 3
PUT /book/ — добавить книгу (данные в теле запроса)
POST /book/3 – изменить книгу (данные в теле запроса)
DELETE /book/3 – удалить книгу
ВАЖНОЕ ДОПОЛНЕНИЕ: Существуют так называемые REST-Patterns, которые различаются связыванием HTTP-методов с тем, что они делают. В частности, разные паттерны по-разному рассматривают POST и PUT. Однако, PUT предназначен для создания, реплейса или апдейта, для POST это не определено (The POST operation is very generic and no specific meaning can be attached to it). Поэтому мой пример будет правильным и в таком виде, и в виде если поменять местами POST и PUT.
Вообще, POST может использоваться одновременно для всех действий изменения:
POST /book/ – добавить книгу (данные в теле запроса)
POST /book/3 – изменить книгу (данные в теле запроса)
POST /book/3 – удалить книгу (тело запроса пустое)
Это позволяет иногда обходить неприятные моменты, связанные с неприятием PUT и DELETE.
Использование REST для построения Web-сервисов.
Как известно, web-сервис – это приложение работающее в World Wide Web и доступ к которому предоставляется по HTTP-протоколу, а обмен информации идет с помощью формата XML. Следовательно, формат данных передаваемых в теле запроса будет всегда XML.
Для каждой единицы информации (info) определяется 5 действий. А именно:
GET /info/ (Index) – получает список всех объектов. Как правило, это упрощенный список, т.е. содержащий только поля идентификатора и названия объекта, без остальных данных.
GET /info/ (View) – получает полную информацию о объекте.
PUT /info/ или POST /info/ (Create) – создает новый объект. Данные передаются в теле запроса без применения кодирования, даже urlencode. В PHP тело запроса может быть получено таким способом:
POST /info/ или PUT /info/ (Edit) – изменяет данные с идентификатором
DELETE /info/ (Delete) – удаляет данные с идентификатором
Еще раз отмечу, что в нашем примере /info/ — может и базироваться на какой-то другой информации, что может быть (и должно) быть отражено в URL:
/data/4/otherdata/6/info/3/ … и тому подобное.
Какие можно сделать из этого выводы:
Как видно, в архитектура REST очень проста в плане использования. По виду пришедшего запроса сразу можно определить, что он делает, не разбираясь в форматах (в отличие от SOAP, XML-RPC). Данные передаются без применения дополнительных слоев, поэтому REST считается менее ресурсоемким, поскольку не надо парсить запрос чтоб понять что он должен сделать и не надо переводить данные из одного формата в другой.
Практическое применение.
Самое главное достоинство сервисов в том, что с ними работать может какая угодно система, будь то сайт, flash, программа и др. так как методы парсинга XML и выполнения запросов HTTP присутствуют почти везде.
Архитектура REST позволяет серьезно упростить эту задачу. Конечно в реальности, того что описано не достаточно, ведь нельзя кому угодно давать возможность изменять информацию, то есть нужна еще авторизация и аутентификация. Но это достаточно просто разрешается при помощи различного типа сессий или просто HTTP Authentication.
Мифология REST
Матчасть
Мало какая технология в истории IT вызывала столько ожесточённых споров, как REST. Самое удивительное при этом состоит в том, что спорящие стороны, как правило, совершенно не представляют себе предмет спора.
Начнём с самого начала. В 2000 году один из авторов спецификаций HTTP и URI Рой Филдинг защитил докторскую диссертацию на тему «Архитектурные стили и дизайн архитектуры сетевого программного обеспечения», пятая глава которой была озаглавлена как «Representational State Transfer (REST)». Диссертация доступна по ссылке.
