Что такое горение как оно протекает
Горение
Что такое горение
Горение – это совокупность одновременно протекающих физических процессов (плавление, испарение, ионизация) и химических реакций окисления горючего вещества и материала, сопровождающееся, как правило, световым и тепловым излучением и выделением дыма. В основе горения лежит взаимодействие горючего вещества с окислителем, преимущественно с кислородом воздуха.
Однако горения может осуществляться без доступа воздуха (кислорода), если в состав горючей массы (среды) входит окислитель в виде примеси или составной части молекулы. В производственных условиях или ракетной технике горения может осуществляться в атмосфере таких окисляющих газов, как фтор, хлор, окислы азота и другие.
Некоторые вещества (порошкообразные титан и цирконий) способны гореть в атмосфере азота, двуокиси углерода, не относящимся к традиционным окислителям.
Виды горения
В зависимости от способа подвода окислителя различают:
При пожаре отмечается смешанный тип горения. В зависимости от скорости горение может быть медленным (тление), нормальным (дефлаграция) и взрывообразным (взрыв), переходящим в детонационное (детонация).
По внешнему проявлению горение может быть пламенным или беспламенным.
Беспламенное горение может возникнуть в результате дефицита окислителя (тление) или при низком давлении насыщенных паров горючего вещества (горение тугоплавких металлов и кокса).
По механизму развития горение может быть тепловым, при котором причиной самоускорения реакций окисления является повышение температуры, и автокаталитическим (цепным), когда ускорение процесса достигается накоплением промежуточных катализирующих продуктов (активных центров). Автокаталитическое горение осуществляется при сравнительно низких температурах. При достижении определенных концентраций промежуточных каталитических продуктов автокаталитическое горение может переходить в тепловое. При этом температура горения резко возрастает.
Горение может возникать и развиваться спонтанно, стихийно (пожар), но может быть специально организованным, целесообразным: энергетическое горение (в целях получения тепловой или электрической энергии) и технологическое горение (доменный процесс, металлотермия, синтез тугоплавких неорганических соединений и т.д.).
Характеристики горения
Горение характеризуется такими величинами, как: температура, скорость, полнота, состав продуктов. Располагая данными о механизме горения и его характерных особенностях, можно увеличивать скорость и температуру горения (промотирование горения) или снижать их вплоть до прекращения горения (ингибирование горения).
Источники: Основные характеристики горения. Мальцев В.М., Мальцев М.И., Кашпоров Л.Я. —М., 1977; Процессы горения в химической технологии и металлургии. Мержанов А.Г. —Черноголовка, 1975; Физика горения и взрыва. Хитрин Л.Н. —М., 1957.
ГОРЕНИЕ
ГОРЕНИЕ — совокупность одновременно протекающих физических процессов (плавление, испарение, ионизация) и химических реакций окисления горючего вещества и материала, сопровождающееся, как правило, световым и тепловым излучением и выделением дыма (см. ДЫМ ) [1].
ГОРЕНИЕ — сложный физико-химический процесс взаимодействия горючего вещества и окислителя, характеризующийся самоускоряющимися превращениями исходных компонентов реакционноспособной смеси в продукты горения и сопровождающийся выделением большого количества тепла, дыма и света. Выделение тепла происходит непосредственно в зоне химической реакции превращения исходных компонентов горючей смеси в продукты горения [2].
Зона протекания химической реакции обычно локализована в сравнительно небольшой части пространства. Она может быть неподвижна, а может перемещаться в пространстве в зависимости от условий протекания процесса горения.
Горение происходит в два этапа:
1. Создание молекулярного контакта между молекулами горючего и окислителя (физический процесс).
2. Взаимодействие молекул с образованием продуктов реакции (химический процесс).
При этом второй этап наступает только при выполнении некоторых дополнительных условий. Молекулы должны находиться в особом энергетически или химически возбужденном состоянии и определенном количественном соотношении.
