Что такое грузовая устойчивость крана
Что такое грузовая устойчивость крана
На свободно стоящий кран всегда действуют силы, стремящиеся его опрокинуть; устойчивостью крана называется его способность противодействовать этим силам.
На кран действуют следующие силы: вес поднимаемого груза, собственный вес крана, давление ветра, силы инерции, силы, возникающие от уклона пути.
При определении устойчивости крана эти силы делятся на опрокидывающие и восстанавливающие. Опрокидывающими называются те силы, которые направлены в сторону возможного опрокидывания крана. Силы, направленные в другую сторону, называются восстанавливающими.
Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:
Рис. 1. Расчетная схема крана на грузовую устойчивость
Все силы, действие которых направлено внутрь опорного контура, постоянно являются силами восстанавливающими. Силы, направление которых выходит за пределы опорного контура, могут быть как восстанавливающими, так и опрокидывающими. Поднимаемый груз всегда является силой опрокидывающей; собственный вес крана всегда является силой восстанавливающей. Ветер и силы инерции в зависимости от условий работы крана могут быть как силами опрокидывающими, так и восстанавливающими. Рельсовый путь может иметь небольшой угол наклона а иле превышение одного рельса над другим; это создает наклон крана, способствующий, в зависимости от того, в какую сторону кран наклонен, его опрокидыванию или устойчивости.
Действие силы в направлении опрокидывания крана или удержания его от опрокидывания определяется не только величиной силы, но и расстоянием точки ее приложения от грани опрокидывания. Величина произведения опрокидывающей силы на расстояние ее от грани опрокидывания, т. е. на плечо, называется опрокидывающим моментом, а величина произведения восстанавливающей силы на плечо — восстанавливающим моментом.
Обязательным условием, обеспечивающим устойчивость крана, является превышение суммы моментов восстанавливающих сил над суммой моментов опрокидывающих сил относительно грани опрокидывания.
Рис. 2. Расчетная схема крана на собственную устойчивость
При проектировании крана предусматривается обеспечение его устойчивости в самых неблагоприятных условиях. При этом предполагается, что ветер и силы инерции действуют- как силы опрокидывающие, а кран наклонен в сторону опрокидывания.
Кран проверяется на Устойчивость в рабочем и нерабочем состоянии.
Устойчивость в рабочем состоянии называется грузовой устойчивостью крана, в нерабочем состоянии — собственной устойчивостью крана.
Наиболее неблагоприятными условиями для устойчивости крана при его работе являются следующие : стрела занимает горизонтальное положение и повернута в сторону уклона, груз поднят на наибольшую высоту, кран движется под уклон, ветер дует в сторону уклона и происходит одновременное торможение опускаемого груза и механизма передвижения.
Наиболее неблагоприятными условиями для устойчивости крана в нерабочем состоянии являются следующие: кран стоит на уклоне, стрела поднята до предела, противовес повернут в сторону уклона, ветер дует в сторону уклона.
Все передвижные поворотные краны должны обладать достаточной для их безопасной работы устойчивостью, обеспечивающей невозможность опрокидывания крана. Величина коэффициента запаса устойчивости и методика ее определения регламентированы правилами Госгортехнадзора. Условия равновесия кранов определяются соотношением значений удерживающего и опрокидывающего моментов, действующих относительно оси (ребра) опрокидывания крана. Проверка кранов на устойчивость производится как при рабочем положении крана с грузом (грузовая устойчивость), так и при положении крана без груза (собственная устойчивость) в условиях, когда действующие на кран нагрузки имеют наиболее неблагоприятное сочетание в отношении опрокидывания крана.
Коэффициентом грузовой устойчивости называется отношение момента относительно ребра опрокидывания, создаваемого весом всех частей крана с учетом Осех дополнительных нагрузок (ветровой нагрузки, инерционных сил, возникающих при пуске или торможении механизмов подъема груза, поворота и передвижения крана), а также усилием, возникающим от наибольшего допустимого при работе крана уклона местности или пути к моменту, создаваемому рабочим грузом относительно того же ребра опрокидывания.
Коэффициентом собственной устойчивости крана называется отношение момента, создаваемого весом всех частей крана с учетом уклона пути в сторону опрокидывания относительно ребра опрокидывания, к моменту, создаваемому ветровой нагрузкой (см. ГОСТ 1451— 65 «Краны подъемные. Нагрузка ветровая») нерабочего состояния машины относительно того же ребра опрокидывания.
Согласно правилам Госгортехнадзора, значения коэффициентов грузовой и собственной устойчивости должны быть не менее 1,15. Определение числовых значений коэффициентов устойчивости производится без учета действия рельсовых захватов, повышающих устойчивость крана.
Устойчивость крана необходимо обеспечивать как при стреле, расположенной вдоль направления подкранового пути, так и поперек пути. Так как в большинстве случаев у передвижных кранов колея меньше базы, то обычно более опасным, а следовательно, и расчетным случаем является положение стрелы поперек пути. Кроме того, грузовую устойчивость крана, согласно правилам Госгортехнадзора, проверяют при направлении стрелы под углом 45° к направлению движения с учетом дополнительных касательных сил инерции. Поворотные велосипедные и консольные краны проверяют на устойчивость вдоль однорельсового пути при положении стрелы также вдоль пути.
При проверке грузовой устойчивости рассматривают положение крана с грузом, находящимся на максимальном вылете.
Рис. 3. Схема определения устойчивости крана
а — грузовой; а — собственной
Что такое грузовая устойчивость крана
ГОСТ Р 54769-2011
(ИСО 4304:1987)
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Общие требования к устойчивости
Cranes. General requirements for stability
Дата введения 2013-01-01
Сведения о стандарте
1 ПОДГОТОВЛЕН Некоммерческой организацией «Межгосударственный фонд «Сертификация подъемно-транспортного оборудования и услуг по техническому обслуживанию и ремонту машин» («ПТОУ-Фонд») на основе собственного аутентичного перевода на русский язык международного стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 289 «Краны грузоподъемные»
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей;
Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2004 (пункт 3.5)
1 Область применения
Настоящий стандарт распространяется на грузоподъемные краны по ГОСТ 27555 (кроме самоходных стреловых и плавучих) и устанавливает требования, которые необходимо выполнять при проверке расчетным способом их устойчивости.
В рамках настоящего стандарта не рассматривается динамика перемещения кранов по рельсовому пути.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ 1451-77 Краны грузоподъемные. Нагрузка ветровая. Нормы и метод определения
3 Устойчивость
3.1.1 Грузоподъемный кран считается устойчивым, если алгебраическая сумма стабилизирующих моментов сил превышает сумму опрокидывающих моментов сил.
3.1.2 Проверку расчетным способом устойчивости грузоподъемного крана проводят вычислением суммы опрокидывающих моментов сил с использованием значений, приведенных в таблице 1.
Случай I: Основная устойчивость
Случай II: Грузовая устойчивость
Случай III: Собственная устойчивость
Случай IV: Устойчивость при резком снятии нагрузки
В настоящей таблице использованы следующие условные обозначения:
— сила инерции или промежуточное усилие (указывается изготовителем);
— номинальная грузоподъемность оборудования, заявленная изготовителем (при расчете устойчивости грузоподъемные приспособления, постоянно установленные на грузоподъемном кране в нормальном рабочем режиме, рассматриваются как часть груза независимо от того, учтены такие приспособления в номинальных характеристиках грузоподъемности или нет);
— номинальная грузоподъемность оборудования, заявленная изготовителем, за исключением грузоподъемных приспособлений, постоянно установленных на грузоподъемном кране во время работы;
— ветровая нагрузка в рабочем режиме по ГОСТ 1451;
— ветровая нагрузка в нерабочем режиме по ГОСТ 1451 с учетом воздействия порывов ветра.
При выполнении любых расчетов принимают наиболее неблагоприятное положение грузоподъемного крана и его узлов, а также сочетание, вектор и величину воздействия всех видов нагрузки и моментов сил, при этом предполагают, что грузоподъемные краны установлены на твердой ровной поверхности или на рельсовом пути.
3.1.3 Если грузоподъемный кран предполагается применять на наклонной поверхности, изготовитель должен принять во внимание данное условие при проведении проверки расчетным способом его устойчивости.
3.1.4 Для грузоподъемных кранов, которые перемещаются вместе с подвешенным грузом, помимо всех нагрузок, указанных в таблице 1 для случая II, необходимо учитывать воздействие сил, создаваемых уклоном пути (в сторону груза), в соответствии с инструкциями изготовителя.
3.1.5 Для стационарно установленных грузоподъемных кранов в дополнение к нагрузкам, указанным в таблице 1 для случаев I, II и III, необходимо учитывать вероятное воздействие сейсмических нагрузок в соответствии с сейсмическими характеристиками участка или зоны эксплуатации грузоподъемного крана.
3.1.6 При проведении расчетов по данным, указанным в таблице 1, также необходимо принимать во внимание ветровые нагрузки на грузоподъемный кран и его узлы, в т.ч. грузоподъемные приспособления, постоянно установленные на грузоподъемном кране для обеспечения его работы в нормальном режиме.
3.2 Устойчивость при внезапном снятии нагрузки
В процессе эксплуатации грузоподъемного крана необходимо проверить устойчивость при внезапном снятии нагрузки во время его работы (т.е. когда грузоподъемный кран работает без груза, и при этом все его подвижные рабочие узлы отводятся в положение, приближенное к точке опрокидывания назад) согласно описанию в 3.2.1 или 3.2.2 (также см. случай IV в таблице 1).
3.2.1 Способ расчета моментов действующих сил
3.2.2 Способ расчета центра тяжести
Точка проекции центра тяжести грузоподъемного крана в неподвижном положении на горизонтальную плоскость при штиле или слабом ветре должна находиться на расстоянии, не превышающем 80% расстояния от ребра опрокидывания до задней опорной точки. Примеры показаны на рисунке 1.
3.3 Расчет ветровой нагрузки
3.3.1 При расчете ветровой нагрузки в процессе работы грузоподъемного крана во всех случаях необходимо принимать самый неблагоприятный вектор воздействия.
3.3.2 При выполнении расчетов устойчивости в нерабочем состоянии для грузоподъемных кранов, которые не могут вращаться под воздействием ветра, необходимо принимать наиболее неблагоприятный вектор ветровой нагрузки. Для тех грузоподъемных кранов, конструкция которых предусматривает вращение под воздействием ветра, необходимо учитывать воздействие ветровой нагрузки на верхнюю часть конструкции в подветренном положении одновременно с воздействием на неподвижное основание в наименее благоприятном направлении.
4 Основание грузоподъемного крана
Изготовитель грузоподъемного крана должен указать давление грузоподъемного крана на поверхность или опорную конструкцию. Если устойчивость грузоподъемного крана полностью или частично обеспечивается фундаментом, изготовитель должен указать требования к оборудованию фундамента.
5 Стабилизирующие устройства
Конструкция стабилизирующих устройств должна обеспечивать возможность их простой и быстрой установки.
6 Деформация
Если грузоподъемный кран подвержен существенному воздействию упругой деформации в неподвижном положении, во время работы, под воздействием ветровых или динамических нагрузок, влияние упругой деформации также необходимо учитывать при расчете устойчивости грузоподъемного крана.
Общие сведения об устойчивости крана
Устойчивость – это способность крана противодействовать опрокидывающим его моментам от силы тяжести поднимаемого груза, ветровой нагрузки, собственного веса элементов крана, динамических нагрузок и уклона.
Устойчивость крана определяют для наиболее неблагоприятных условий его работы.
Ребро опрокидывания – линия, относительно которой может произойти потеря устойчивости.
При проверке устойчивости определяют коэффициент устойчивости машины и сравнивают его с допустимым значением.
Мв – восстанавливающий момент
Мопр – опрокидывающий момент.
Для кранов определяют грузовую и собственную устойчивость машины и сравнивают ее с допустимыми значениями при подъеме максимального груза с учетом всех допустимых воздействий (уклон, ветер, инерция).
Ку 1,15 (с учетом всех нагрузок)
Ку 1,4 (с учетом основных нагрузок)
Расчет устойчивости производится для следующих случаев: при работе крана с грузом (грузовая устойчивость), нерабочего состояния (собственная устойчивость), внезапного снятия нагрузки с крана (обрыв груза), монтажа (демонтажа) крана.
Грузовая устойчивость – способность крана при работе противостоять действию всех внешних нагрузок, стремящих опрокинуть его в сторону стрелы.
Собственная устойчивость – способность крана в нерабочем состоянии противостоять действию нагрузок с учетом наклона пути и силы ветра, стремящегося опрокинуть кран в сторону, противоположную стреле.
Для характеристики устойчивости крана применяют коэффициенты грузовой Кгр и собственной Ксоб устойчивости, определяемые по правилам и формулам.
Грузовую устойчивость проверяют как для максимального, так и для минимального вылета.
Собственную устойчивость кранов с маневровым изменением вылета контролируют при положении стрелы на максимальном вылете.
Устойчивость кранов с установочным изменением вылета устанавливают для положения, когда стрела поднята до минимального вылета.