Как нетрудно убедиться, прочитав эту главу, она представляет собой довольно абстрактный обзор распределённой сетевой архитектуры, вообще не привязанной ни к HTTP, ни к URL. Более того, она вовсе не посвящена правилам дизайна API; в этой главе Филдинг методично перечисляет ограничения, с которыми приходится сталкиваться разработчику распределённого сетевого программного обеспечения. Вот они:
Всё, на этом определение REST заканчивается. Дальше Филдинг конкретизирует некоторые аспекты имплементации систем в указанных ограничениях, но все они точно так же являются совершенно абстрактными. Буквально: «ключевая информационная абстракция в REST — ресурс; любая информация, которой можно дать наименование, может быть ресурсом».
Ключевой вывод, который следует из определения REST по Филдингу, вообще-то, таков: любое сетевое ПО в мире соответствует принципам REST, за очень-очень редкими исключениями.
Да, конечно, вышеприведённое рассуждение является софизмом, доведением до абсурда. Самое забавное в этом упражнении состоит в том, что мы можем довести его до абсурда и в другую сторону, объявив ограничения REST неисполнимыми. Например, очевидно, что требование code-on-demand противоречит требованию независимости клиента и сервера — клиент должен уметь интерпретировать код с сервера, написанный на вполне конкретном языке. Что касается правила на букву S («stateless»), то систем, в которых сервер вообще не хранит никакого контекста клиента в мире вообще практически нет, поскольку ничего полезного для клиента в такой системе сделать нельзя. (Что, кстати, постулируется в соответствующем разделе прямым текстом: «коммуникация … не может получать никаких преимуществ от того, что на сервере хранится какой-то контекст».)
Наконец, сам Филдинг внёс дополнительную энтропию в вопрос, выпустив в 2008 году разъяснение, что же он имел в виду. В частности, в этой статье утверждается, что:
Короче говоря, REST по Филдингу подразумевает, что клиент, получив каким-то образом ссылку на точку входа REST API, далее должен быть в состоянии полностью выстроить взаимодействие с API, не обладая вообще никаким априорным знанием о нём, и уж тем более не должен содержать никакого специально написанного кода для работы с этим API.
Оставляя за скобками тот факт, что Филдинг весьма вольно истолковал свою же диссертацию, просто отметим, что ни одна существующая система в мире не удовлетворяет описанию REST по Филдингу-2008.
Здравое зерно REST
Нам неизвестно, почему из всех обзоров абстрактной сетевой архитектуры именно диссертация Филдинга обрела столь широкую популярность; очевидно другое: теория Филдинга, преломившись в умах миллионов программистов (включая самого Филдинга), превратилась в целую инженерную субкультуру. Путём редукции абстракций REST применительно конкретно к протоколу HTTP и стандарту URL родилась химера «RESTful API», конкретного смысла которой никто не знает.
Хотим ли мы тем самым сказать, что REST является бессмысленной концепцией? Отнюдь нет. Мы только хотели показать, что она допускает чересчур широкую интерпретацию, в чём одновременно кроется и её сила, и её слабость.
С одной стороны, благодаря многообразию интерпретаций, разработчики API выстроили какое-то размытое, но всё-таки полезное представление о «правильной» архитектуре API. С другой стороны, если бы Филдинг чётко расписал в 2000 году, что же он конкретно имел в виду, вряд ли бы об этой диссертации знало больше пары десятков человек.
Что же «правильного» в REST-подходе к дизайну API (таком, как он сформировался в коллективном сознании широких масс программистов)? То, что такой дизайн позволяет добиться более эффективного использования времени — времени программистов и компьютеров.
Если коротко обобщить все сломанные в попытках определить REST копья, то мы получим следующий принцип: лучше бы ты разрабатывал распределённую систему так, чтобы промежуточные агенты умели читать метаданные запросов и ответов, проходящих через эту систему (готовая заповедь для RESTful-пастафарианства практически!).
У протокола HTTP есть очень важное достоинство: он предоставляет стороннему наблюдателю довольно подробную информацию о том, что произошло с запросом и ответом, даже если этот наблюдатель ничего не знает о семантике операции:
Немаловажно здесь то, что все эти сведения можно получить, не вычитывая тело ответа целиком — достаточно прочитать служебную информацию из заголовков.