Горение является неравновесным процессом. При горении обязательно возникают неоднородности в составе молекул, их концентрации, неравномерности поля температур и скоростей потоков. В основе процесса горения лежат химические реакции окисления, то есть соединения исходных горючих веществ с кислородом.
При горении на пожарах (см. ПОЖАР) в качестве окислителя чаще всего выступает кислород воздуха, окружающий зону протекания химических реакций. В этом случае интенсивность горения определяется не скоростью протекания самих химических реакций, а скоростью поступления кислорода из окружающего пространства в зону горения, то есть непосредственно в зону протекания химических реакций.
Скорость протекания химических реакций горения значительно превосходит скорость таких физических процессов, как диффузия недостающих компонентов в зону реакции и передача тепла из зоны горения горючим веществам для подготовки их к химическому взаимодействию. Эти два процесса — диффузия и теплопередача — являются лимитирующими. Они определяют суммарную скорость горения, а, следовательно, и интенсивность процесса тепловыделения и образования продуктов горения. Поэтому считают, что процессы горения на пожаре развиваются в чисто диффузионной области и рассматривать их следует лишь с физической стороны.
ГЕТЕРОГЕННОЕ ГОРЕНИЕ — горение материалов в конденсированном (твердом или жидком) состоянии, когда реакции, определяющие развитие процесса горения, протекают в газовой фазе, а горючие компоненты поступают в эту фазу в результате испарения и разложения веществ и материалов.
ДИФФУЗИОННОЕ ГОРЕНИЕ — горение неперемешанных газо-, паровоздушных смесей с воздухом. Оно свойственно конденсированным горючим веществам — жидкостям и твердым материалам. Для диффузионного горения характерно наличие светящегося пламени. В зависимости от диаметра трубопровода, а также давления, при котором происходит истечение газов, диффузионное горение может быть ламинарным и турбулентным.
ЛАМИНАРНОЕ ГОРЕНИЕ — вид горения, характеризуемый газодинамически невозмущенным фронтом пламени, а также скоростью распространения пламени, не превышающей нескольких метров в секунду. Ламинарное горение зависит от теплообмена и других макрокинетических факторов. Процесс ламинарного горения заключается в передаче в свежую горючую смесь тепла и активных частиц, обеспечивающих распространение пламени. Скорость распространения пламени относительно свежей смеси, измеренная по нормали к фронту, называется нормальной скоростью распространения пламени [3].
ТУРБУЛЕНТНОЕ ГОРЕНИЕ — горение в турбулентных потоках смеси горючего с воздухом (кислородом), характеризующееся неупорядоченным, пульсирующим движением малых объемов таких смесей. Смешение компонентов при турбулентном горении происходит более интенсивно, чем при ламинарном горении, вследствие чего скорость турбулентного горения превышает скорость ламинарного горения.
Турбулентное горение, то есть горение смеси, течение которой является турбулентным, — это наиболее часто встречающийся в практических устройствах режим горения и одновременно наиболее сложный для изучения.
Турбулентное горение может быть вызвано автотурбулизацией пламени, заключающейся в том, что искривления фронта пламени самопроизвольно возрастают, плоская зона нормального горения перестает существовать, уступая место турбулентному пламени.
Различают турбулентнодиффузионное горение и турбулентное горение однородной горючей смеси. Первое — реализуется при сжигании предварительно не перемешанных газов в турбулентном потоке и широко используется в различных технически устройствах (промышленных печах, горелках, камерах сгорания газотурбинных двигателей и т. д.). Второе — реализуется при сжигании предварительно перемешанных газов или газовзвесей (смесей горючей пыли с газообразным окислителем) в турбулентном потоке и встречается в ряде технических устройств (двигателях внутреннего сгорания, форсажных камерах газотурбинных двигателей и т. д.) [4].
