Что такое графический api

API – графические интерфейсы программ.

Что такое графический api. Смотреть фото Что такое графический api. Смотреть картинку Что такое графический api. Картинка про Что такое графический api. Фото Что такое графический api

API – графические интерфейсы программ.

API Direct 3D. API OpenGL. API Microsoft DirectX.

API Direct 3D. Direct 3D является частью API, называемого DirectX. Современное программ­ное обеспечение широко использует графические интерфейсы Х Win­dows и OpenGL. Этот API предназначен для облегчения программирования игровых программ. Direct 3D имеет два режима: RM (Retained mode) – абстрактный и IM (Immediale) – непосредственный. IM состоит из тонкого уровня, который взаимодействует с аппаратурой и обеспечивает самое высокое быстродействие. RM является высокоуровневым интерфейсом, обеспечивающим для программиста множество графических операций, включая инициализацию и трансформацию. Большинство 3D-игр используют режим IM. В Windows Vista реализована поддержка тех же интерфейсов Direct3D и DirectDraw, как в Windows XP, начиная с DirectX 3 (за исключением режима Retained Mode в Direct3D). Существует и еще одно ограничение для полноценных 64-битных приложений Windows XP Professional x64 Edition, поддержка функций которых под Windows Vista ограничена Direct3D9, DirectDraw7 и более новыми версиями интерфейсов.

Отношения между аппаратным, программным обеспечением и DirectX можно продемон­стрировать следующей схемой:

(Аппаратное обеспечение) > (Direc+X) > (Програм­мное обеспечение).

Обновление DirectX можно выполнять независимо от операционной системы. DirectX состоит из «основного» слоя, который обеспечивает доступ к звуковым устройст­вам, устройствам двухмерной и трехмерной графики, уст­ройствам ввода и процедурам установки. Программный интерфейс DirectX содержит слой Media, который состоит из API.

Слой Media DirectX пре­доставляет сервис для разработ­чиков игр, Web и интерактивных медиа-программ. Самая последняя версия DirectX доступна для бесплатной загрузки с Web-узла фирмы Mi­crosoft. Кроме того, DirectX является частью таких продуктов, как Internet Explorer, Win­dows 2000. Некоторые производители аппаратного обес­печения поставляют вместе со своими продуктами последнюю версию DirectX. Перед инсталляцией некоторые программы проверяют номер версии установленного про­граммного интерфейса. Если установленная версия устарела, то пользователю будет предло­жено установить последнюю версию. Программный интерфейс DirectX обратно совместим, т.е. последняя версия поддерживает функции всех предыдущих. Для корректной работы всех программ необходимо использовать последнюю версию программного интерфейса DirectX.

Источник

Знакомство с графовыми API

Привет, Хабр! Мы не перестаем отслеживать тему проектирования API после того, как встретили в портфеле издательства «Manning» вот эту книгу. Сегодня мы решили опубликовать обзорную статью об относительно новых Graph API и предлагаем еще раз задуматься о том, каковы будут новые API после безраздельной популярности REST.

Приятного чтения!

Если в последние 10 лет вам доводилось потреблять API – готов поспорить, что это был REST API. Вероятно, данные были структурированы вокруг ресурсов, в отклики включались id, указывающие на связанные объекты, а при помощи HTTP-команд сообщалось, как поступить с информацией: прочитать, записать и обновить (да, согласен, это вольное определение, а не канонический REST Роя Филдинга). Некоторое время API в стиле REST были доминирующим стандартом в нашей индустрии.

Однако, у REST есть свои проблемы. Клиент может привыкнуть извлекать лишние данные, запрашивая целый ресурс в случае, когда ему нужны лишь один-два фрагмента информации. Либо клиенту могут регулярно требоваться несколько объектов одновременно, но он не может извлечь их все в одном запросе – тогда возникает так называемое «недоизвлечение» данных. Что касается поддержки, изменения в REST API могут приводить к тому, что клиенту потребуется обновить всю интеграцию, чтобы программа соответствовала новой структуре API или схемам откликов.

Для решения подобных проблем в последние годы все активнее разрабатываются принципиально иные API, именуемые «графовыми».

Что такое Graph API?

В графовом API клиент формулирует вызов таким образом, что данные со всех трех ресурсов вытягиваются в один заход. Клиент также может указать те поля, которые для него действительно важны, предоставив более полный контроль над схемой отклика.
Чтобы детально исследовать, как устроен этот механизм, рассмотрим пару кейсов с описанием живых невыдуманных API.