Почему это полезно? Потому что современный стек взаимодействия между клиентом и сервером является (как предсказывал Филдинг) многослойным. Разработчик пишет код поверх какого-то фреймворка, который отправляет запросы; фреймворк базируется на API языка программирования, которое, в свою очередь, обращается к API операционной системы. Далее запрос (возможно, через промежуточные HTTP-прокси) доходит до сервера, который, в свою очередь, тоже представляет собой несколько слоёв абстракции в виде фреймворка, языка программирования и ОС; к тому же, перед конечным сервером, как правило, находится веб-сервер, проксирующий запрос, а зачастую и не один. В современных облачных архитектурах HTTP-запрос, прежде чем дойти до конечного обработчика, пройдёт через несколько абстракций в виде прокси и гейтвеев. Если бы все эти агенты трактовали мета-информацию о запросе одинаково, это позволило бы обрабатывать многие ситуации оптимальнее — тратить меньше ресурсов и писать меньше кода.
(На самом деле, в отношении многих технических аспектов промежуточные агенты и так позволяют себе разные вольности, не спрашивая разработчиков. Например, свободно менять Accept-Encoding и Content-Length при проксировании запросов.)
Каждый из аспектов, перечисленных Филдингом в REST-принципах, позволяет лучше организовать работу промежуточного ПО. Ключевым здесь является stateless-принцип: промежуточные прокси могут быть уверены, что метаинформация запроса его однозначно описывает.
Приведём простой пример. Пусть в нашей системе есть операции получения профиля пользователя и его удаления. Мы можем организовать их разными способами. Например, вот так:
Почему такая система неудачна с точки зрения промежуточного агента?
Первую проблему можно решить, сделав операции более машиночитаемыми, например, перенеся идентификатор сессии в URL:
Шардирование всё ещё нельзя организовать, но теперь сервер может иметь кэш (в нём будут появляться дубликаты для разных сессий одного и того же пользователя, но хотя бы ответить из кэша неправильно будет невозможно), но возникнут другие проблемы:
Как же сделать эти операции правильно с точки зрения REST? Вот так:
Теперь URL запроса в точности идентифицирует ресурс, к которому обращаются, поэтому можно организовать кэш и даже заранее наполнить его; можно организовать маршрутизацию запроса в зависимости от идентификатора пользователя, т.е. появляется возможность шардирования. Префетчер мессенджера не пройдёт по DELETE-ссылке; а если он это и сделает, то без заголовка Authorization операция выполнена не будет.
Наконец, неочевидная польза такого решения заключается в следующем: промежуточный сервер-гейтвей, обрабатывающий запрос, может проверить заголовок Authorization и переслать запрос далее без него (желательно, конечно, по безопасному соединению или хотя бы подписав запрос). И, в отличие от схемы с идентификатором сессии, мы всё ёщё можем свободно организовывать кэширование данных в любых промежуточных узлах. Более того, агент может легко модифицировать операцию: например, для авторизованных пользователей пересылать запрос дальше как есть, а неавторизованным показывать публичный профиль, пересылая запрос на специальный URL, ну, скажем, GET /user/
Шагнём ещё чуть вперёд. Предположим, что гейтвей спроксировал запрос DELETE /user/
Вариант 1. Можно сгенерировать HTML-страницу с ошибкой, вернуть её веб-серверу, чтобы тот вернул её клиенту, чтобы клиент показал её пользователю, и дождаться реакции пользователя. Мы прогнали через систему сколько-то байтов и переложили решение проблемы на конечного потребителя. Попутно заметим, что при этом на уровне логов веб-сервера ошибка неотличима от успеха — и там, и там какой-то немашиночитаемый ответ со статусом 200 — и, если действительно пропала сетевая связность между гейтвеем и микросервисом, об этом никто не узнает.
