Что такое горизонталь и фронталь в начертательной геометрии
Начертательная геометрия: конспект лекций.
4. Горизонтали и фронтали плоскости.
Среди прямых, которые лежат в некоторой плоскости, можно выделить два класса прямых, играющих большую роль при решении всевозможных задач. Это прямые, которые называют горизонталями и фронталями.
Горизонталь плоскости Р (рис. 41) – прямая, которая лежит в этой плоскости и параллельна горизонтальной плоскости. Горизонталь как прямая, параллельная горизонтальной плоскости, имеет фронтальную проекцию ѓ, параллельную оси х.
Три прямые – горизонталь Г, ее горизонтальная проекция г и горизонтальный след Рh плоскости Р – параллельны (рис. 42).
Действительно, горизонталь является прямой, параллельной горизонтальной плоскости, и поэтому не имеет горизонтального следа Рh, лежащего с ней в одной плоскости. При этом горизонталь Г не может пересечь свою горизонтальную проекцию г. В противном случае в этой точке пересечения она встречала бы горизонтальную плоскость, что противоречит определению, т. е. все три прямые Г, г и Рh параллельны.
Любая из плоскостей имеет множество горизонталей. Все горизонтали этой плоскости параллельны друг другу вследствие того, что все они параллельны прямой Рh.
Фронталь плоскости Р – прямая, которая лежит в этой плоскости и параллельна фронтальной плоскости (рис. 43).
Фронталь является прямой, параллельной фронтальной плоскости, и ее горизонтальная проекция ф параллельна оси х.
Фронталь Ф, ее фронтальная проекция ф́ и фронтальный след Рv взаимно параллельны. У каждой плоскости есть бесчисленное множество фронталей. Все фронтали данной плоскости параллельны, за исключением плоскости, параллельной фронтальной плоскости.
Это прямая, принадлежащая плоскости, и параллельная горизонтальной плоскости проекций (рис. 17а,б)).Построение горизонтали начинают с фронтальной проекции, так как она всегда параллельна оси х12. Все горизонтали плоскости параллельны между собой.
Фронталь плоскости.
Это прямая, принадлежащая плоскости, и параллельная фронтальной плоскости проекций (рис. 18а, б). Построение фронтали всегда начинают с горизонтальной проекции, так как она всегда параллельна оси х12. Все фронтали плоскости параллельны между собой.
Параллельность прямой и плоскости
Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости.
Проведем в плоскости, заданной двумя пересекающимися прямыми а и в, любую прямую n. Затем через точку К построим прямую m║ n (рис. 19). У параллельных прямых параллельны одноименные проекции.
Теорема о проекциях прямого угла
Помимо позиционных задач, рассмотренных в предыдущих параграфах, в практике приходится решать задачи на определение расстояний, углов и истинных величин плоских фигур. Такие задачи называются метрическими задачами. При их решении необходимо знать условие перпендикулярности прямых и плоскостей. Для этого надо выяснить свойство ортогональной проекции прямого угла.
Если одна сторона прямого угла параллельна плоскости проекций, то на эту плоскость проекций прямой угол проецируется без искажения (рис. 20).
На рис. 21 показаны скрещивающиеся прямые, перпендикулярные друг другу.
Перпендикулярность прямой и плоскости
Из геометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости (рис. 22).
Применение дополнительного ортогонального проецирования
Для решения задач
Пример. Найти длину отрезка АВ.
Чтобы найти длину отрезка занимающего в пространстве общее положение относительно плоскостей П1 и П2, надо построить дополнительную ортогональную проекцию отрезка АВ на плоскость П4 ему параллельную ( П4║АВ) и П4^П1 (рис. 24).
Поэтапное решение задачи на эпюре показано на рис. 25
Пример 2. Построить дополнительную ортогональную проекцию плоскости общего положения α(ΔАВС) на плоскости П4,перпендикулярной к плоскости α и к плоскости П1.
Из геометрии известно, что две плоскости взаимноперпендикулярны, если одна из них содержит прямую, перпендикулярную другой плоскости. В данном примере перпендикуляром к плоскости П4 является горизонталь h (рис. 26).