Кейс 1: Графовый API Facebook

Facebook выпустил версию 1.0 своего API в 2010 году и с тех пор проектирует новые версии, вдохновляясь примером графовых баз данных. Существуют узлы, соответствующие, например, постам и комментариям, а также ребра, соединяющие их и указывающие, что данный комментарий «относится» к этому посту. Такой подход обеспечивает всей конструкции не менее качественную обнаружимость, чем у типичного REST API, однако, все равно позволяет клиенту оптимизировать извлечение данных. Возьмем в качестве примера отдельный пост и рассмотрим, какие простые операции можно с ним проделать.

Для начала клиент при помощи запроса GET выбирает пост из корня API, исходя из ID поста.

По умолчанию в таком случае возвращается большинство полей верхнего уровня данного поста. Если клиенту требуется доступ лишь к некоторым элементам поста – например, заголовку и времени создания – то можно запросить только эти поля, указав данную информацию в качестве одного из параметров запроса:

Чтобы выбрать требуемые данные, клиент запрашивает ребро, например, комментарии к посту:

До сих пор все это напоминает функции REST API. Пожалуй, возможность задать подмножество полей – в новинку, но в целом данные воспринимаются во многом как ресурсы. Ситуация становится интереснее, когда клиент собирает вложенный запрос. Вот как еще клиент может выбрать комментарии к посту:

Вышеприведенный запрос возвращает отклик, в котором содержится время создания поста, его заголовок и список комментариев (из каждого сообщения выбирается только id и сообщение). В REST вы бы такое сделать не смогли. Клиенту потребовалось бы сначала выбрать пост, а затем — комментарии.

А что, если клиенту потребуются более глубокие вложения?

В этом запросе выбираются комментарии к посту, в том числе, id и имя автора каждого комментария. Рассмотрим, как это делалось бы в REST. Клиенту потребовалось бы запросить пост, запросить комментарии, а затем в серии отдельных запросов извлечь информацию об авторе каждого комментария. Сразу набирается множество HTTP-вызовов! Однако, при проектировании в виде графа вся эта информация конденсируется в одном вызове, и в этом вызове оказывается лишь та информация, что нужна клиенту.

Наконец, последний момент, который следует отметить о графовом проектировании: любой объект, выбираемый с ребра, сам является узлом и, следовательно, его можно запросить непосредственно. Вот, например, как выбирается дополнительная информация о конкретном комментарии:

Обратите внимание: клиенту не нужно собирать URL вида /posts/

Кейс 2: GitHub V4 GraphQL API

Другим конкурентом графового API можно считать спецификацию под названием GraphQL. Эта концепция значительно отличается от REST, здесь предоставляется всего одна конечная точка, принимающая запросы GET и POST. При всех взаимодействиях с API отправляются запросы, соответствующие синтаксису GraphQL.

В мае 2017 года GitHub выпустил 4-ю версию своего API, соответствующую этой спецификации. Чтобы попробовать, каков из себя GraphQL, давайте рассмотрим отдельные операции, которые можно проделать с репозиторием.

Чтобы выбрать репозиторий, клиент определяет запрос GraphQL:

В данном запросе выбирается ID и описание репозитория “transformer” с ресурса Zapier org. Здесь следует отметить несколько вещей. Во-первых, мы считываем данные с API при помощи POST, поскольку посылаем в запросе тело сообщения. Во-вторых, полезная нагрузка самого запроса записана в формате JSON, что предписано в стандарте GraphQL. В-третьих, структура запроса будет именно такой, какая указана в нашем запросе, <"data": <"repository": <"id": "MDEwOlJlcG9zaXRvcnk1MDEzODA0MQ==", "description": ". ">>> (корневой ключ data – еще один обязательный элемент, который должен присутствовать в откликах GraphQL).

Чтобы выбрать данные, относящиеся к репозиторию – например, задачи и их авторов, клиент применяет вложенный запрос:

Этот запрос выхватывает ID и описание репозитория, название и текст последних 20 задач, созданных в репозитории, а также логин (имя) автора каждой задачи. То есть, в каждом запросе укладывается масса информации. Вообразите, как выглядел бы REST-эквивалент такого запроса – и становится понятно, какие возможности и гибкость обеспечивает клиентам GraphQL в данном отношении.