Вариант 2. Можно вернуть веб-серверу подходящую HTTP-ошибку, например, 504, чтобы тот вернул её клиенту, чтобы клиент обработал ошибку и, сообразно своей логике, что-то предпринял по этому поводу, например, отправил запрос повторно или показал ошибку пользователю. Мы прокачали чуть меньше байтов, попутно залогировав исключительную ситуацию, но теперь переложили решение на разработчика клиента — это ему надлежит не забыть написать код, который умеет работать с ошибкой 504.
Вариант 3. Гейтвей, зная, что метод DELETE идемпотентен, может сам повторить запрос; если исполнить запрос не получилось — проследовать по варианту 1 или 2. В этой ситуации мы переложили ответственность за решение на архитектора системы, который должен спроектировать политику перезапросов внутри неё (и гарантировать, что все операции за DELETE действительно идемпотенты), но мы получили важное свойство: система стала самовосстанавливающейся. Теперь она может «сама» побороть какие-то ситуации, которые раньше вызывали исключения.
Внимательный читатель может заметить, что вариант (3) при этом является наиболее технически сложным из всех, поскольку включает в себя варианты (1) и (2): для правильной работы всей схемы разработчику клиента всё равно нужно написать код работы с ошибкой. Это, однако, не так; есть очень большая разница в написании кода для системы (3) по сравнению с (1) и (2): разработчику клиента не надо знать как устроена политика перезапросов сервера. Он может быть уверен, что сервер уже сам выполнил необходимые действия, и нет никакого смысла немедленно повторять запрос. Все серверные методы с этой точки зрения для клиента начинают выглядеть одинаково, а значит, эту функциональность (ожидание перезапроса, таймауты) можно передать на уровень фреймворка.
Важно, что для разработчика клиента при правильно работающих фреймворках (клиентском и серверном) пропадают ситуации неопределённости: ему не надо предусматривать какую-то логику «восстановления», когда запрос вроде бы не прошёл, но его ещё можно попытаться исправить. Клиент-серверное взаимодействие становится бинарным — или успех, или ошибка, а все пограничные градации обрабатываются другим кодом.
В итоге, более сложная архитектура оказалась разделена по уровням ответственности, и каждый разработчик занимается своим делом. Разработчик гейтвея гарантирует наиболее оптимальный роутинг внутри дата-центра, разработчик фреймворка предоставляет функциональность по реализации политики таймаутов и перезапросов, а разработчик клиента пишет бизнес-логику обработки ошибок, а не код восстановления из низкоуровневых состояний неопределённости.
Разумеется все подобные оптимизации можно выполнить и без опоры на стандартную номенклатуру методов / статусов / заголовков HTTP, или даже вовсе поверх другого протокола. Достаточно разработать одинаковый формат данных, содержащий нужную мета-информацию, и научить промежуточные агенты и фреймворки его читать. В общем-то, именно это Филдинг и утверждает в своей диссертации. Но, конечно, очень желательно, чтобы этот код уже был кем-то написан за нас.
Заметим, что многочисленные советы «как правильно разрабатывать REST API», которые можно найти в интернете, никак не связаны с изложенными выше принципами, а зачастую и противоречат им:
«Не используйте в URL глаголы, только существительные» — этот совет является всего лишь костылём для того, чтобы добиться правильной организации мета-информации об операции. В контексте работы с URL важно добиться двух моментов:
«Используйте HTTP-глаголы для описания действий того, что происходит с ресурсом» — это правило попросту ставит телегу впереди лошади. Глагол указывает всем промежуточным агентам, является ли операция (не)модифицирующей, (не)кэшируемой, (не)идемпотентной и есть ли у запроса тело; вместо того, чтобы выбирать строго по этим четырём критериям, предлагается воспользоваться какой-то мнемоникой — если глагол подходит к смыслу операции, то и ок. Это в некоторых случаях просто опасно: вам может показаться, что DELETE /list?element_index=3 прекрасно описывает ваше намерение удалить третий элемент списка, но т.к. эта операция неидемпотентна, использовать метод DELETE здесь нельзя;
«Используйте POST для создания сущностей, GET для доступа к ним, PUT для полной перезаписи, PATCH для частичной и DELETE для удаления» — вновь мнемоника, позволяющая «на пальцах» прикинуть, какие побочные эффекты возможны у какого из методов. Если попытаться разобраться в вопросе глубже, то получится, что вообще-то этот совет находится где-то между «бесполезен» и «вреден»:
«Не используйте вложенные ресурсы» — это правило просто отражает тот факт, что отношения между сущностями имеют тенденцию меняться, и строгие иерархии перестают быть строгими.