ВРЕМЯ ГОРЕНИЯ — длительность протекания процесса горения с момента зажигания горючего вещества (материала) до окончания пламенного горения или тления. Время горения регистрируется при испытаниях электрических изделий на пожарную опасность, служит в качестве показателя при определении предела огнестойкости строительных конструкций, а также критерием оценки допустимости изготовления различных изделий и их эксплуатации [5].
ВРЕМЯ ВЫГОРАНИЯ — время, в течение которого прекращается горение вещества (материала) в заданных условиях. Время выгорания зависит от:
— физико-химических свойств (теплоты сгорания, давления насыщенных паров, агрегатного состояния и пр.) вещества (материала) и его горючести;
— вида горения (гомогенного или гетерогенного) и скорости распространения пламени [5].
1. И.Н. Зверев, Н. Н. Смирнов. Газодинамика горения. — М.: Изд-во Моск. ун-та., 1987. — С. 165. — 307 с.
2. Теория горения и взрыва: конспект лекций / сост. П.П. Воднев. — Ульяновск: УВАУ ГА(И), 2010. — 180 с.
3. Теория горения и взрыва / Под ред. Ю.В. Фролова. М., 1981 г.
4. Баратов А.Н. Горение — Пожар — Взрыв — Безопасность. — М., 2003 г.
5. Кузнецов В.Р, Сабельников В.А. Турбулентность и горение. — М., 1986 г.
Горение
Горе́ние — сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление.
Дозвуковое горение (дефлаграция) в отличие от взрыва и детонации протекает с низкими скоростями и не связано с образованием ударной волны. К дозвуковому горению относят нормальное ламинарное и турбулентное распространения пламени, к сверхзвуковому — детонацию.
Горение подразделяется на тепловое и цепное. В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях.
Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации.
Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме, когда основные характеристики процесса — скорость реакции, мощность тепловыделения, температура и состав продуктов — не изменяются во времени, либо в периодическом режиме, когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры, горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).
Содержание
Теория горения
При адиабатическом сжигании горючей смеси могут быть рассчитаны количество выделившегося при горении тепла, температура ТГ, которая была бы достигнута при полном сгорании (адиабатическая температура горения) и состав продуктов, если известны состав исходной смеси и термодинамические функции исходной смеси и продуктов. Если состав продуктов заранее известен, ТГ может быть рассчитана из условия равенства внутренней энергии системы при постоянном объёме или её энтальпии при постоянном давлении в исходном и конечном состояниях с помощью соотношения: ТГ = Т0 + Qr/C, где Т0 — начальная температура смеси, С — средняя в интервале температур от Т0 до ТГ удельная теплоёмкость исходной смеси (с учетом её изменения при возможных фазовых переходах), Qr — удельная теплота сгорания смеси при температуре ТГ. При относительном содержании а0 в смеси компонентов, полностью расходуемых в реакции, QГ = Q*а0 где Q — тепловой эффект реакции горения. Значение ТГ при постоянном объёме больше, чем при постоянном давлении, поскольку в последнем случае часть внутренней энергии системы расходуется на работу расширения. На практике условия адиабатичекого горения обеспечиваются в тех случаях, когда реакция успевает завершиться прежде, чем станет существенным теплообмен между реакционным объёмом и окружающей средой, например в камерах сгорания крупных реактивных двигателей, в больших реакторах, при быстро распространяющихся волнах горения.
Термодинамический расчёт даёт лишь частичную информацию о процессе — равновесный состав и температуру продуктов. Полное описание горения, включающее также определение скорости процесса и критических условий при наличии тепло- и массообмена с окружающей средой, можно провести только в рамках макрокинетического подхода, рассматривающего химическую реакцию во взаимосвязи с процессами переноса энергии и вещества.
В случае заранее перемешанной смеси горючего и окислителя реакция горения может происходить во всём пространстве, занятом горючей смесью (объёмное горение), или в сравнительно узком слое, разделяющем исходную смесь и продукты и распространяющемся по горючей смеси в виде так называемой волны горения. В неперемешанных системах возможно диффузионное горение, при котором реакция локализуется в относительно тонкой зоне, отделяющей горючее от окислителя, и определяется скоростью диффузии реагентов в эту зону.
Описание процессов горения
Важность процесса горения в технических устройствах способствовала созданию различных моделей, позволяющих с необходимой точностью его описывать. Так называемое нулевое приближение включает описание химических реакций, изменение температуры, давления и состава реагентов во времени без изменения их массы. Оно соответствует процессам происходящим в закрытом объёме, в который была помещена горючая смесь и нагрета выше температуры воспламенения. Одно-, двух- и трёхмерные модели уже включает в себя перемещение реагентов в пространстве. Количество измерений соответствует количеству пространственных координат в модели. Режим горения бывает как и газодинамическое течение: ламинарным или турбулентным. Одномерное описанное ламинарного горения позволяет получить аналитически важные выводы о фронте горения, которые затем используются в более сложных турбулентных моделях.
Объёмное горение
Объемное горение происходит, например, в теплоизолированном реакторе идеального перемешивания, в который поступает при температуре Т0 исходная смесь с относительным содержанием горючего а0; при другой температуре горения реактор покидает смесь с иным относительным содержанием горючего а. При полном расходе G через реактор условия баланса энтальпии смеси и содержания горючего при стационарном режиме горения могут быть записаны уравнениями:
где w(а, Т) — скорость реакции горения, V — объём реактора. Используя выражение для термодинамической температуры ТГ, можно из (1) получить:
и записать (2) в виде:
где q—T = GC(T — Т0) — скорость отвода тепла из реактора с продуктами сгорания, q+T = Qw(a, Т)V — скорость выделения тепла при реакции. Для реакции n-ного порядка с энергией активации:
Диффузионное горение
Характеризуется раздельным подачей в зону горения горючего и окислителя. Перемешивание компонентов происходит в зоне горения. Пример: горение водорода и кислорода в ракетном двигателе, горение газа в бытовой газовой плите.
Горение предварительно смешанной среды
Как следует из названия, горение происходит в смеси, в которой одновременно присутствуют горючее и окислитель. Пример: горение в цилиндре двигателя внутреннего сгорания бензиново-воздушной смеси после инициализации процесса свечой зажигания.
Особенности горения в различных средах
Беспламенное горение
В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени, возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора, например, окисление этанола на платиновой черни.
Твердофазное горение
Это автоволновые экзотермические процессы в смесях неорганических и органических порошков, не сопровождающиеся заметным газовыделением, и приводящие к получению исключительно конденсированных продуктов. В качестве промежуточных веществ, обеспечивающих массо-перенос, образуются газовые и жидкие фазы, не покидающие, однако, горящую систему. Известны примеры реагирующих порошков, в которых образование таких фаз не доказано (тантал-углерод).
Как синонимы используются тривиальные термины «безгазовое горение» и «твердопламенное горение».
Примером таких процессов служит СВС (самораспространяющийся высокотемпературный синтез) в неорганических и органических смесях.
Тление
Вид горения, при котором пламя не образуется, а зона горения медленно распространяется по материалу. Тление обычно наблюдается у пористых или волокнистых материалов с высоким содержанием воздуха или пропитанных окислителями.
Автогенное горение
Самоподдерживающиеся горение. Термин используется в технологиях сжигания отходов. Возможность автогенного (самоподдерживающегося) горения отходов определяется предельным содержанием балластирующих компонентов: влаги и золы. На основе многолетних исследований шведский учёный Таннер предложил для определения границ автогенного горения использовать треугольник-схему с предельными значениями: горючих более 25 %, влаги менее 50 %, золы менее 60 %.
Характеристика процесса горения
Всем нам практически ежедневно приходится сталкиваться с тем или иным проявлением процессом горения. В нашей статье мы хотим более подробно рассказать какие особенности включает в себя данный процесс с научной точки зрения.
Горение является основной составляющим процессом на пожаре. Пожар начинается с возникновения горения, его интенсивность развития как правило путь пройденный огнем, то есть скорость горения, а тушение заканчивается прекращением горения.
Под горением обычно понимают экзотермическую реакцию между горючим и окислителем, сопровождающуюся, по крайней мере, одним из трех следующих факторов: пламенем, свечением, дымообразованием. Из-за сложности процесса горения указанное определение не является исчерпывающим. В нем не учтены такие важнейшие особенности горения, как быстрое протекание лежащей в его основе экзотермической реакции, ее самоподдерживающийся характер и способность к самораспространению процесса по горючей смеси.
Различие между медленной экзотермической окислительно-восстановительной реакцией (коррозия железа, гниение) и горением заключается в том, что последняя протекает настолько быстро, что теплота производится быстрее, чем рассеивается. Это приводит к повышению температуры в зоне реакции на сотни и даже тысячи градусов, к видимому свечению и образованию пламени. По сути так образуется пламенное горение.Если происходит выделение тепла но пламя при это отсутствует, то этот процесс называется тлением.И в том и в другом процессе происходит образование дыма – аэрозоля полного или неполного сгорания веществ. Стоит отметить, что при горении некоторых веществ пламени не видно, а также отсутствует и выделение дыма, к таким веществам относится водород. Слишком быстрые реакции (взрывчатое превращение) также не входят в понятие горения.
Необходимым условием для возникновения горения является наличие горючего вещества, окислителя (при пожаре его роль выполняет кислород воздуха) и источника зажигания. Для непосредственного возгорания необходимо наличие критических условий по составу горючей смеси, геометрии и температуре горючего материала, давлению и др. После возникновения горения в качестве источника зажигания выступает уже само пламя или зона реакции.
Типичная модель горения построена на реакции окисления органических веществ или углерода кислородом воздуха. Множество физических и химических процессов сопровождают горение. Физика это перенос тепла в систему. Окислительные и восстановительные реакции это составляющая природы горения со стороны химии. Отсюда из понятия горение вытекают самые разные химические превращения, включая разложение исходных соединений, диссоциации и ионизации продуктов.
Совокупность горючего вещества или материала с окислителем представляет собой горючую среду. В результате разложения горючих веществ под воздействием источника зажигания происходит образование газопаровоздушной реакционной смеси. Горючие смеси, которые по составу (соотношению компонентов горючего и окислителя) отвечают уравнению химической реакции, называются смесями стехиометрического состава. Они наиболее опасны в пожарном отношении: легче воспламеняются, интенсивнее горят, обеспечивая полное сгорание вещества, в результате чего выделяют максимальное количество теплоты.
Рис. 1. Формы диффузионных пламен
а – горение реактивной струи, б – горение разлитой жидкости, в – горение лесной подстилки
По соотношению количества горючего материала и объема окислителя различают бедные и богатые смеси: бедные содержат в изобилии окислитель, богатые — горючий материал. Минимальное количество окислителя, необходимое для полного сгорания единицы массы (объема) того или иного горючего вещества, определяется по уравнению химической реакции. При горении с участием кислорода требуемый (удельный) расход воздуха для большинства горючих веществ находится в пределах 4-15 м 3 /кг. Горение веществ и материалов возможно только при обусловленном содержании в воздухе их паров или газообразных продуктов, а также при концентрации кислорода не ниже заданного предела.
Так, для картона и хлопка самопотухание наступает уже при 14 об. % кислорода, а полиэфирной ваты — при 16 об. %. В процессе горения, как и в других химических процессах, обязательны два этапа: создание молекулярного контакта между реагентами и само взаимодействие молекул горючего с окислителем с образованием продуктов реакции. Если скорость превращения исходных реагентов определяется диффузионными процессами, т.е. скоростью переноса (пары горючих газов и кислорода переносятся в зону реакции за счет градиента концентраций в соответствии с законами диффузии Фика), то такой режим горения называется диффузионным. На рис. 1 приведены различные формы диффузионных пламен. При диффузионном режиме зона горения размыта, и в ней образуется значительное количество продуктов неполного сгорания. Если же скорость горения зависит только от скорости химической реакции, которая значительно выше скорости диффузии, то режим горения называется кинетическим. Ему свойственны более высокие скорости и полнота сгорания и как следствие высокие скорости тепловыделения и температура пламени. Этот режим имеет место в предварительно перемешанных смесях горючего и окислителя. Отсюда, если реагенты в зоне химической реакции находятся в одинаковой (обычно газовой) фазе, то такое горение называют гомогенным, при нахождении горючего и окислителя в зоне реакции в разных фазах — гетерогенным. Гомогенным является горение не только газов, но и жидкостей, а также большинства твердых веществ и материалов. Объясняется это тем, что в зоне реакции горят не сами материалы, а их пары и газообразные продукты разложения. Наличие пламени является отличительным признаком гомогенного горения.
Примерами гетерогенного горения служат горение углерода, углистых остатков древесины, нелетучих металлов, которые даже при высоких температурах остаются в твердом состоянии. Химическая реакция горения в этом случае будет происходить на поверхности раздела фаз (твердой и газообразной). Отметим, что конечными продуктами горения могут быть не только оксиды, но и фториды, хлориды, нитриды, сульфиды, карбиды и др.
Характеристики процесса горения разнообразны. Их можно подразделить на следующие группы: форма, размер и структура пламени; температура пламени, его излучательная способность; тепловыделение и теплота сгорания; скорость горения и концентрационные пределы устойчивого горения и др.
Всем известно, что при горении образуется свечение которое сопровождает пламя продукта горения.
Рассмотрим две системы:
В первом случае при возникновении горения весь процесс будет происходить в пламени, во втором же случае часть реакций будет происходить в самом материале, либо его поверхности. Как упоминалось выше существуют газы которые могут гореть без пламени, но если рассматривать твердые вещества существуют также группы металлов которые также способны гореть без проявления пламени.
Часть пламени с максимальным значением, где происходят интенсивные превращения, называется фронтом пламени.
Теплообменные процессы и диффузия активных частиц из зоны горения которые являются ключевыми механизмами движения фронта пламени по горючей смеси.
Скорость распространения пламени принято разделять на:
Рис. 2. Ламинарное диффузионное пламя
В зависимости от характера скорости движения газового потока, создающего пламя, различают ламинарные и турбулентные пламена. В ламинарном пламени движение газов происходит в разных слоях, все процессы тепло-, массообмена происходят путем молекулярной диффузии и конвекции. В турбулентных пламенах процессы тепло-, массообмена осуществляются в основном за счет макроскопического вихревого движения. Пламя свечи — пример ламинарного диффузионного пламени (рис. 2). Любое пламя высотой более 30 см будет уже обладать случайной газовой механической неустойчивостью, которая проявляется видимыми завихрениями дыма и пламени.
Рис. 3. Переход ламинарного потока в турбулентный
Очень наглядным примером перехода ламинарного потока в турбулентный является струйка сигаретного дыма (рис. 3), которая, поднявшись на высоту около 30 см, приобретает турбулентность.
При пожарах пламена имеют диффузионный турбулентный характер. Присутствие турбулентности в пламени усиливает перенос тепла, а смешивание влияет на химические процессы. В турбулентном пламени выше также скорости горения. Это явление делает затруднительным перенос поведения мелкомасштабных пламен на крупномасштабные, имеющих большую глубину и высоту.
Экспериментально доказано, что температура горения веществ в воздухе гораздо ниже температуры горения в атмосферной кислородной среде
В воздухе температура будет колебаться от 650 до 3100 °С, а в кислородной показатели температуры возрастут на 500-800 °С.