При обновлении данных GraphQL использует концепцию под названием «мутация». В отличие от REST, где обновление выполняется путем PUT или POST измененной копии ресурса на ту же конечную точку, с которой клиент ее извлек, мутация GraphQL – это явная операция, определяемая API. Если клиенту требуется подкорректировать данные, то требуется знать, какие мутации поддерживаются на сервере. Удобно, что GraphQL позволяет обнаруживать их в рамках процесса под названием «интроспекция схемы».

При наличии подробной схемы GraphQL в обязательном порядке требует, чтобы клиент имел возможность запрашивать эту схему в соответствии с синтаксисом GraphQL. Таким образом клиент может узнать возможности API путем интроспекции.

Если клиенту требуется узнать, какие мутации возможны в GitHub, можно просто запросить:

Надеюсь, эти кейсы наглядно демонстрируют, как развивается дизайн API в SaaS-индустрии. Я не пытаюсь сказать, что за графовыми API будущее, а REST мертв. В таких архитектурах как GraphQL есть собственные проблемы. Но хорошо, что круг возможностей ширится, и в следующий раз, когда вам потребуется создать API, вы сможете взвесить все компромиссы, на которые приходится идти при том или ином варианте дизайна, и выбрать оптимальное решение.

Источник

Vulkan. Руководство разработчика. Краткий обзор

Что такое графический api. Смотреть фото Что такое графический api. Смотреть картинку Что такое графический api. Картинка про Что такое графический api. Фото Что такое графический api

Я работаю техническим переводчиком ижевской IT-компании CG Tribe, которая предложила мне внести свой вклад в сообщество и начать публиковать переводы интересных статей и руководств.

Здесь я буду публиковать перевод руководства к Vulkan API. Ссылка на источник — vulkan-tutorial.com. Поскольку переводом этого же руководства занимается еще один пользователь Хабра — kiwhy, мы договорились разделить уроки между собой. В своих публикациях я буду давать ссылки на главы, переведенные kiwhy.

9. Загрузка моделей

10. Создание мип-карт

FAQ

Политика конфиденциальности

1. Вступление

2. Краткий обзор

Предпосылки возникновения Vulkan


Как и предыдущие графические API, Vulkan задуман как кроссплатформенная абстракция над GPU. Основная проблема большинства таких API заключается в том, что в период их разработки использовалось графическое оборудование, ограниченное фиксированным функционалом. Разработчики должны были предоставить данные о вершинах в стандартном формате и в плане освещения и теней полностью зависели от производителей графических процессоров.

По мере развития архитектуры видеокарт в ней стало появляться все больше программируемых функций. Все новые функции необходимо было каким-то образом объединить с существующими API. Это привело к неидеальным абстракциям и множеству гипотез со стороны графического драйвера о том, как воплотить замысел программиста в современных графических архитектурах. Поэтому для повышения производительности в играх выпускается большое количество обновлений драйверов. Из-за сложности таких драйверов среди поставщиков часто возникают расхождения, например, в синтаксисе, принятом для шейдеров. Помимо этого, в последнее десятилетие также наблюдался приток мобильных устройств с мощным графическим оборудованием. Архитектуры этих мобильных GPU могут сильно отличаться в зависимости от требований по размерам и энергопотреблению. Одним из таких примеров является тайловый рендеринг, который может дать большую производительность за счет лучшего контроля над функционалом. Еще одним ограничением, связанным с возрастом API, является ограниченная поддержка многопоточности, что может привести к появлению узкого места со стороны ЦП.

Vulkan помогает решить эти проблемы, поскольку изначально создан для современных графических архитектур. Это снижает потери на стороне драйвера за счет того, что разработчики могут четко описать свои цели с помощью подробного API. Vulkan позволяет параллельно создавать и отсылать команды в нескольких потоках. Также снижаются расхождения компиляции шейдеров за счет перехода на стандартизованный формат байтового кода и использования одного компилятора. И наконец, Vulkan реализует главную возможность современных видеокарт, объединяя графические и вычислительные возможности в едином API.

Как нарисовать треугольник?


Мы кратко рассмотрим шаги, необходимые для отрисовки треугольника. Это позволит вам получить общее представление о процессе. Подробное описание каждой концепции будет дано в следующих главах.