Правилами Госгортехнадзора предписывается по окончании работы закрепить краны противоугонными устройствами за рельсы. При этом усилие от закрепления за рельсы при расчете собственной устойчивости не учитывается. Оно идет в запас устойчивости крана.
1. Ознакомиться с общими сведениями об устойчивости машин.
2. Определить удерживающий (восстанавливающий) момент крана.
3. Определить опрокидывающие моменты:
— от сил инерции, возникающих при подъеме груза
— от силы ветра, действующей на кран
— от силы ветра, действующей на груз
— от сил инерции, возникающих при движении крана с грузом.
4. Определить устойчивость крана, работающего на горизонтальной площадке при участии только основных нагрузок.
5. Определить грузовую и собственную устойчивость крана
Что такое грузовая устойчивость крана
3.9. Устойчивость кранов
Под устойчивостью крана понимается его способность противодействовать опрокидывающим моментам.
Расчет устойчивости крана производится при действии испытательной нагрузки, действии груза (грузовая устойчивость), отсутствии груза (собственная устойчивость), внезапном снятии нагрузки и монтаже (демонтаже).
Расчет устойчивости производится в соответствии с нормативными документами, например, РД 22-145-85 «Краны стреловые самоходные. Нормы расчета устойчивости против опрокидывания». Соотношение между восстанавливаю щим и опрокидывающим моментами определяет степень устойчивости крана против опрокидывания. Для разных положений крана значения опрокиды вающих и восстанавливающих моментов различны, так как изменяются значения действующих сил, их плечи и положение центра тяжести крана. Устойчивость крана должна быть обеспечена для всех его положений при любых возможных комбинациях нагрузок. К этим нагрузкам для передвижного поворотного крана относятся:
— вес поднимаемого груза;
— инерционные силы при пуске или торможении меха низмов крана;
— центробежные силы, возникающие при вращении поворотной части крана;
— сила давления ветра на груз и элементы крана.
Таким образом, различают грузовую устойчивость, то есть способность крана противодействовать опрокидывающим моментам, создаваемыми весом груза, силами инерции, ветровой нагрузкой рабочего состояния, и собственную устойчивость — способность крана противодействовать опрокидывающим моментам при нахождении крана в рабочем (в том числе без груза) и нерабочем состояниях.
Условия проверки грузовой устойчивости (рис. 3.26,а): кран стоит на наклонной местности, подвержен действию ветра (по нормам для рабочего состояния) и поворачивается, одновременно тормозится спускаемый груз; стрела установлена поперек пути (при установке стрелы вдоль пути может одновременно происходить и торможение движущегося крана); на кран действуют вес груза, силы инерции, возникающие при торможении спускаемого груза и движущегося крана, силы инерции от вращения крана, ветровая нагрузка. Расчет устойчивости производится для всех вылетов.
3.26. Схема расчета устойчивости стрелового крана
Условия проверки собственной устойчивости (рис. 3.26, б): кран стоит на наклонной местности, вылет стрелы минимальный; кран подвержен только действию ветра (по нормам для нерабочего состояния). Расчет производится только для минимального вылета. Величина запаса устойчивости характеризуется коэффициентом устойчивости и устанавливается нормативными документами.
Коэффициентом грузовой устойчивости называют отношение момента относительно ребра опрокидывания, создаваемого весом крана с учетом дополнительных нагрузок (ветровая нагрузка, силы инерции, возникающие при пуске или торможении механизмов подъема груза, поворота или передвижения крана) и влияния наибольшего допускаемого при работе крана уклона, к моменту
, создаваемому рабочим грузом относительно того же ребра. Этот коэффициент должен быть не менее 1,15, то есть :
.
Ребром опрокидывания является линия, проходящая через точку контакта колеса и рельса, относительно которой кран стремится опрокинуться.
Коэффициентом собственной устойчивости называют отношение момента, создаваемого весом крана, с учетом уклона пути в сторону опрокидывания относительно ребра опрокидывания к моменту, создаваемому ветровой нагрузкой при нерабочем состоянии крана относительно того же ребра опрокидывания. Этот коэффициент также должен быть не менее 1,15.
Для определения числовых значений коэффициентов устойчивости необходимо определить силы, действующие на кран; плечи, на которых действуют эти силы и создаваемые ими моменты. На рис. 3.26, а показан железнодорожный кран в рабочем состоянии и действующие на него силы. Точка О представляет собой ребро опрокидывания, а точка цт — положение центра тяжести крана.
Силы, действующие на кран, и плечи этих сил следующие:
= Qcos
— нормальная составляющая веса крана, действующая на плече ( а+в ) относительно ребра опрокидывания;
— составляющая веса крана, действующая параллельно плоскости вращения крана на плече h 2 ;
— сила давления ветра, действующая на плече h 1 на подветренную площадь крана Fk и зависящая от удельного давления ветра р при рабочем
где
;
R – радиус вращения груза, м.
При вращении крана канат, на котором висит груз, под действием силы инерции отклонится от вертикали на угол . Следовательно, радиус вращения груза превысит вылет крана на некоторую величину с. Угол отклонения каната определится из равенства
откуда следует, что
,
а ра диус вращения груза
.
,
Теперь легко получить значение силы G ив :
Подставляя в исходную формулу центробежной силы полученные выражения легко убедиться, что:
.
Угол наклона принимают равным для башенных строительных кранов примерно 1,5°, для железнодорожных, пневмоколесных, гусеничных, автомобильных и других подобных кранов, работающих без выносных опор, примерно 3°, при работе на выносных опорах — 1,5°. Нормами предусмотрена проверка коэффициента грузовой статической устойчивости, то есть устойчивости крана, находящегося только под воздействием весовых нагрузок (без учета дополнительных сил и уклона площади):
Коэффициент собственной устойчивости крана
,
где M Q — момент, создаваемый весом крана с учетом уклона пути в сторону опрокидывания;
Мв — момент ветровой нагрузки при нерабочем состоянии крана относительно ребра опрокидывания.
.
Уровень требований к ГПМ зависит от условий их эксплуатации (режимов работы). Режимы работы кранов и их механизмов принимаются в соответствии со стандартом 4301/1. В зависимости от максимального числа рабочих циклов и от использования крана по грузоподъемности стандартом определены 8 групп классификации кранов, которые учитываются при выборе конкретной машины.
Основным видом силового оборудования ГПМ являются электрические двигатели, однако находят применение и двигатели внутреннего сгорания, и комбинированные: дизель-электрические, электрогидравлические и др. Особого внимания требуют канаты, используемые в качестве стропов либо тяговых органов в механизмах ГПМ.
В общем случае в состав ГПМ входит металлоконструкция и ряд механизмов: подъема, передвижения, изменения вылета, поворота. Требования к их расчету и конструированию установлены нормативными документами. Широкое применение на складах и в производственных цехах заводов находят однобалочные и двухбалочные мостовые краны общего назначения и специального назначения. Разновидностью мостовых кранов являются краны-штабелеры, применяемые преимущественно на складах тарн о- штучных грузов.
На открытых складах грузопереработка осуществляется с помощью козловых кранов и мостовых перегружателей с грузоподъемностью и пролетом, изменяющимися в широком диапазоне. С развитием контейнерных перевозок все большее применение находят козловые краны, имеющие грузоподъемность от 20 до 40 т и обеспечивающие многоярусное складирование контейнеров. Если требуется обслужить склад шириной в несколько сотен метров, то может оказаться целесообразным кабельный кран с пролетом 250…500 м.
С вышеперечисленными кранами успешно конкурируют в зоне относительно небольших грузопотоков стреловые поворотные краны: железнодорожные, автомобильные, гусеничные, башенные и др. При переработке массовых грузов в портах применяют портальные краны с разными грузозахватными устройствами. Для захвата грузов при выполнении погрузочно-разгрузочных операций используются грузозахватные устройства как универсальные, так и специализированные.
Высокая производительность крана и безопасная работа на нем могут быть обеспечены при его устойчивом положении, исключающем возможность опрокидывания. Правилами по кранам и соответствующими руководящими документами установлен порядок расчета устойчивости для разных условий нагружения и порядок ее экспериментальной проверки.
1. Назовите головные организации в области проектирования и безопасной эксплуатации ГПМ.
2. Как принято классифицировать краны мостового типа?
3. Какие режимы работы установлены для кранов в целом и для механизмов в целом
4. Как устроен и работает нормально-замкнутый электромагнитный тормоз?
5. Как подобрать канат для механизма подъема крана при сдвоенном полиспасте?
6. Расскажите об устройстве двухбалочного мостового крана.
7. Чем отличается козловой кран от мостового перегружателя?
8. Как принято классифицировать стеллажные краны-штабелеры?
9. Расскажите о способах токоподвода к козловым кранам.
10. Как работает опорно-поворотное устройство стрелового крана?
11. Зачем на портальном кране устанавливается подвижный противовес?
12. Какие нагрузки учитываются при расчете грузовой устойчивости крана?