Исходя из этого, ось х14 проведена перпендикулярно горизонтальной проекции h1 горизонтали h плоскости ΔАВС (рис. 27).По отношению к плоскости П4 плоскость ΔАВС является проецирующей и изображается на ней в виде прямой А4 В4 С4.
Пример3. Построить дополнительную ортогональную проекцию прямой общего на плоскость ей перпендикулярную.
Рещение задачи на эпюре показано на рис. 29
Пример 4.Определить размеры треугольника АВС.
Чтобы найти величину ΔАВС,являющегося плоскостью общего положения,надо построить его дополнительную ортогональную проекцию на плоскость ему параллельную. Для этого надо сначала построить дополнительную ортогональную проекцию плоскости общего положения α(ΔАВС) на плоскости П4,перпендикулярной к плоскости α(ΔАВС) и к плоскости П1 (см.пример2).А затем построить его дополнительную ортогональную проекцию на плоскость П5 ему параллельную(П5║ ΔАВС) и П5┴ П4 (рис.30а).Решение задачи на эпюре показано на рис.30б.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Статьи о радиотехнике, технологиях, чертежах, 3D-моделировании
Публикации для людей, интересующихся наукой и техникой
ПЛОСКОСТЬ – является простейшей поверхностью, которую можно представить, например, как веер линий, полученных при движении прямой, закрепленный в некоторой (.), по другой прямой
В отличие от линии, плоскость не может быть задана на чертеже своими проекциями. Плоскость в пространстве безгранична, бесконечна, а потому проекции её (.) займут всё поле чертежа. Положение плоскости в пространстве определяется положением задающихся ее элементов, входящих в определитель плоскости, т.е. плоскость задается проекциями геометрических объектов, располагающихся на ее поверхности. Графически плоскость может быть задана одним из шести способов:
От любого из этих способов можно легко перейти к любому другому.
СЛЕДЫ ПЛОСКОСТИ (сп) – пл, по которой данная плоскость пересекается с горизонтальной, фронтальной или профильной пп. В зависимости от того, какую пп данная плоскость пересекает, различают: фронтальный, горизонтальный и профильный следы плоскости. Каждый из следов плоскости совпадает со своей одноименной проекцией, а две другие – разноименные проекции – оказываются лежащими на осях координат. Проекции следов, совпадающие с осями координат, обозначать не принято. Любые два следа плоскости, как две пересекающиеся прямые, вполне определяют положение плоскости в пространстве. Третий след плоскости всегда можно построить по двум данным. След плоскости как линия в системе пп является линией нулевого уровня, т.к. принадлежит поверхности какой-либо плоскости проекций.
ТОЧКИ СХОДА СЛЕДОВ (тсс) – точки пересечения следов заданной плоскости с координатными осями X, Y и Z. Обозначаются, например, для плоскости α соответственно αx, αy, αz.
ПЛОСКОСТЬ ОБЩЕГО ПОЛОЖЕНИЯ (поп) – это плоскость, занимающая произвольное положение относительно плоскостей проекций, т.е. она не ⟂ и не ∥ ни одной основной плоскости проекций. Ни одна из ортогональных проекций геометрических объектов, задающих плоскость общего положения, не сливается в пл. Метрические характеристики такой плоскости на чертеже искажаются и не могут быть определены непосредственно с чертежа плоскости. Различают: восходящие и нисходящие плоскости общего положения.
ВОСХОДЯЩАЯ ПЛОСКОСТЬ ОБЩЕГО ПОЛОЖЕНИЯ (впоп) – плоскость произвольного положения, которая, удаляясь от наблюдателя, идет вверх (на подъем). Метрические характеристики данной плоскости на чертеже напрямую не определяются. Угол наклона такой плоскости можно получить с использованием линии ската.
НИСХОДЯЩАЯ ПЛОСКОСТЬ ОБЩЕГО ПОЛОЖЕНИЯ (нпоп) – плоскость произвольного положения, которая, удаляясь от наблюдателя, идет вниз (на спуск). Метрические характеристики данной плоскости на чертеже напрямую не определяются. Угол наклона такой плоскости можно получить с использованием линии ската.
ПЛОСКОСТИ ЧАСТНОГО ПОЛОЖЕНИЯ (пчп) – это плоскости, ⟂ либо ∥ пп. Различают: проецирующие плоскости и плоскости уровня. На ортогональном чертеже любой плоскости частного положения хотя бы одна проекция всегда вырождается в пл.
ПРОЕЦИРУЮЩАЯ ПЛОСКОСТЬ (пп) – это плоскость, ⟂ к одной из пп и при этом не ⟂ и не ∥ двум другим. В зависимости от того к какой плоскости проекций ⟂ проецирующая плоскость, различают: горизонтально проецирующую, фронтально проецирующую и профильно проецирующую плоскости.
ГОРИЗОНТАЛЬНО ПРОЕЦИРУЮЩАЯ ПЛОСКОСТЬ (гпп) – плоскость, ⟂ горизонтальной плоскости проекций П1 и при этом не ⟂ и не ∥ фронтальной П2 и профильной П3 плоскостям проекций. Гпп представляет собой прямую линию, которая одновременно является гcп. Любой геометрический объект, расположенный в этой плоскости, проецируется на горизонтальной плоскости проекций П1 в эту прямую. Угол, который составляет гсп с координатной осью Х, равен углу наклона этой плоскости к фронтальной плоскости проекций П2, а с координатной осью Y– к профильной плоскости проекций П3. Фронтальный след гпп ⟂ оси координат X.
ФРОНТАЛЬНО ПРОЕЦИРУЮЩАЯ ПЛОСКОСТЬ (фпп) – плоскость, ⟂ фронтальной плоскости проекций П2 и при этом не ⟂ и не ∥ горизонтальной П1 и профильной П3 плоскостям проекций. Фпп представляет собой прямую линию, которая одновременно является фсп. Любой геометрической объект, лежащий в этой плоскости, на чертеже совмещен с ее фронтальным следом. Угол, который составляет фсп с координатной осью Х, равен наклону данной плоскости к горизонтальной плоскости проекций П1, а с координатной осью Z – к профильной плоскости проекций П3. Горизонтальный след фронтально проецирующей плоскости перпендикулярен оси координат Х.
ПРОФИЛЬНО ПРОЕЦИРУЮЩАЯ ПЛОСКОСТЬ (ппп) – плоскость, ⟂ профильной плоскости проекций П3 и при этом не ⟂ и не ∥ горизонтальной П1 и фронтальной П2 плоскостям проекций. Ппп представляет собой прямую линию, которая одновременно является профильным следом плоскости. Любой геометрический объект, лежащий в этой плоскости, на чертеже совмещен с ее профильным следом. Угол, который составляет псп с координатной осью Y, равен наклону данной плоскости к горизонтальной плоскости проекций П1, а с координатной осью Z – к фронтальной плоскости проекций П2. Горизонтальный след такой плоскости перпендикулярен оси Y. В зависимости от удаления от наблюдателя различают: восходящую профильно проецирующую и нисходящую ппп.
ПЛОСКОСТЬ УРОВНЯ (пу) – это плоскость ∥ одной из плоскостей проекций, а значит ⟂ одновременно к двум другим плоскостям проекций. В зависимости от того какой плоскости проекций параллельна данная плоскость, различают: горизонтальную, фронтальную и профильную плоскости уровня. Любой геометрический объект, расположенный в плоскости уровня, в зависимости от параллельности проецирует на одну из плоскостей проекций в натуральную величину.
ГОРИЗОНТАЛЬНАЯ ПЛОСКОСТЬ УРОВНЯ (гпу) – плоскость, ∥ гпп П1 и при этом ⟂ фронтальной П2 и профильной П3 плоскостям проекций. Фронтальная и профильная проекции такой плоскости – прямые линии, совпадающие с одноименными следами этой плоскости, и ∥ осям координат X и Y соответственно. Любой геометрический объект, расположенный в гпу, проецируется без искажения на гпп П1.
ФРОНТАЛЬНАЯ ПЛОСКОСТЬ УРОВНЯ (фпу) – плоскость, ∥ фронтальной плоскости проекций П2 и при этом ⟂ горизонтальной П1 и профильной П3 плоскостям проекций. Горизонтальная и профильная проекции такой плоскости – прямые линии, совпадающие с одноименными следами этой плоскости и ∥ осям координат Х и Z соответственно. Любой геометрический объект, расположенный во фпу, проецируется без искажения на фронтальную плоскость проекций П2.