Шаг 1 — Экземпляр (instance) и физические устройства

Работа с Vulkan начинается с настройки Vulkan API через VkInstance (экземпляр). Экземпляр создается с помощью описания вашей программы и всех расширений, которые вы хотите использовать. После создания экземпляра вы можете запросить, какое оборудование поддерживает Vulkan, и выбрать один или несколько VkPhysicalDevices для выполнения операций. Вы можете сделать запрос по таким параметрам, как размер VRAM и возможности устройств, чтобы выбрать желаемые устройства, если вы предпочитаете использовать специализированные видеокарты.

Шаг 2 — Логическое устройство и семейства очередей

После того, как вы выберете подходящее hardware устройство для использования, вам необходимо создать VkDevice (логическое устройство), где вы более подробно опишете, какие возможности (VkPhysicalDeviceFeatures) будете использовать, например, рендеринг в несколько viewport-ов (multi viewport rendering) и 64-битные числа с плавающей точкой. Вам также необходимо установить, какие семейства очередей вы бы хотели использовать. Многие операции, совершаемые с помощью Vulkan, например, команды рисования и операции в памяти, выполняются асинхронно после отправки в VkQueue. Очереди выделяются из семейства очередей, где каждое семейство поддерживает определенный набор операций. Например, для операций с графикой, вычислительных операций и передачи данных памяти могут существовать отдельные семейства очередей. Кроме того их доступность может использоваться в качестве ключевого параметра при выборе физического устройства. Некоторые устройства с поддержкой Vulkan не предлагают никаких графических возможностей, однако, все современные видеокарты с поддержкой Vulkan, как правило, поддерживают все необходимые нам операции с очередями.

Шаг 3 — Window surface и цепочки показа (swap chain)

Если вас интересует не только внеэкранный рендеринг, вам необходимо создать окно для отображения отрендеренных изображений. Окна можно создать с помощью API исходной платформы или библиотек, таких как GLFW и SDL. В руководстве мы будем использовать GLFW, подробнее о которой мы расскажем в следующей главе.

Цепочка показа — это набор целей рендеринга. Ее задача — обеспечивать, чтобы изображение, которое рендерится в текущий момент, отличалось от отображаемого на экране. Это позволяет отслеживать, чтобы отображались только готовые изображения. Каждый раз, когда нам нужно создать кадр, мы должны сделать запрос, чтобы цепочка показа предоставила нам изображение для рендеринга. После того, как кадр создан, изображение возвращается в цепочку показа, чтобы в какой-то момент отобразиться на экране. Количество целей рендеринга и условий для отображения готовых изображений на экране зависит от текущего режима. Среди таких режимов можно выделить двойную буферизацию (vsync) и тройную буферизацию. Мы рассмотрим их в главе, посвященной созданию цепочки показа.

Некоторые платформы позволяют рендерить непосредственно на экран через расширения VK_KHR_display и VK_KHR_display_swapchain без взаимодействия с каким-либо менеджером окон. Это позволяет создать surface, которая представляет собой весь экран и может использоваться, например, для реализации вашего собственного менеджера окон.

Шаг 4 — Image views и фреймбуферы

Чтобы рисовать в изображение (image), полученное из цепочки показа, мы должны обернуть его в VkImageView и VkFramebuffer. Image view ссылается на определенную часть используемого изображения, а фреймбуфер ссылается на image views, которые используются как буферы цвета, глубины и шаблонов (stencil). Поскольку в цепочке показа может быть множество разных изображений, мы заранее создадим image view и фреймбуфер для каждого из них и выберем необходимое изображение во время рисования.

Шаг 5 — Проходы рендера

Проходы рендера в Vulkan описывают тип изображений, используемых во время операций рендеринга, то, как они используются, и то, как необходимо обрабатывать их содержимое. Перед отрисовкой треугольника мы сообщим Vulkan, что мы хотим использовать одиночное изображение в качестве буфера цвета и что нам нужно очистить его перед рисованием. Если проход рендера описывает только тип изображений, используемых в качестве буферов, то VkFramebuffer фактически связывает определенные изображения с этими слотами.

Шаг 6 — Графический конвейер (pipeline)

Графический конвейер в Vulkan настраивается с помощью создания объекта VkPipeline. Он описывает конфигурируемое состояние видеокарты, например, размер viewport или операцию буфера глубины, а также программируемое состояние, используя объекты VkShaderModule. Объекты VkShaderModule создаются из байтового кода шейдера. Драйверу также необходимо указать, какие цели рендеринга будут использоваться в конвейере. Мы задаем их, ссылаясь на проход рендера.

Одна из наиболее отличительных особенностей Vulkan по сравнению с существующими API-интерфейсами заключается в том, что почти все системные настройки графического конвейера должны задаваться заранее. Это значит, что если вы хотите переключиться на другой шейдер или немного изменить vertex layout, вам необходимо полностью пересоздать графический конвейер. Поэтому вам придется заранее создать множество объектов VkPipeline для всех комбинаций, необходимых для операций рендеринга. Только некоторые базовые настройки, такие как размер viewport и цвет очистки, могут быть изменены динамически. Все состояния должны быть описаны явно. Так, например, не существует смешивания цветов (color blend state) по умолчанию.

К счастью, поскольку процесс больше напоминает опережающую компиляцию, вместо компиляции «на лету», у драйвера появляется больше возможностей для оптимизации, а производительность оказывается более предсказуемой, так как значительные изменения состояния, например, переключение на другой графический конвейер, указываются явно.

Шаг 7 — Пул команд и буферы команд

Как уже было сказано, многие операции в Vulkan, например операции рисования, должны быть отправлены в очередь. Прежде чем отправить операции, их необходимо записать в VkCommandBuffer. Буферы команд берутся из VkCommandPool, который связан с определенным семейством очередей. Чтобы нарисовать простой треугольник, нам нужно записать буфер команд со следующими операциями:

Шаг 8 — Основной цикл

Этот краткий обзор позволяет получить общее представление о предстоящей работе по рисованию вашего первого треугольника. В реальности же шагов гораздо больше. Среди них выделение буферов вершин, создание uniform-буферов и загрузка изображений текстур — все это мы рассмотрим в следующих главах, а пока начнем с простого. Чем дальше мы будем двигаться, тем сложнее будет материал. Обратите внимание, что мы решили пойти хитрым путем, изначально встраивая координаты вершины в вершинный шейдер вместо использования буфера вершин. Такое решение связано с тем, что для управления буферами вершин сначала требуется знакомство с буферами команд.

Подведем краткий итог. Для отрисовки первого треугольника нам необходимо:

Концепты API


В заключение к текущей главе будет приведен краткий обзор того, как структурируются Vulkan API на более низком уровне.

Стандарт оформления кода

Что такое графический api. Смотреть фото Что такое графический api. Смотреть картинку Что такое графический api. Картинка про Что такое графический api. Фото Что такое графический api

Как уже было сказано, Vulkan был разработан для обеспечения высокой производительности при низких нагрузках на драйвер. Поэтому он включает в себя очень ограниченные возможности автоматического обнаружения и исправления ошибок. Если вы сделаете ошибку, драйвер даст сбой или еще хуже, продолжит работать на вашей видеокарте, но выйдет из строя на других видеокартах.

Поэтому Vulkan позволяет запускать расширенные проверки с помощью функции, известной как слои валидации. Слои валидации — это фрагменты кода, которые могут быть вставлены между API и графическим драйвером для выполнения дополнительных проверок параметров функций и отслеживания проблем по управлению памятью. Это удобно тем, что вы можете запустить их во время разработки, а затем полностью отключить при запуске программы без дополнительных затрат. Любой пользователь может написать свои собственные слои валидации, но Vulkan SDK от LunarG предоставляет стандартный набор, который мы будем использовать в руководстве. Вам также необходимо зарегистрировать функцию обратного вызова для получения сообщений отладки от слоев.

Поскольку операции в Vulkan расписываются очень подробно, и слои валидации достаточно обширные, вам будет намного проще установить причину черного экрана по сравнению с OpenGL и Direct3D.

Остался всего один шаг, прежде чем мы начнем писать код, и это — настройка рабочей среды.

Источник

Что такое Vulkan и DirectX и как они влияют на видеоигры

Что такое графический api. Смотреть фото Что такое графический api. Смотреть картинку Что такое графический api. Картинка про Что такое графический api. Фото Что такое графический api

Большинство из нас, геймеров, слышали о Microsoft DirectX. Однако, немногие из нас знакомы с его утилитами и как они влияют на видеоигры. В настоящее время, фактически, приобретя конкурента в форме Vulkan, вещи относящиеся к двум API, как правило, становятся еще более сложными. В этом руководстве мы увидим, что такое API, Vulkan и DirectX, и мы покажим метод, с помощью которого они влияют на наши игры.