«Используйте множественное число для сущностей», «приписывайте слэш в конце URL» и тому подобные советы по стилистике кода, не имеющие никакого отношения к REST.
Осмелимся в конце этого раздела сформулировать четыре правила, которые действительно позволят вам написать хорошее REST API:
Преимущества и недостатки REST
Главное преимущество, которое вам предоставляет REST — возможность положиться на то, что промежуточные агенты, от клиентских фреймворков до API-гейтвеев, умеют читать метаданные запроса и выполнять какие-то действия с их использованием — настраивать политику перезапросов и таймауты, логировать, кэшировать, шардировать, проксировать и так далее — без необходимости писать какой-то дополнительный код. Немаловажно уточнить, что, если вы этими преимуществами не пользуетесь, никакой REST вам не нужен.
Главным недостатком REST является то, что промежуточные агенты, от клиентских фреймворков до API-гейтвеев, умеют читать метаданные запроса и выполнять какие-то действия с их использованием — настраивать политику перезапросов и таймауты, логировать, кэшировать, шардировать, проксировать и так далее — даже если вы их об этом не просили. Более того, так как стандарты HTTP являются сложными, концепция REST — непонятной, а разработчики программного обеспечения — неидеальными, то промежуточные агенты могут трактовать метаданные запроса неправильно. Особенно это касается каких-то экзотических и сложных в имплементации стандартов.
Разработка распределённых систем в парадигме REST — это всегда некоторый торг: какую функциональность вы готовы отдать на откуп чужому коду, а какую — нет. Увы, нащупывать баланс приходится методом проб и ошибок.
О метапрограммировании и REST по Филдингу
Отдельно всё-таки выскажемся о трактовке REST по Филдингу-2008, которая, на самом деле, уходит корнями в распространённую концепцию HATEOAS. С одной стороны, она является довольно логичным продолжением принципов, изложенных выше: если машиночитаемыми будут не только метаданные текущей исполняемой операции, но и всех возможных операций над ресурсом, это, конечно, позволит построить гораздо более функциональные сетевые агенты. Вообще сама идея метапрограммирования, когда клиент является настолько сложной вычислительной машиной, что способен расширять сам себя без необходимости привлечь разработчика, который прочитает документацию API и напишет код работы с ним, конечно, выглядит весьма привлекательной для любого технократа.
Недостатком этой идеи является тот факт, что клиент будет расширять сам себя без привлечения разработчика, который прочитает документацию API и напишет код работы с ним. Возможно, в идеальном мире так работает; в реальном — нет. Любое большое API неидеально, в нём всегда есть концепции, для понимания которых (пока что) требуется живой человек. А поскольку, повторимся, API работает мультипликатором и ваших возможностей, и ваших ошибок, автоматизированное метапрограммирование поверх API чревато очень-очень дорогими ошибками.
Пока сильный ИИ не разработан, мы всё-таки настаиваем на том, что код работы с API должен писать живой человек, который опирается на подробную документацию, а не догадки о смысле гиперссылок в ответе сервера.
Это черновик будущей главы книги о разработке API. Работа ведётся на Github. Англоязычный вариант этой же главы опубликован на medium. Я буду признателен, если вы пошарите его на реддит — я сам не могу согласно политике платформы.