ПРОФИЛЬНАЯ ПЛОСКОСТЬ УРОВНЯ (ппу) – плоскость, ∥ профильной плоскости проекций П3 и при этом ⟂ горизонтальной П1 и фронтальной П2 плоскостям проекций. Горизонтальная и фронтальная проекции такой плоскости – прямые линии, совпадающие с одноименными следами этой плоскости и ∥ осям координат Y и Z соответственно. Любой геометрический объект, расположенный в ппу, проецируется без искажения на ппп П3.
ГЛАВНЫЕ ЛИНИИ ПЛОСКОСТИ (глп) – это пл, расположенные в данной плоскости, выделяемые среди множества других линий, как занимающие особое положение. Это линии уровня плоскости: горизонталь h, фронталь f и ппп p, а также линии наибольшего наклона плоскости к плоскостям проекций П1, П2 и П3.
ГОРИЗОНТАЛЬ ПЛОСКОСТИ (гп) – пл, принадлежащая этой плоскости и ∥ гпп П1, т.е. это горизонтальная прямая линия уровня, лежащая на поверхности какой-либо плоскости. Фронтальная и профильная проекции горизонтали плоскости ∥ осям координат X и Y соответственно Все горизонтали плоскости ∥ друг другу и горизонтальному следу своей плоскости. Обозначается на чертеже буквой – h.
ФРОНТАЛЬ ПЛОСКОСТИ (фп) – пл, принадлежащая этой плоскости и ∥ фпп П2, т.е. это фронтальная прямая линия уровня, лежащая на поверхности какой-либо плоскости. Горизонтальная и профильная проекции фронтали плоскости ∥ осям координат X и Z соответственно. Все фронтали плоскости параллельны друг другу и фронтальному следу своей плоскости. Обозначается на чертеже буквой – f.
ПРОФИЛЬНАЯ ПРЯМАЯ ЛИНИЯ ПЛОСКОСТИ (пплп) – пл, принадлежащая этой плоскости и параллельная профильной плоскости проекций П3, т.е. это профильная прямая линия уровня, лежащая на поверхности какой-либо плоскости. Фронтальная и горизонтальная проекции профильной прямой плоскости параллельны осям координат Z и Y соответственно. Все профильные прямые линии плоскости параллельны друг другу и профильному следу своей плоскости. Обозначается на чертеже буквой – p.
ЛИНИИ НУЛЕВОГО УРОВНЯ ПЛОСКОСТИ (лнуп) – это пл, принадлежащие одновременно данной плоскости и какой-либо плоскости проекций, т.е. являются одновременно и главными линиями плоскости, и следами этой плоскости. Горизонтальный след плоскости – это горизонталь плоскости нулевого уровня, фронтальный след плоскости – фронталь плоскости нулевого уровня и профильный след плоскости – профильная прямая плоскости нулевого уровня. Обозначаются на чертеже – hоά, fоά, ρоά соответственно.
ЛИНИИ НАИБОЛЬШЕГО НАКЛОНА ПЛОСКОСТИ (лннп) к плоскостям проекций П1, П2 и П3 – пл, лежащие в ней и ⟂ или к горизонталям плоскости, или к ее фронталям, или к ее профильным прямым.
ЛИНИЯ СКАТА ПЛОСКОСТИ (лсп) – линия наибольшего наклона плоскости к гпп П1, т.е. пл, проведенная по поверхности плоскости ⟂ любой горизонтали этой плоскости. Согласно теореме о проекции прямого угла, прямой угол между горизонталью плоскости и линией ската плоскости проецируется на гпп П1 без искажения. Лсп и ее горизонтальная проекция образуют линейный угол, которым измеряется двугранный, составленный данной плоскостью и пп П1.