Предварительная информация о API

Прежде чем мы начнем говорить о DirectX и Vulkan, нам нужно сначала понять, что такое API. Аббревиатура означает «Интерфейс прикладного программирования».

Интерфейс предназначен для обеспечения связи между двумя объектами. Одним из примеров является графический интерфейс Windows, который играет роль посредника между операционной системой и пользователем.

Интерфейс обеспечивает удобную среду. С помощью этой среды мы используем операционную систему, не зная, как ее функции реализованы в фоновом режиме. Интерфейс прикладного программирования (API) заполняет роль посредника. Однако на этот раз пользователь может быть ПК или другой программой и не обязательно человеком. API-интерфейсы гораздо более распространены, чем можно было бы подумать, предлагая программистам необходимые инструменты для создания своего программного обеспечения.

Что такое графический api. Смотреть фото Что такое графический api. Смотреть картинку Что такое графический api. Картинка про Что такое графический api. Фото Что такое графический apiОриентировочный пример, в котором мы используем API, — это когда мы автоматически регистрируемся в новом социальном средстве или онлайн-сервисе, используя наши ранее существующие учетные записи из Facebook или Google (вместо создания новой учетной записи вручную).

В таких случаях веб-сайт использует API, через который он связывается с конкретной услугой (например, Facebook или Twitter), чтобы собирать нашу личную информацию (имя (имена), адрес электронной почты, контактные номера и т. д.) Для создания нашего нового аккаунта.

Тем не менее существует множество других применений API для всех видов взаимодействия между приложениями и компьютерами, такими как системы баз данных, операционные системы и библиотеки программного обеспечения.

В таких случаях использование API-интерфейсов применимо к нашему компьютерному оборудованию и в частности, к нашей графической карте (видеокартам).

DirectX и Vulkan фактически улучшают связь между приложением (игрой) и графическим процессором, чтобы повысить производительность графики.

Что такое графический api. Смотреть фото Что такое графический api. Смотреть картинку Что такое графический api. Картинка про Что такое графический api. Фото Что такое графический api

С выпуском Windows 95 и модели защищенной памяти разработчики не имели такого же доступа к ресурсам, как в MS-DOS. DirectX впервые появился в виде набора конкретных API для разработки мультимедийных приложений, таких как игры.

Термин «DirectX» начинается со слова «Direct», ссылаясь на прямой доступ к ресурсам системы. Некоторые примеры включают Direct3D для графики и DirectSound для аудио. Часть «Х» относится к API в общей коллекции; таким образом объединив все API-интерфейсы под названием DirectX. Вышеупомянутое название также вдохновило название популярной видеоигр компании Xbox.

Вышеприведенное иллюстрирует тесную связь между DirectX и консолью Microsoft. Его последняя версия, DirectX 12, имеет большие улучшения. Тем не менее он поддерживается только Windows 10 и новейшей игровой консолью компании Xbox One.

Что такое графический api. Смотреть фото Что такое графический api. Смотреть картинку Что такое графический api. Картинка про Что такое графический api. Фото Что такое графический apiDirect3D является жемчужиной DirectX и полезен для создания 3D-объектов на нашем экране. Он также позволяет просматривать игры в полноэкранном режиме, а также использовать аппаратные ускорители. Последний метод позволяет реализовать некоторые функции более эффективно, чем они работают в программном обеспечении. Это может быть достигнуто за счет более эффективного использования аппаратного обеспечения нашего компьютера. В этом случае это будет наша видеокарта.

Вулкан AMD

В 2015 году Kronos Group разработала свой собственный API. Vulkan — это низкоуровневый API, используемый для разработки графически требующих приложений. Его первая стабильная версия дебютировала в августе 2016 года.

Следует четко указать, что «низкий уровень» не относится к качеству. Вместо этого этот термин описывает способность Вулкана работать на аппаратном уровне.

Хронос окружает себя одними из самых больших имен в ИТ-индустрии. Некоторые из них — Google, Intel, Sony, Nvidia и AMD. Последние два дали API, свести к минимуму время разработки Vulkan.

OpenGL — популярный API среди графических дизайнеров. Фактически он был разработан Хроносом, и он также включает в себя многие характеристики Вулкана. Однако его прием игровыми дизайнерами был непредвиденным.

Одним из самых сильных активов Vulkan является тот факт, что он с открытым исходным кодом. Кроме того, совместимость Vulkan с несколькими платформами вместе с общей производительностью — это два дополнительных актива, которые делают его более прибыльным, чем DirectX.

Что такое графический api. Смотреть фото Что такое графический api. Смотреть картинку Что такое графический api. Картинка про Что такое графический api. Фото Что такое графический apiЗдесь вы можете найти полный список с именами, которые содержат Khronos. Мантия обеспечила основную базу, на которой был разработан Вулкан. Наконец Vulkan в настоящее время находится в версии 1.1.

Как они влияют на игры

До этого момента мы рассмотрели некоторые основы, касающиеся API, Microsoft и Khronos. Но как они влияют на игры?

Эти два API значительно улучшили производительность. До сих пор DirectX, по-видимому, обеспечивал лучшую производительность, чем Vulcan, что на самом деле он не так далеко позади.

Microsoft утверждает, что DirectX 12 снижает потребление на 50% при использовании DirectX 11. С другой стороны, Vulkan также демонстрирует лучшую гибкость, чем его предшественник. Говоря о предшественниках, DirectX 11 и OpenGL были созданы с учетом одноядерных процессоров; что означает, что они не были точно настроены с использованием новых, многоядерных процессоров.

В результате одно ядро ​​управляет большинством различных процессов, в то время как остальные работают с низкой скоростью, а иногда и вовсе отключены. Оба API (DirectX 12 и Vulkan) поддерживают процессоры с несколькими ядрами и потоками, чтобы максимально эффективно использовать свои возможности. Более того, они передают большую часть требуемых задач от процессора к графической карте (видеокартам), предлагая более сбалансированный опыт.

Взаимодействие между этими двумя элементами может существенно повлиять на будущие сборки ПК. Графические карты в значительной степени важнее, чем процессоры, когда дело доходит до игр. С дальнейшим развитием игровых API маловероятно, что процессоры могут стать еще менее важными, когда дело доходит до него. Таким образом, даже с простым процессором мы можем получить хорошую производительность без каких-либо узких мест.

Поддержка нескольких графических карт

Здесь Khronos Group столкнулась со значительным разрывом между двумя API-интерфейсами с поддержкой использования нескольких графических карт (использование явного многоканального GPU). Мы можем использовать разные карты, если их чипы имеют аналогичную архитектуру и используют один и тот же драйвер. Это позволит различным картам обрабатывать другую часть экрана.

Microsoft здесь еще на один шаг впереди, позволяя использовать несколько графических карт даже у другого производителя, что часто бывает, поскольку большинство систем имеют независимый и интегрированный графический процессор. Важно подчеркнуть тот факт, что эти реализации отличаются от возможностей SLI и Crossfire от Nvidia и AMD, которые реализованы с помощью драйверов, и в частности, в случае SLI требуют идентичные графические карты.

Шейдеры

Шейдеры — это небольшие программы, которые запускаются на наших видеокартах. Они отвечают за определенные функции различных объектов в 3D-среде. Тени, туман и освещение в игре являются результатом шейдера.

Vulkan использует промежуточное представление для шейдеров под названием SPIR-V. Его двоичная форма похожа на байт-код DirectX DX.

SPIR-V версия 1.3 отличается SPIR-V opt, инструментом для уменьшения размера шейдеров. Максимальный размер достигает + 40% от байт-кода DX соответствующего представления для DirectX.

Кроме того, некоторые структуры в HLSL (высокоуровневый шейдерный язык), которые были разработаны Microsoft, не поддерживались непосредственно некоторыми видеокартами.

HLSL широко используется DirectX с версии 9. Он использовался в качестве дополнения к существующему языку ассемблера шейдеров. С новой версией SPIR-V Vulkan также поддерживает ее.

Таким образом, разработчики смогут использовать существующий код для своих шейдеров, и им не нужно будет изобретать колесо. Следовательно, игры будут легко перенесены с одной платформы на другую.