Введение в REST API — RESTful веб-сервисы
Эта статья начинает серию постов о разработке REST API:
Intro to RESTful Web Services
REST означает REpresentational State Transfer (Википедия: «передача состояния представления»). Это популярный архитектурный подход для создания API в современном мире.
Вы изучите:
Что такое REST?
REST расшифровывается как REpresentational State Transfer. Это был термин, первоначально введен Роем Филдингом (Roy Fielding), который также был одним из создателей протокола HTTP. Отличительной особенностью сервисов REST является то, что они позволяют наилучшим образом использовать протокол HTTP. Теперь давайте кратко рассмотрим HTTP.
Краткий обзор HTTP
Давайте сначала откроем браузер и зайдем на веб-страницу:
А затем щелкните на одной из страниц результатов:
Далее мы можем нажать на ссылку на странице, на которой мы оказались:
И перейти на другую страницу:
Вот как мы обычно просматриваем веб страницы.
Когда мы просматриваем страницы в Интернете, за кулисами происходит много вещей. Ниже приведено упрощенное представление о том, что происходит между браузером и серверами, работающими на посещаемых веб-сайтах:
Протокол HTTP
Когда вы вводите в браузере URL-адрес, например www.google.com, на сервер отправляется запрос на веб-сайт, идентифицированный URL-адресом.
Затем этот сервер формирует и выдает ответ. Важным является формат этих запросов и ответов. Эти форматы определяются протоколом HTTP — Hyper Text Transfer Protocol.
Когда вы набираете URL в браузере, он отправляет запрос GET на указанный сервер. Затем сервер отвечает HTTP-ответом, который содержит данные в формате HTML — Hyper Text Markup Language. Затем браузер получает этот HTML-код и отображает его на экране.
Допустим, вы заполняете форму, присутствующую на веб-странице, со списком элементов. В таком случае, когда вы нажимаете кнопку «Submit» (Отправить), HTTP-запрос POST отправляется на сервер.
HTTP и RESTful веб-сервисы
HTTP обеспечивает базовый уровень для создания веб-сервисов. Поэтому важно понимать HTTP. Вот несколько ключевых абстракций.
Ресурс
Ресурс — это ключевая абстракция, на которой концентрируется протокол HTTP. Ресурс — это все, что вы хотите показать внешнему миру через ваше приложение. Например, если мы пишем приложение для управления задачами, экземпляры ресурсов будут следующие:
URI ресурса
Когда вы разрабатываете RESTful сервисы, вы должны сосредоточить свое внимание на ресурсах приложения. Способ, которым мы идентифицируем ресурс для предоставления, состоит в том, чтобы назначить ему URI — универсальный идентификатор ресурса. Например:
REST и Ресурсы
Важно отметить, что с REST вам нужно думать о приложении с точки зрения ресурсов:
Определите, какие ресурсы вы хотите открыть для внешнего мира
Используйте глаголы, уже определенные протоколом HTTP, для выполнения операций с этими ресурсами.
Вот как обычно реализуется служба REST:
Компоненты HTTP
HTTP определяет следующую структуру запроса:
Методы HTTP-запроса
Метод, используемый в HTTP-запросе, указывает, какое действие вы хотите выполнить с этим запросом. Важные примеры:
Код статуса ответа HTTP
Код состояния всегда присутствует в ответе HTTP. Типичные примеры:
Резюме
В статье приведен на верхнем уровне обзор архитектурного стиля REST. Подчеркивается тот факт, что HTTP является основным строительным блоком REST сервисов. HTTP — это протокол, который используется для определения структуры запросов и ответов браузера. Мы видели, что HTTP имеет дело главным образом с ресурсами, доступными на веб-серверах. Ресурсы идентифицируются с помощью URI, а операции над этими ресурсами выполняются с использованием глаголов, определенных протоколом HTTP.
Наконец, мы рассмотрели, как службы REST наилучшим образом используют функции, предлагаемые HTTP, для предоставления ресурсов внешнему миру. REST не накладывает никаких ограничений на форматы представления ресурсов или на определение сервиса.