ЛИНИЯ НАИБОЛЬШЕГО НАКЛОНА ПЛОСКОСТИ К ФРОНТАЛЬНОЙ ПЛОСКОСТИ ПРОЕКЦИЙ П2 (лннпкфпп) – пл, проведенная по поверхности какой-либо плоскости ⟂ любой фронтали этой плоскости. Согласно теореме о проекции прямого угла, прямой угол между лннпкфпп П2 и фронталью этой плоскости проецируется на фронтальную плоскость проекций П2 без искажения.
ЛИНИЯ НАИБОЛЬШЕГО НАКЛОНА ПЛОСКОСТИ К ПРОФИЛЬНОЙ ПЛОСКОСТИ ПРОЕКЦИЙ П3 (лннпкппп) – пл, проведенная по поверхности плоскости перпендикулярно профильной прямой линии уровня этой плоскости. Согласно теореме о проекции прямого угла, прямой угол между лннпкппп П3 и профильной прямой линией этой плоскости проецируется на профильную плоскость проекций П3 без искажения.
Если у вас остались вопросы или предложения по данной статье, направляйте ваш материал к нам на контакты.
Что такое горизонталь и фронталь в начертательной геометрии
Среди прямых линий, принадлежащих плоскости, особое значение имеют прямые, занимающие частное положение в пространстве:
| | | |
| |||
| |||
| |||
а) модель | б) эпюр | ||
Рисунок 55. Горизонталь |
4. Прямые, принадлежащие плоскости и образующие с плоскостью проекций наибольший угол называются линиями наибольшего наклона данной плоскости к плоскости проекций. С помощью линий наибольшего наклона определяют двугранные углы между заданной плоскостью и соответствующей плоскостью проекций.
Прямые плоскости, перпендикулярные соответствующим линиям уровня являются линиями наибольшего наклона.
Линия наибольшего наклона к горизонтальной плоскости проекций называется линией ската . Такое название объясняется тем, что эта линия является траекторией, по которой шарик скатывается с данной плоскости. По отношению к плоскостям П 2 и П3 целесообразнее употреблять название линия наибольшего наклона.
Что такое горизонталь и фронталь в начертательной геометрии
Лекция № 4. Плоскость
1. Определение положения плоскости
Для произвольно расположенной плоскости проекции ее точек заполняют все три плоскости проекций. Поэтому не имеет смысла говорить о проекции всей плоскости целиком, нужно рассматривать лишь проекции таких элементов плоскости, которые ее определяют.
На основании законов стереометрии плоскость определяется, когда известны принадлежащие ей:
1) три точки, не лежащие на одной прямой;
2) прямая и точка, не находящаяся на этой прямой;
3) две пересекающиеся прямые;
4) две параллельные прямые.
Итак, плоскость будет считаться заданной, если имеется на эпюре одна из перечисленных выше комбинаций элементов, определяющих данную плоскость (рис. 35 случаи 1, 2, 3, 4).
Все четыре способа задания плоскости равнозначны, так как легко имея одну комбинацию элементов, изображенную на рисунке 35 перейти к любой другой.
Если соединить одноименные проекции трех точек А, В и С, определяющих данную плоскость (рис. 35, случай 5), можно получить проекции треугольника ABC, лежащего в этой плоскости. Способ изображения плоскости в виде треугольника, не является принципиально новым, но обладает по сравнению с остальными четырьмя случаями большей наглядностью.
След плоскости Р – это линия пересечения ее с данной плоскостью или поверхностью (рис. 36).
Линию пересечения плоскости Р с горизонтальной плоскостью называют горизонтальным следом и обозначают Ph, а линию пересечения с фронтальной плоскостью – фронтальным следом и обозначают Рv (рис. 37).
Иногда применяется и профильный след Pw – линия пересечения данной плоскости с профильной плоскостью.
Точки, в которых пересекается плоскость Р с осями проекций, называют точками схода следов. Рх – точка схода следов на оси х, Pу – на оси у, а Рz – на оси z (рис. 37). в точке Р пересекаются следы Ph и Pv и т. д.
Следы Ph и Pv плоскости Р являются прямыми, которые и лежат на горизонтальной и фронтальной плоскостях. Они имеют по одной из своих проекций, которые совпадают с осью х: горизонтальный след Ph – фронтальную, а фронтальный Pv– горизонтальную проекции.
Любую плоскость Р можно задать на эпюре с помощью указания положения двух ее следов – горизонтального и фронтального (рис. 38).
Следы Ph и Pv чаще всего изображаются парой пересекающихся или параллельных прямых и поэтому могут определять положение плоскости в пространстве.
3. Прямая, лежащая в данной плоскости
Прямая принадлежит плоскости Р в том случае, если любые две ее точки лежат в данной плоскости.
Например, если следы прямой лежат на одноименных следах плоскости, то прямая лежит в этой плоскости (рис. 39).
Рассмотрим построение прямой, лежащей в данной плоскости Р.
Первый способ. Возьмем на следах Ph и Pv по одной точке (рис. 40) и рассмотрим их как следы искомой прямой.
Рассматривая следы прямой, легко построить ее проекции.
Второй способ. Одну проекцию прямой, например горизонтальную 1, можно провести (рис. 40). Точки ее пересечения со следом Ph и осью х определят горизонтальные проекции h и v следов искомой прямой. Если соединить прямой фронтальные проекции h? и v? следов, можно получить фронтальную проекцию 1?.
4. Горизонтали и фронтали плоскости
Среди прямых, которые лежат в некоторой плоскости, можно выделить два класса прямых, играющих большую роль при решении всевозможных задач. Это прямые, которые называют горизонталями и фронталями.
Горизонталь плоскости Р (рис. 41) – прямая, которая лежит в этой плоскости и параллельна горизонтальной плоскости. Горизонталь как прямая, параллельная горизонтальной плоскости, имеет фронтальную проекцию г?, параллельную оси х.
Три прямые – горизонталь Г, ее горизонтальная проекция г и горизонтальный след Ph плоскости Р – параллельны (рис. 42).
Действительно, горизонталь является прямой, параллельной горизонтальной плоскости, и поэтому не имеет горизонтального следа Ph, лежащего с ней в одной плоскости. При этом горизонталь Г не может пересечь свою горизонтальную проекцию г. В противном случае в этой точке пересечения она встречала бы горизонтальную плоскость, что противоречит определению, т. е. все три прямые Г, г и Ph параллельны.
Любая из плоскостей имеет множество горизонталей. Все горизонтали этой плоскости параллельны друг другу вследствие того, что все они параллельны прямой Ph.
Фронталь плоскости Р – прямая, которая лежит в этой плоскости и параллельна фронтальной плоскости (рис. 43).
Фронталь является прямой, параллельной фронтальной плоскости, и ее горизонтальная проекция ф параллельна оси х.
Фронталь Ф, ее фронтальная проекция ф? и фронтальный след Pv взаимно параллельны. У каждой плоскости есть бесчисленное множество фронталей. Все фронтали данной плоскости параллельны, за исключением плоскости, параллельной фронтальной плоскости.
5. Точка, лежащая в данной плоскости
Если необходимо построить некоторую точку в данной плоскости Р, то нужно предварительно провести в этой плоскости одну из прямых и на ней взять искомую точку.
Если задача обратная, т. е. необходимо узнать, лежит ли данная точка в плоскости Р, то нужно провести через эту точку какую-нибудь прямую, лежащую в этой плоскости. Если такую прямую провести нельзя, то исследуемая точка М не лежит в плоскости Р.
Часто в качестве вспомогательной прямой применяют горизонталь или фронталь, хотя можно применять и прямые общего положения.
Покажем построение в плоскости Р произвольной точки (рис. 44).
Для выполнения задания необходимо провести любую горизонталь Г этой плоскости и на ней выбрать некоторую точку М. Данная точка принадлежит плоскости, следовательно, задача выполнена.
6. Построение следов плоскости
Рассмотрим построение следов плоскости Р, которая задана парой пересекающихся прямых I и II (рис. 45).
Если прямая находится на плоскости Р, то ее следы лежат на одноименных следах плоскости. Поэтому следы плоскости, которые необходимо найти, должны проходить через одноименные следы всех прямых, находящихся в этой плоскости, т. е. находим следы обеих прямых I и II. Соединив их горизонтальные следы h1 и h2, можно получить горизонтальный след Ph плоскости Р, а если соединить фронтальные v?1, и v?2, можно получить фронтальный след Pv.
Оба следа Ph и Р должны пересекаться на оси х в точке схода Рх или оказаться одновременно ей параллельными. Таким способом осуществляется проверка правильности построения, т. е. для построения следов плоскости возможно ограничиться нахождением любых трех следов двух прямых, определяющих плоскость.
7. Различные положения плоскости
Плоскостью общего положения называется плоскость, не параллельная и не перпендикулярная ни одной плоскости проекций. Следы такой плоскости также не параллельны и не перпендикулярны осям проекций.
Проецирующие плоскости – это плоскости, которые перпендикулярны одной, и только одной, плоскости проекций.
На рисунке 46 показана горизонтально-проектирующая плоскость Р, которая перпендикулярна горизонтальной плоскости; на рисунке 47 – фронтально-проектирующая плоскость Q, которая перпендикулярна фронтальной плоскости, и на рисунке 48 – профильно-проектирующая плоскость R, которая перпендикулярна профильной плоскости.
Среди свойств проецирующих плоскостей можно выделить следующие.
1. На одну из плоскостей проекций, т. е. на ту, которой данная плоскость перпендикулярна, эта плоскость проецируется в виде прямой линии. В этом случае говорят о проекции плоскости, подразумевая под ней именно эту прямую. Горизонтальнопроектирующая плоскость Р имеет горизонтальную проекцию р (рис. 46), фронтально-проецирующая плоскость Q – фронтальную проекцию q? (рис. 47), а профильно-проецирующая R – профильную проекцию r? (рис. 48). Данные проекции совпадают с одноименными следами плоскостей, т. е. p = Ph (рис. 46), q? = Qv (рис. 47) и r? = Rw (рис. 48).
2. Любая фигура, которая лежит в проецирующей плоскости, проецируется в виде отрезка прямой на плоскость проекций, перпендикулярную данной плоскости, т. е. треугольник ABC, который лежит в плоскости Р (рис. 46), имеет горизонтальную проекцию abc на горизонтальной проекции плоскости Р (р = Ph).
3. Фронтали горизонтально-проецирующей плоскости Р (рис. 47) перпендикулярны горизонтальной плоскости, а горизонтали фронтально-проектирующей плоскости Q (рис. 47) перпендикулярны фронтальной плоскости, т. е. перпендикулярность фронталей горизонтальной плоскости определяет горизонтально-проектирующую плоскость, а перпендикулярность горизонталей фронтальной плоскости является признаком фронтально-проектирующей плоскости. Профильно-проектирующая плоскость Р (рис. 47) имеет горизонтали, которые являются одновременно и фронталями; те и другие в этом случае перпендикулярны профильной плоскости.
4. Горизонтально-проектирующая плоскость Р параллельна оси z, поэтому ее следы Рv и Pw также являются параллельными оси z. Фронтально-проектирующая плоскость Q параллельна оси у, поэтому Qh и Qw параллельны оси у. Профильно-проектирующая плоскость R параллельна оси х, и ее следы Rh и Rvпараллельны оси х. Третьи следы этих плоскостей, а именно Ph, Qv и Rw, способны занимать любое положение относительно осей проекций в зависимости от углов наклона этих плоскостей к плоскостям проекций.
5. Проектирующие плоскости с плоскостями проекции образуют углы, размеры которых видны на эпюре. На рисунках 46, 47 и 48 обозначен буквой угол между проектирующей плоскостью и горизонтальной плоскостью, буквой – угол с фронтальной плоскостью и буквой – с профильной плоскостью. Важно, что для данных плоскостей один из этих углов обязательно прямой, а два остальных угла составляют в сумме 90°. Данные два угла на эпюре равны углам, которые образуются следами плоскости с осями проекций.
Рассмотрим плоскость, которая содержит ось х. Эта плоскость (рис. 49) принадлежит к числу профильно-проектирующих; она перпендикулярна профильной плоскости W, так как содержит ось х.
При этом горизонтальный и фронтальный следы Rh и Rv сливаются с осью х и не определяют положения плоскости R в пространстве. Для определения плоскости нужно дополнительно задать ее профильную проекцию r? (r? = Rw) (рис. 49) или указать положение какой-либо точки А на этой плоскости (рис. 49).