Совместимость с несколькими платформами

Что касается платформ, большое преимущество Vulkan заключается в том, что он поддерживает Windows, Linux, Mac OS, Android и iOS. DirectX 12 с другой стороны, поддерживается только в Windows 10 и Xbox One. Чтобы использовать усовершенствования, предлагаемые DirectX 12, нам нужно либо обновить нашу операционную систему до Windows 10, либо получить новую консоль компании.

Если вы хотите попробовать DirectX 12, и вам не удалось получить Windows 10 во время бесплатного обновления, ознакомьтесь с нашим пошаговым руководством по свободным методам модернизации, которые доступны:

Возвращаясь к предыдущей теме, игровой порт, поддерживаемый API Vulkan, будет значительно проще по сравнению с портом, поддерживаемым DirectX.

С одной стороны, мы можем иметь названия на нескольких платформах, а с другой разные операционные системы имеют возможность размещать наши игры. Одна из причин, почему Linux не так популярен, как Windows, связана с тем, что последняя отличается от игр.

Распределение Linux может быть лучшим выбором для размещения наших игр, поскольку он может быть скорректирован для этой цели. Например Steam OS — это специализированная операционная система, предназначенная исключительно для игр.

Также подумайте: компания думает о создании программного обеспечения для разработки игр и хочет поддерживать API. Кто бы вы выбрали?

Оба имеют схожие мощности оба лучшие, чем их предшественники, и оба обеспечивают явное использование видеокарт. Vulkan поддерживает все платформы, включая Windows 10 и Xbox One, в то время как DirectX поддерживает только последние две.

Что такое графический api. Смотреть фото Что такое графический api. Смотреть картинку Что такое графический api. Картинка про Что такое графический api. Фото Что такое графический apiВиртуальная реальность

Необходимо сказать, что Vulkan является примером больших улучшений в области виртуальной реальности. Приложение VR должно отображать определенную 3D-сцену с двух разных точек зрения — по одному для каждого глаза.

До этого момента вышесказанное было возможно, отправив все необходимые команды на нашу графическую карту, чтобы сформировать трехмерное изображение для одной перспективы. Подход такой же для перспективы нашего второго глаза.

Версия 1.1 Vulkan предлагает набор команд рендеринга для формирования нескольких, немного разных выходов (изображений), которые в конечном итоге дают лучшую производительность в приложениях VR.

Развитие и будущее

Было бы упущением, не говоря уже о ходе разработки двух API. С одной стороны, у нас есть ветеран DirectX с более чем 20-летним развитием. С другой стороны, Вулкану едва будет 3 года с 2015 года. Тот факт, что Vulkan является открытым исходным кодом, может немного повлиять на его темпы роста. Конечно игроки Khronos, похоже серьезно относятся к разработке API, так как уровни улучшения впечатляют.

Все мы можем создавать новые инструменты и модификации и предоставлять их сообществу, помогая API расти быстрее. Наконец следует упомянуть, что DirectX не имеет вышеуказанной функции. Несмотря на свои годы развития, около 40 игр в настоящее время используют Vulkan, занимая большую часть рынка. Некоторые из них — Quake, Roblox, Talos и Dota 2. Что касается производительности, Vulkan приближается к DirectX, и в некоторых случаях он превосходит его. Самые захватывающие примеры работы Вулкана — игра Doom.

Что такое графический api. Смотреть фото Что такое графический api. Смотреть картинку Что такое графический api. Картинка про Что такое графический api. Фото Что такое графический apiVulkan расширил свою поддержку названий AAA, таких как Wolfenstein II, не пренебрегая названиями VR, такими как Doom VFR и Serious Sam VR. Здесь вы можете увидеть подробный список поддерживаемых игр. Хотя здесь вы найдете игры с поддержкой DirectX 12.

Оба API значительно улучшили производительность. Лучшее использование нескольких графических карт и меньшее использование ЦП повысит общую производительность наших систем. По слухам, новые видеокарты от Nvidia будут выпущены к концу лета и значительно превзойдут сегодняшние высокопроизводительные графические карты. В целом, общее состояние вещей кажется довольно гибким. В любом случае, изменения в разработке игр скоро будут у нас, и оба API несомненно будут играть важную роль.

Как вы относитесь к двум API?

Вы уже узнали всю информацию, которую мы предоставили на Vulkan и DirectX? Со временем их соперничество усиливается, какой из двух API вы считаете более полезным для развития игры? Мы с нетерпением ждем ваших комментариев.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *