Что такое графическая функция

Элементарные функции и их графики

Понятие функции — одно из ключевых в математике. О нём подробно рассказано в статье «Что такое функция».

И конечно, в задачах части 2 Профильного ЕГЭ по математике без них не обойтись. А если вы выбрали технический или экономический вуз — первая же лекция по матанализу будет посвящена именно элементарным функциями и их графикам.

Но это не всё. Математические функции, изучением которых мы занимаемся, — это не что-то такое выдуманное или существующее только в замкнутом пространстве учебника. Они являются отражением реальных взаимосвязей и процессов, происходящих в природе и обществе.

Существует всего пять типов элементарных функций:

2. Показательные
Это функции вида y = a x

4. Тригонометрические
В их формулах присутствуют синусы, косинусы, тангенсы и котангенсы.

Элементарными они называются потому, что из них, как из элементов, получаются все остальные, встречающиеся в школьном курсе. Например, y = x 2 · e x — произведение квадратичной и показательной функций; y = sin(a x ) — сложная функция, то есть комбинация двух функций — показательной и тригонометрической.

Графики и свойства основных элементарных функций следует знать наизусть.

Показательная функция y = a x

Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.

Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте гиперссылку.

Источник

График линейной функции, его свойства и формулы

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Для удобства результаты можно оформлять в виде таблицы:

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

a > 1Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция
0 1Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция
0 2 + 5? Об этом — статья «Преобразования графиков функций».

Обратите внимание: уравнения, которые вы решаете, обычно относятся к одному из этих пяти типов. Для каждого типа — свои способы решения. Это и понятно: они основаны на тех или иных свойствах функций.

Почему в уравнении 3 x = 3 5 мы можем «отбросить» основания и записать, что x = 5? Да потому что показательная функция y = 3 x возрастает и каждое значение принимает только один раз.

Почему уравнение имеет бесконечно много решений, которые записываются в виде серии: Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция, где n — целое? Потому что функция y = sinx — периодическая, то есть каждое свое значение принимает бесконечно много раз.

Зная графики элементарных функций, вы уже не запутаетесь с ОДЗ уравнений и неравенств. Вы сможете решать сложные задачи графически — а это часто во много раз легче и быстрее, чем аналитически.

Есть еще и такие уравнения, где слева и справа стоят функции разных типов. Для их решения есть графический способ, а также специальные приемы, о которых рассказывается в статье «Метод оценки».

Источник

Функции и графики

Изучение свойств функций и их графиков занимает значительное место как в школьной математике, так и в последующих курсах. Причем не только в курсах математического и функционального анализа, и даже не только в других разделах высшей математики, но и в большинстве узко профессиональных предметов. Например, в экономике – функции полезности, издержек, функции спроса, предложения и потребления. в радиотехнике – функции управления и функции отклика, в статистике – функции распределения. Чтобы облегчить дальнейшее изучение специальных функций, нужно научиться свободно оперировать графиками элементарных функций. Для этого после изучения следующей таблицы рекомендую пройти по ссылке «Преобразования графиков функций». и/или по ссылке Построение графиков, содержащих модуль аргумента или модуль функции, а также сумму или разность нескольких модулей.

С 17.04.21 до экзаменв просмотр по кнопке ОТКРЫТ.

В школьном курсе математики изучаются следующие
элементарные функции.

Степеннаяy = x 3Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функцияКубическая параболаСамый простой случай для целой нечетной степени. Случаи с коэффициентами изучаются в разделе «Движение графиков функций».
Степеннаяy = x 1/2Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функцияГрафик функции
y = √x
Самый простой случай для дробной степени (x 1/2 = √x). Случаи с коэффициентами изучаются в разделе «Движение графиков функций».
Показательнаяy = a xЧто такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функцияГрафик показательной функцииПоказательная функция определена для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = 0,5 x (a = 1/2 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log2x (a = 2 > 1).
Логарифмическаяy = logaxЧто такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функцияГрафик логарифмической функцииЛогарифмы определены для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log0,5x (a = 1/2

На сервере youtube.com открыт канал Mathematichka, на котором размещаются видео, связанные с изучением графиков функций и экзаменационными задачами на эту тему. Подписывайтесь и пишите в комментариях свои вопросы и пожелания.

Пример такого видео.

Перейти на главную страницу.

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция
ФункцияКоэффициент «k»Коэффициент «b»
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!

Свойства линейной функции

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Источник

Основные элементарные функции: их свойства и графики

Основные элементарные функции, присущие им свойства и соответствующие графики – одни из азов математических знаний, схожих по степени важности с таблицей умножения. Элементарные функции являются базой, опорой для изучения всех теоретических вопросов.

Статья ниже дает ключевой материал по теме основных элементарных функций. Мы введем термины, дадим им определения; подробно изучим каждый вид элементарных функций, разберем их свойства.

Выделяют следующие виды основных элементарных функций:

Постоянная функция

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства постоянных функций:

Корень n-й степени

Данная элементарная функция определяется формулой y = x n ( n – натуральное число больше единицы).

Рассмотрим две вариации функции.

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Похожий вид у графиков функции четной степени при иных значениях показателя.

Свойства функции корень n-ой степени, n – четное число

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Иные нечетные значения показателя корня функции y = x n дадут график аналогичного вида.

Свойства функции корень n-ой степени, n – нечетное число

Степенная функция

Вид графиков и свойства функции зависят от значения показателя степени.

Степенная функция при нечетном положительном показателе

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства степенной функции, когда показатель степени – нечетный положительный

Степенная функция при четном положительном показателе

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства степенной функции, когда показатель степени – четный положительный:

Степенная функция при нечетном отрицательном показателе

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства степенной функции, когда показатель степени – нечетный отрицательный:

Степенная функция при четном отрицательном показателе степени

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства степенной функции, когда показатель степени – четный отрицательный:

Степенная функция при рациональном или иррациональном показателе (значение больше нуля и меньше единицы)

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Иные значения показателя степени a (при условии 0 a 1 ) дадут аналогичный вид графика.

Свойства степенной функции при 0 a 1 :

Степенная функция при нецелом рациональном или иррациональном показателе степени (больше единицы)

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Иные значения показателя степени а при условии a > 1 дадут похожий вид графика.

Свойства степенной функции при a > 1 :

Степенная функция при действительном показателе степени (больше минус единицы и меньше нуля)

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Степенная функция при нецелом действительном показателе степени (меньше минус единицы)

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Показательная функция

Сначала разберем ситуацию, когда основание показательной функции имеет значение от нуля до единицы ( 0 a 1 ) . Наглядным примером послужат графики функций при a = 1 2 (синий цвет кривой) и a = 5 6 (красный цвет кривой).

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства показательной функции, когда основание меньше единицы:

Проиллюстрируем этот частный случай графиком показательных функций y = 3 2 x (синий цвет кривой) и y = e x (красный цвет графика).

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Иные значения основания, большие единицы, дадут аналогичный вид графика показательной функции.

Свойства показательной функции, когда основание больше единицы:

Логарифмическая функция

График логарифмической функции имеет различный вид, исходя из значения основания а.

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Иные значения основания, не большие единицы, дадут аналогичный вид графика.

Свойства логарифмической функции, когда основание меньше единицы:

Теперь разберем частный случай, когда основание логарифмической функции больше единицы: а > 1 . На чертеже ниже – графики логарифмических функций y = log 3 2 x и y = ln x (синий и красный цвета графиков соответственно).

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Иные значения основания больше единицы дадут аналогичный вид графика.

Свойства логарифмической функции, когда основание больше единицы:

Тригонометрические функции, их свойства и графики

Тригонометрические функции – это синус, косинус, тангенс и котангенс. Разберем свойства каждой из них и соответствующие графики.

В общем для всех тригонометрических функций характерно свойство периодичности, т.е. когда значения функций повторяются при разных значениях аргумента, отличающихся друг от друга на величину периода f ( x + T ) = f ( x ) ( T – период). Таким образом, в списке свойств тригонометрических функций добавляется пункт «наименьший положительный период». Помимо этого, будем указывать такие значения аргумента, при которых соответствующая функция обращается в нуль.

График данной функции называется синусоида.

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства функции синус:

График данной функции называется косинусоида.

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства функции косинус:

График данной функции называется тангенсоида.

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства функции тангенс:

График данной функции называется котангенсоида.

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства функции котангенс:

Обратные тригонометрические функции, их свойства и графики

Обратные тригонометрические функции – это арксинус, арккосинус, арктангенс и арккотангенс. Зачастую, в связи с наличием приставки «арк» в названии, обратные тригонометрические функции называют аркфункциями.

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства функции арксинус:

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства функции арккосинус:

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства функции арктангенс:

Что такое графическая функция. Смотреть фото Что такое графическая функция. Смотреть картинку Что такое графическая функция. Картинка про Что такое графическая функция. Фото Что такое графическая функция

Свойства функции арккотангенс:

Источник

Алгебра

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Понятие функции

Понятие функции в школьной программе впервые встречается в 7 классе, поэтому настоятельно рекомендуем перечитать посвященный этой теме урок. Напомним, что функцией (в учебной литературе может использоваться сокращение ф-ция) называется соответствие между элементами двух множеств или, другими словами, зависимость между двумя величинами. Чаще всего в алгебре рассматриваются числовые ф-ции, которые заданы аналитически, то есть формулой. В качестве примера можно привести запись

Здесь х – это независимая переменная, или аргумент, а у – зависимая величина, или просто функция. Принципиально важно, что каждому значению аргумента соответствует только одно значение зависимой величины. Часто в математике используют запись

Она читается как «игрек равен эф от икс» и означает, что величина у как-то зависит от х. По сути, она равноценна записи

Если в скобках стоит конкретное число, то запись означает значение ф-ции при этом значении аргумента.

У каждой ф-ции есть область допустимых значений (используется сокращение ОДЗ), или область определения функции. Это те значения аргумента, при которых ф-ция определена. Здесь возможны два случая. В первом область определения указывается прямо. Например, если рассматривается функция у = х 4 при значениях х от 1 до 3, то и областью определения будет всё множество чисел от 1 до 3. Для обозначения области определения используется запись D(y) или D(f). При изучении неравенств мы уже познакомились с такими объектами, как числовые промежутки. Именно с их помощью указывают ОДЗ.

Пример. Постройте график функции у = х, если D(y) = [– 3; 4].

Решение. Ф-ция у = х – это линейная функция, мы уже умеем строить их графики (они представляют собой прямую линию). Выглядеть он будет так:

Однако в условии также есть запись D (y) = [– 3; 4], которая означает, что ф-ция определена только при х от – 3 до 4. С учетом этого условия график несколько преобразится:

Грубо говоря, часть графика, которая не входит в область определения, просто «отрезана».

Значительно чаще область определения явно не указывается. В этом случае предполагается, что ф-ция определена во всех точках числовой прямой, в которых ее вообще возможно вычислить. Например, ф-цию у = 9х 3 – 47 можно вычислить при любом значении х, поэтому ее область определения – вся числовая прямая, то есть D(y) = (– ∞; + ∞).

А когда же вычислить функцию невозможно? К этому уроку нам известны две таких ситуации:

Например, вычислить ф-цию у = 5/х при х = 0 невозможно, поэтому ее область определения – вся числовая прямая, кроме нуля, то есть

имеет область определения D(y) = [5; + ∞), так как при х 2 при D(y) = [– 2; 2] областью значений будет промежуток [0; 4], то есть Е(у) = [0; 4]. Это видно из графика функции:

Ещё раз напомним, что область определения и область значения функции указываются с помощью числовых промежутков.

Теперь перейдем к тем понятиям, которые не изучались ранее. Первое из них – это нули функции. Так называют те значения аргумента, при которых функция обращается в ноль.

есть два нуля, х = 4 и х = 5. Убедиться в этом можно подстановкой:

у(4) = 4 2 – 9•4 + 20 = 0

у (5) = 5 2 – 9•5 + 20 = 0

Для нахождения нулей ф-ции у = f(x) надо просто решить уравнение

Например, чтобы найти нули приведенной выше функции

надо решить уравнение

Сделаем это, ведь мы уже умеем решать квадратные уравнения:

На графике нули ф-ции – это те точки, в которых график пересекает ось Ох:

Ещё одно новое понятие – промежутки знакопостоянства. Так называют промежутки числовой прямой, на которых ф-ция либо только положительна, либо только отрицательна. Для наглядности покажем их на графике:

Пусть есть ф-ция у = f(x). Для нахождения промежутков знакопостоянства необходимо решить неравенства f(x)>0 и у = f(x) 0:

Получаем, что функция положительна на промежутке (12; + ∞).

Аналогично решив неравенство 3х – 36 2 – 5х. Найдите такое значение величины а, для которого выполняется условие у(а) = у(а + 2).

Решение. Очевидно, что у(а) = а 2 – 5а. Теперь вычислим у(а + 2):

у(а + 2) = (а + 2) 2 – 5(а + 2) = а 2 + 4а + 4 – 5а – 10 = а 2 – а – 6.

Теперь приравняем значения у(а) и у(а + 2):

а 2 – 5а = а 2 – а – 6

а 2 – 5а – а 2 + а = – 6

Убедимся, что мы нашли требуемое значение а:

у(1,5) = 1,5 2 – 5•1,5 = 2,25 – 7,5 = – 5,25

у(1,5 + 2) = у(3,5) = 3,5 2 – 5•3,5 = 12,25 – 17,5 = – 5,25

Растяжение и сжатие графиков функций

Пусть на координатной плоскости есть точка А с координатами (х0; у0). Куда переместится эта точка, если ее ордината (то есть у0) увеличится, например, в два или в три раза? Она отодвинется от оси Ох. Если же ее ордината уменьшится, то точка приблизится к оси. Наконец, если ордината поменяет знак, то точка, изначально, лежащая выше оси, окажется ниже её. Проиллюстрируем это на картинке:

Пусть есть пара функций у(х) и g = k•у(х), где k– какое-то постоянное число (константа), не равная нулю. Примерами таких пар являются:

Посмотрим, как связаны графики таких функций. На рисунке красным цветом показана функция у(х), а синим g = 2у(x):

При любом значении аргумента выполняется условие g(х) = 2у(х). Это значит, что ордината (координата у) каждой точки графика g(х) вдвое больше, чем ордината соответствующей точки графика у(х). В частности, отрезок АА2 вдвое длиннее отрезка АА1:

Аналогично можно записать, что

Таким образом, график g(x) выглядит так, будто бы график у(х) «растянули» в 2 раза. Каждая точка «переезжает» на новое место, сдвигаясь по вертикали. Так, если точка А1 имела координаты (– 6; 2), то при растяжении графика функции она получит координаты (– 6; 4), то есть ее координата у увеличится вдвое. Точка B1 имела координаты (2; – 2), а в графике g(х) занимает позицию (2; – 4).

Убедимся в этом на примере ф-ций у = х 2 и g = 2х 2 :

В общем случае говорят, что график функции g(х) = ky(x) получается растяжением графика у(х) в k раз.

Пример. Функция у(х) задана графически:

Постройте график функции g(х) = 3у(х).

Решение. Каждую точку отодвинем от оси Ох, увеличив координату у точек в 3 раза:

При сжатии графика каждая точка параболы приближается к оси Ох, при этом ордината точек уменьшается вдвое. Так, точка А2 с координатами (3; 9) переходит в точку А1 с координатами (3; 4,5).

Отдельно стоит рассмотреть случай, при котором коэффициент k является отрицательным. В этом случае график отображается симметрично относительно оси Ох. Те точки, которые имели изначально положительную ординату и находились выше Ох, в результате получают отрицательную ординату и оказываются ниже оси Ох. Покажем на рисунке графики ф-ций у = х 2 и у = – х 2 (то есть k =– 1):

Если же, например, коэффициент k = – 2, то надо и растянуть график, и перевернуть его относительно оси Ох. В частности, так выглядит график у = – 2х 2 :

Параллельный перенос графиков функций

Теперь посмотрим, как передвинется отдельная точка на координатной плоскости, если к ее ординате добавить какое-нибудь число. Если это число положительное, то точка поднимется выше, а если отрицательное, то она опустится:

Это означает, что если к какой-нибудь функции добавить некоторое число, то график функции переместится вверх или вниз. Для примера построим графики функций у = х 2 + 2 и у = х 2 – 5:

Параллельный перенос возможен не только в вертикальном, но и в горизонтальном направлении. Для такого перемещения надо изменить абсциссу точки, а не ординату:

Аналогично может сдвинуться не только точка, но и целый график функции. Если вместо аргумента х подставить в ф-цию величину (х +n), то график сместится на n единиц влево.

у(0) = 0 2 = 0 и g(– 3) = g(– 3 + 3) 2 = 0 2 = 0

у(– 1) = (– 1) 2 = 1 и g(– 4) = g(– 4 + 3) 2 = (– 1) 2 = 1

у(– 2) = (– 2) 2 = 4 и g(– 5) = g(– 5 + 3) 2 = (– 2) 2 = 4

Точка А1 сдвинулась влево на 3 единицы и перешла в точку А2. Аналогично точка В1 отобразилась в точку В2.

Пусть в общем случае есть функции у = у(х) и g(x) = у(х +n), где n – некоторое постоянное число. Значение у(х) в точке х0 обозначается как у0. Теперь найдем значение g(x) в точке (х0 – n):

Получили, то же самое значение, что и у у(х). Покажем это на рисунке:

Рассмотрим теперь случай, когда график сдвигается вправо. Для этого из аргумента исходной функции надо вычесть какое-то число. На рисунке показаны графики функций у = 2х и у = 2(х – 4):

Каждая точка исходного графика (например, А1) «переехала» на 4 единицы вправо.

Надо понимать, что иногда один график можно получить из другого в несколько переходов. Пусть надо построить график у = – (х – 4) 2 + 5. Его можно получить из обычной параболы у = х 2 в три шага.

Последний шаг – это построение графика у = – (х – 4) 2 + 5. Его можно получить, подняв предыдущий график на 5 единиц вверх:

Гипербола и обратная пропорциональность

Найдем область определения функции у = 1/х. Ясно, что аргумент не может равняться нулю, так как иначе получим деление на ноль:

При любых других значениях х значение у вычислить можно, а потому областью определения будет промежуток (– ∞; 0)⋃(0;+ ∞).

При положительных значениях аргумента ф-ция также будет положительной:

При отрицательных х величина у будет становиться отрицательной:

Это означает, что график ф-ции будет располагаться в I и III четвертях.

Можно заметить, что чем больше х, тем ближе у к нулю:

И наоборот, чем ближе х к нулю, тем больше у:

При этом у не может равняться нулю. Действительно, дробь равна нулю только тогда, когда ее числитель равен нулю. Однако варьируя х, мы меняем только знаменатель, а в числителе остается единица. Поэтому областью значений функции у = х – 1 является промежуток (– ∞; 0)⋃(0;+ ∞).

Для построения графика найдем некоторые точки графика и занесем их в таблицу. Мы построим две таблицы – одну для положительных х, другую для отрицательных:

Теперь можно посмотреть и на сам график:

Первое, что бросается в глаза – это то, что график не представляет собой единую, непрерывную линию. Он разбит на две ветви, одна из которых располагается в III четверти, а другая – в I четверти. Такой «разрыв» связан с тем, что ноль не входит в область определения ф-ции.

Также можно заметить симметричность графика. Действительно, одна из ветвей является симметричным отображением второй ветви.

Построенный нами график называется гиперболой.

На координатной плоскости есть две прямые линии, к которым гипербола приближается, но при этом он не касается их. Это оси Ох и Оу. Для наглядности покажем их штриховой линией:

В математике подобные линии называют асимптотами функции. Горизонтальная асимптота прямая соответствует линии х = 0, а вертикальная асимптота линии у = 0.

Зная, как выглядит график у = 1/х, мы можем построить и другие, схожие с ним графики для ф-ций у = k/х, где k– это некоторое число. Их можно получить из гиперболы, используя сжатие и растяжение графиков. Если коэффициент k больше единицы, то график «отдаляется» от осей Ох и Оу:

Все эти линии являются примерами гипербол. Если коэффициент k отрицательный, то графики переворачиваются относительно оси Ох и занимают II и IV четверти:

Все приведенные зависимости вида у = k/х называют обратными пропорциональностями.

Примерами обратной пропорциональности являются ф-ции:

Обратная пропорциональность очень часто встречается в жизни. Так, время, затрачиваемое на поездку на автомобиле, обратно пропорционально средней скорости движения. Количество товара, которое можно купить на одну зарплату, обратно пропорционально стоимости этого товара.

Дробно-линейная функция

Теперь рассмотрим несколько более сложные ф-ции, чьи графики, однако, также представляют собой гиперболу. Пусть есть ф-ция вида

Как будет выглядеть ее график? Для ответа на этот вопрос выполним преобразование:

Здесь мы в числителе и знаменателе добавили и сразу вычли слагаемое 2.Этот прием помог нам выделить целую часть из дроби. В результате мы получили ф-цию, график которой можно получить с помощью двух параллельных переносов графика у = 6/х. Сначала график сместится на две единицы вправо:

На следующем шаге график поднимется на единицу вверх:

Стоит обратить внимание, что при таком передвижении гиперболы передвигаются и асимптоты графика гиперболы:

представляет собой дробь, являющуюся отношением двух линейных многочленов, х + 3 и х – 2. В математике подобные ф-ции называют дробно-линейными функциями. В качестве примеров дробно-линейных функций можно привести:

Из любой дробно-линейной функции можно выделить целую часть. Покажем это на нескольких примерах:

Во всех этих случаях график дробно-линейной функции можно построить с помощью двух параллельных переносов гиперболы.

Однако есть одно исключение. Иногда при выделении из дроби целой части дробной части не остается вовсе, то есть линейные полиномы можно сразу сократить. Например:

Графиком таких функций являются прямые горизонтальные линии. Однако на них должна быть одна «исключенная». Действительно, пусть надо построить график ф-ции

Проведя преобразования, получим

то есть у = 2. Однако в знаменателе дроби не может стоять ноль. Если же подставить в дробь х = – 2, то получим деление на ноль:

Поэтому график ф-ции будет выглядеть так:

Итак, по итогам урока мы узнали:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *