Что такое глиссадный радиомаяк
Глиссадный радиомаяк
Ку́рсо-глисса́дная система или КГС, или система инструментального захода самолётов на посадку радиомаячная [1] ) — наиболее распространённая в авиации радионавигационная система захода на посадку по приборам кабины пилота. В зависимости от длины волны КГС делятся на системы метрового (англ. ILS (instrument landing system) ) и сантиметрового диапазонов (англ. MLS, microwave landing system — микроволновая система посадки).
Содержание
История
Принцип работы
Антенная система КРМ представляет собой многоэлементную антенную решётку, состоящую из линейного ряда направленных антенн метрового диапазона частот с горизонтальной поляризацией. Для расширения рабочего сектора радиомаяка до углов ±35° часто используется дополнительная антенная решётка. Диапазон рабочих частот КРМ 108—112 МГц (используется 40-канальная сетка частот, где каждой частоте КРМ поставлена в соответствие определённая частота ГРМ). КРМ размещают за пределами взлётно-посадочной полосы на продолжении её осевой линии. Его антенная система формирует в пространстве одновременно две горизонтальные диаграммы излучения. Первая диаграмма имеет один широкий лепесток, направленный вдоль осевой линии, в котором несущая частота промодулирована по амплитуде суммой сигналов с частотой 90 и 150 Гц. Вторая диаграмма имеет два узких противофазных лепестка по левую и правую сторону от осевой линии, в которых радиочастота промодулирована по амплитуде разностью сигналов с частотой 90 и 150 Гц, а несущая подавлена. В результате сложения сигнал распределяется в пространстве таким образом, что при полёте вдоль осевой линии глубина модуляции сигналов 90 и 150 Гц одинакова, а значит разность глубин модуляции (РГМ) равна нулю. При отклонении от осевой линии глубина модуляции сигнала одной частоты растёт, а другой — падает, следовательно, РГМ увеличивается в положительную или отрицательную сторону. При этом сумма глубин модуляции (СГМ) в зоне действия маяка поддерживается на постоянном уровне. Бортовое пилотажно-навигационное оборудование измеряет величину РГМ, определяя сторону и угол отклонения воздушного судна от посадочного курса.
Антенная система ГРМ представляет собой в простейшем случае решётку из двух разнесенных по высоте направленных антенн дециметрового диапазона с горизонтальной поляризацией (решётка «0»). Диапазон рабочих частот ГРМ 329—335 МГц. ГРМ размещают со стороны, противоположной участку застройки и рулёжным дорожкам, на расстоянии 120—180 м от оси ВПП напротив зоны приземления. Удаление ГРМ от порога ВПП определяется таким образом, чтобы при заданном угле наклона глиссады опорная точка (точка над торцом ВПП, через которую проходит прямолинейная часть глиссады) находилась на высоте 15±3 м для радиомаячных систем посадки I и II категории и 15+3−0 м для систем III категории. Диаграмма направленности антенной системы ГРМ формируется в результате отражения радиоволн от поверхности земли, поэтому к чистоте зоны, непосредственно прилегающей к антенной системе ГРМ, предъявляются особые требования. Чтобы уменьшить влияние неровностей подстилающей поверхности на диаграмму направленности, а, следовательно, и искривления линии глиссады, используется антенная решётка из трёх вертикально разнесенных антенн (решётка «M»). Она обеспечивает пониженную мощность излучения под малыми углами к горизонту. ГРМ использует тот же принцип работы, что и КРМ. Его антенная система формирует в пространстве одновременно две вертикальных диаграммы излучения, с одним широким лепестком и с двумя узкими — выше и ниже плоскости глиссады (плоскости нулевого значения РГМ). Пересечение плоскости курса и плоскости глиссады даёт линию глиссады. Линию глиссады можно назвать прямой только условно, так как в идеальном случае она представляет собой гиперболу, которая в дальней зоне приближается к прямой, проходящей через точку приземления. В реальных условиях из-за неровностей рельефа местности и препятствий в зоне действия радиомаяков линия глиссады подвержена искривлениям, величина которых нормируется для каждой категории системы посадки.
Угол наклона глиссады (УНГ) примерно равен 3°, но может зависеть от местности. Чем меньше УНГ, тем удобнее садиться самолёту, так как ниже вертикальная скорость. В России в аэропортах, где местность не мешает низкому заходу, используется УНГ 2°40′. В горах или если глиссада проходит над городом, УНГ больше. Например, в аэропорту Новосибирск Северный, который находится близко к центру города, глиссада, проходящая над лесом, наклонена под углом 2°40′ (уклон 4,7 %), а заход со стороны города производится под углом 3°40′ (наклон 6,4 %, в 1,5 раза больше). В аэропорту города Кызыла, в горной местности, УНГ равен 4° (7 %).
ГЛИССАДНЫЕ РАДИОМАЯКИ И РАДИОПРИЕМНИКИ
зЦ’.По своему принципу действия глиссадные радиомаяки (ГРМ) и иемники (ГРП) очень похожи на КРМ и КРП ИЛС. Они е используют принцип двойной амплитудной модуляции. Глис — „…ые радиомаяки и радиоприемники работают в диапазоне час — Щ 328,6 —335,4 Мгц; частоты модуляции /і = 90 и /2= 150 гц.
»’Излучение ГРМ образует в пространстве два пересекающихся ®ВДя (рис. 2.16). Равносигнальная зона лежит в заданной плоско- ейа снижения, образуя с горизонтальной плоскостью угол 0
2,5-ь #?.При этом в системе ИЛС над равносигнальной зоной преобла — Tfjjjfr сигнал с частотой модуляции 90. г%-а-в-€-ЕНб0“Я’Г50 ‘гц.
Коэффициенты глубину модуляции ГПц1 И ГП2г меняются в зависимости от угловой координаты £, отсчи — тываемой от линии глиссады снижения — линии пересечения равносигнальной зо — ны ГРМ с плоскостью посадочного курса. Оптимально линия глиссады снижения должна точно совпадать с заданной траекторией захода на посадку.
На борту самолета ГРП, на выходе которого установлен нуль — прибор с горизонтальной глиссадной стрелкой, измеряет разность глубин модуляции обоих полей, вырабатывая ток, пропорциональный этой РГМ.
Когда самолет (точнее — антенна ГРП) находится на линии глиссады (в плоскости снижения), являющейся геометрическим местом точек, в которых РГМ = 0, ток на выходе ГРП равен нулю и стрелка нуль-прибора находится в нулевом положении.
При отклонении от глиссады снижения в пределах некоторого сектора РГМ меняется по линейному закону, благодаря чему каждому угловому отклонению самолета от глиссады снижения соответствует определенное положение стрелки нуль-прибора. За пределами линейного участка РГМ продолжает нарастать, достигая некоторого экстремального значения. После этого РГМ уменьшается, находясь выше определенного значения в пределах некоторого рабочего сектора.
Сигналы несущей частоты, модулированной частотами Яі = 2л/і и Я2=*2я/2 (рис. 2.17), излучаются антенной системой, состоящей в простейшем случае из двух элементарных антенн, расположенных одна над другой на высоте hB и hu.
На формирование характеристик направленности поля ГРМ очень большое влияние оказывает земная поверхность, что выражается, в частности, в многолепестковости характеристик антенн и искривлении равносигнальных зон.
Многолепестковость характеристик приводит к появлению ложных равносигнальных зон, имеющих значительно больший угол наклона к земной поверхности, чем у плоскости снижения.
Соответствующими меро-
мриятиями по формированию характеристик излучения антенн до — 4іиваются того, чтобы ближайшая ложная равносигнальная зона отстояла от глиссады снижения на угол не менее 12°.
Для уменьшения искривлений равносигнальных зон используют ГРМ, работающие с опорным нулем, и двухчастотные ГРМ, аналогичные по принципу действия соответствующим КРМ, подробно рассмотренным выше.
Антенна ГРМ (рис. 2.18) имеет высоту
15 м и потому является летным препятствием, не позволяющим расположить ее вблизи от ВПП.
Глиссадный радиоприемник не. имеет каких-либо принципиальных отличий от КРП с ДВОЙНОЙ амплитудной модуляцией (см. рис. 2.8).
V Глиссадная стрелка нуль-прибора отклоняется на крайние от — ЯІІетки (верхнюю и нижнюю), ког — Йа самолет находится на краю лектора глиссады снижения, ко — ф)рый представляет собой гео — Щётрическое место точек, наибо — ‘,^jgree приближенных к линии данной глиссады, где РГМ равна 10,175.
Перейдем к рассмотрению Других основных характеристик ГРМ и ГРП. Сделаем это при — ; ІЙвнительно к системе ИЛС.
V’. Угол наклона глиссады снижения 0, установленный для конкретного аэродрома, должен поддерживаться с точностью 7,5% ГРМ I и II категорий и 4% —Ш ‘ категории. При этом нижняя прямая часть глиссады снижения должна проходить базовую точку ИЛС (15 м) с точностью ±3 м.
Для ГРМ I категории амплитуда искривлений глиссады снижения (РГМ) не должна превышать 0,035 на всем участке от внешнего предела дальности до •точки С ИЛС. Для ГРМ II и III категорий этот допуск действует от точки А ИЛС. На участке от точки А до точки В ИЛС мшлитуда искривления умень
шается по линейному закону от РГМ = 0,035 в точке А до РГМ = 0,023 в точке В. От точки В до точки С ИЛС амплитуда искривлений не должна превышать 0,023.
— Дальность действия ГРМ составляет не менее 18 км в секторах е = ±8° в горизонтальной плоскости и секторе, ограниченном углом, равным 1,750 вверху и 0,450 внизу, или таким наименьшим углом, в котором РГМ=0,22 в вертикальной плоскости.
Угловая ширина сектора глиссады снижения £о является функцией угла 0 и меняется в широких пределах. В значительных пределах может изменяться и чувствительность к угловому отклонению от линии глиссады снижения:
где St — чувствительность к угловому отклонению;
Дтс — РГМ в некоторой точке сектора глиссады снижения, лежащей вне линии, глиссады;
С—угловое отклонение от линии глиссады снижения, в которой определяется РГМ.
Обычно характеристики чувствительности к угловым отклонениям от линии глиссады снижения определяются в пределах полу — секторов глиссады. Этот полусектор представляет собой сектор в вертикальной плоскости, содержащей глиссаду снижения и ограниченный геометрическими местами точек, наиболее приближенных к ее линии, в которых РГМ=0,0875.
Для ГРМ I категории ширина полусектор а глиссады снижения может меняться в пределах от 0,14 до 0,280, причем обе части полу — сектора над глиссадой снижения и под ней должны быть в пределах 0,07—0,140.
Для ГРМ II категории ширина полусектора может варьироваться в диапазоне 0,17—0,280, в том числе над глиссадой снижения — в пределах 0,07—0,14 0 и под ней в пределах 0,10—0,14 0. Для ГРМ III категории ширина полусектора составляет 0,20—0,28 0, причем обе части полусектора должны иметь ширину 0,12±0,02 0.
В практике широко используется характеристика чувствительности выходного сигнала эталонного ГРП к угловому отклонению от глиссады снижения, так называемая крутизна глиссад — ной зоны:
где S іс —крутизна курсовой зоны; / — ток на выходе эталонного ГРП при отклонении от глиссады снижения на угол £.
казанные величины относятся к отечественным ГРМ, работаю — с нуль-приборами, стрелка которых отклоняется на крайнюю “ку при токе /=250 мка. Если эталонный ГРП работает на — прибор, рассчитанный на /=150 мка, то все указанные выше ния Si. должны быть уменьшены на 40%.
‘огда самолет находится на линии глиссады снижения (РГМ = »выходной ток ГРП не превышает величины, соответствующей *=0,014 для ГРП I категории и РГМ=0,007 —для ГРП II кате-
излучении ГРМ, как и в излучении КРМ, имеются вьгсокочас — ге помехи. Они являются следствием главным образом неров — „й земной поверхности, участвующей в формировании характе — г;
ки направленности излучения. Для уменьшения флуктуаций дного сигнала ГРП применяется дополнительный выходной ;тр. С учетом его передаточная функция ГРП имеет вид:
^рП —общий коэффициент усиления ГРП с фильтром;
Тф — постоянная времени фильтра.
^ак уже указывалось ранее, постоянная времени должна быть южности меньшей, около Гф = 0,1—0,3 сек. У ГРП старых рукций Гф« 1 сек.
Курсо-глиссадные системы
Наземное оборудование системы ИЛС (ILS) состоит из курсового и глиссадного радиомаяка и трех маркерных радиомаяков (в настоящее время ближний маркер устанавливается не во всех аэропортах). В некоторых аэропортах для построения маневра захода на посадку на дальнем маркерном пункте устанавливается приводная радиостанция.
При выполнении международных полетов можно встретить два варианта размещения наземного оборудования.
Курсовые маяки системы ИЛС работают в круговом варианте. В последнее время устанавливаются маяки секторного варианта: угловая ширина сектора по 70° в обе стороны от линии посадки. Основные характеристики зон курса и глиссады ИЛС приведены в разделе наземного оборудования СП-50, поскольку они совпадают с соответствующими характеристиками СП-50 при новой регулировке.
Маркерные маяки системы ИЛС работают на той же частоте (75 Мгц), что и в системе СП-50 и излучают следующие кодовые сигналы: ближний маркер — шесть точек в секунду; средний маркер — поочередно два тире и шесть точек в секунду; дальний маркер (в материалах ИКАО — внешний маркер) — два тире в секунду.
Наземное оборудование системы СП-50 размещается в аэропортах гражданской авиации по единой типовой схеме.
В результате проведенной регулировки оборудования системы СП-50 в соответствии со стандартами ИКАО, принятыми для системы ИЛС, курсовые и глиссадные радиомаяки имеют следующие технические данные.
Зона курсового радиомаяка. Осевая линия зоны курса совмещается с осью ВПП. Линейная ширина зоны на расстоянии 1350 м от точки приземления равна 150 м (в пределах от 120 до 195 м), что соответствует угловому отклонению от продольной оси ВПП не менее 2° и не более 3°.
Дальность действия маяка обеспечивает прием сигналов на расстоянии более 70 км от начала ВПП при высоте полета 1000 м в секторе шириной по 10° с каждой стороны от оси ВПП (см. 91). Для курсового маяка ИЛС дальность действия регламентирована 45 км при высоте полета 600 м.
Зона глиссадного радиомаяка. Оптимальный угол наклона глиссады планирования равен 2°40′. При наличии препятствий в секторе подхода угол наклона глиссады увеличивается до 3°20′ и в исключительных случаях может доходить до 4—5°. При оптимальном угле наклона глиссады снижения 2°40′ самолет при снижении пролетает над дальним и ближним маркерами (при их стандартном расположении) на высотах соответственно 200 и 60 м.
Угловая ширина зоны глиссады при оптимальном угле ее наклона может быть в пределах 0,5—1°4, причем с увеличением угла наклона растет скорость снижения, а ширина зоны повышается для облегчения пилотирования самолета.
Дальность действия глиссадного радиомаяка обеспечивает прием сигналов на расстоянии не менее 18 км от него в секторах по 8® вправо и влево от линии посадки. Эти секторы, в которых обеспечивается прием сигналов, ограничены по высоте углом над горизонтом, равным 0,3 угла глиссады снижения, и углом над глиссадой, равным 0,8 угла глиссады снижения.
Наземное оборудование системы СП-50М предназначено для использования ее при директорном и автоматических заходах на посадку по нормам ИКАО 1-й категории сложности.
Стабильность залегания осевой линии курса обеспечивается более жесткими требованиями, предъявляемыми к аппаратуре.
В случаях когда длина ВПП значительно превышает оптимальную, ширина курсовой зоны устанавливается не менее 1°75′ (полузона).
Все остальные параметры курсоглиссадных маяков регулируются строго в соответствии с техническими нормами ИКАО.
Системы директорного управления заходом ка посадку
В настоящее время на самолетах гражданской авиации с ГТД устанавливаются системы директорного (командного) управления заходом на посадку («Привод», «Путь»). Эти системы являются системами полуавтоматического управления самолетом при заходе на посадку.
Командным прибором в таких системах является нуль-индикатор ПСП-48 или КПП-М.
Под полуавтоматическим управлением следует понимать пилотирование самолета по командному прибору, стрелки которого при заходе на посадку с момента начале четвертого разворота и на посадочной прямой необходимо удерживать на нуле. В отличие от обычного захода по СП-50 нуль-индикатор в данном случае не информирует пилота о положении относительно равносигнальных зон курсового и глиссадного маяков, а указывает ему, какие углы крена и тангажа нужно выдерживать для точного выхода в равносигнальные зоны и следования в них.
Система директорного управления упрощает пилотирование путем преобразования навигационно-пилотажной информации о положении самолета в пространстве и формирования ее в управляющий сигнал, который индицируется на командных приборах. Отклонение командной стрелки является функцией нескольких параметров, которые в обычном заходе на посадку пилот учитывает по отдельным приборам: ПСП-48 системы СП-50, авиагоризонт, компас и вариометр. Поэтому командные стрелки находятся в центре шкалы не только тогда, когда самолет следует строго в равносигнальных зонах курса и глиссады, но и когда осуществляется правильный выход к равносигнальным зонам.
На самолеты, уже находящиеся в эксплуатации, устанавливаются упрощенные системы директорного управления, действующие на базе существующего бортового и наземного оборудования: курсовой радиоприемник КРП-Ф, глиссадный радиоприемник ГРП-2, навигационный индикатор НИ-50БМ или задатчик курса ЗК-2Б, центральная гировертикаль ЦГВ или гиродатчики (АГД, ППС). Кроме того, в комплект входит: вычислитель, блок связи с автопилотом при наличии связи с АП на самолете.
Маневр захода на посадку на самолете, оборудованном системой директорного управления, выполняется таким образом:
1. Получив разрешение на вход в зону аэропорта, оборудованного системой СП-50 или ИЛС, экипаж, действуя в соответствии с утвержденной для данного аэропорта схемой, выводит самолет к месту начала четвертого разворвта; при этом экипаж обязан:
2. Момент начала четвертого разворота можно определить:
3. В момент начала четвертого разворота создать сторону отклонения курсовой планки командного прибора такой крен, при котором она установится на нуль шкалы. В процессе разворота пилот должен удерживать стрелку нуль-индикатора в центре шкалы, уменьшая или увеличивая крен. Крен всегда создается в сторону отклонения стрелки.
В случае раннего начала четвертого разворота для удержания курсовой стрелки в нулевом положении первоначально потребуется создать крен 17—20°, который впоследствии необходимо уменьшить в отдельных случаях вплоть до полного вывода самолета из крена. Однако при подходе к створу ВПП курсовая стрелка командного прибора покажет необходимость создания крена, потребного для плавного вписывания в линию посадки.
При позднем начале четвертого разворота происходит изменение курса на угол, больший чем 90°, и знак крена меняется. При этом весь маневр, включая и учет угла сноса, отрабатывается системой автоматически.
При выполнении четвертого разворота нужно постоянно следить, чтобы бленкеры курса были закрыты на всех нуль-индикаторах.
4. После выполнения четвертого разворота и входа в равносигнальную зону курса следует продолжать полет без снижения, удерживая кренами директорную стрелку командного прибора в центре шкалы. При
этом необходимо следить за стрелкой глиссады, которая после выполнения четвертого разворота будет отклонена вверх. Бленкеры глиссады должны быть закрыты.
Как только стрелка командного прибора приблизится к белому кружку, немедленно начать снижение, удерживая директорную стрелку глиссады в центре черного кружка.
5. По высоте пролета ДПРМ определить возможность продолжения снижения по глиссаде: если над ДПРМ при нахождении стрелки глиссады в пределах белого кружка высота полета будет равна или превышать установленную для данного аэропорта, то можно продолжать дальнейшее снижение по глиссаде; если же при правильном выдерживании глиссады самолет достиг установленной высоты пролета ДПРМ и не последовало сигналов фактического ее пролета, то немедленно прекратить снижение по глиссаде и в дальнейшем после пролета ДПРМ снижение производить по правилам, установленным для системы ОСП.
6. После пролета ДПРМ удерживать директорные стрелки командного нуль-индикатора в нулевом положении, не допуская при этом снижения вне видимости земли ниже установленного для данного аэропорта минимума погоды.
При обнаружении земли (посадочных огней) необходимо перейти на визуальный полет и произвести посадку.
Ошибки в установке курса на автомате НИ-50БМ, превышающие в сумме с углом сноса 15°, вообще не позволят осуществить заход на посадку по системе директорного управления. Во избежание этого перед началом четвертого разворота штурман должен вновь убедиться в правильности установки «Угла карты» на автомате курса НИ-50БМ й в правильности работы курсовой системы. При показаниях магнитного курса, значительно больших фактического курса на посадочной прямой, самолет будет отклоняться вправо от оси равносигнальной зоны курсового радиомаяка, а при заниженных показаниях — влево. Для обеспечения хорошей точности работы системы на посадочной прямой при больших углах сноса штурман должен обеспечить работу курсовой системы с высокой точностью; ошибка не должна превышать ±2°.
Кроме того, точность выхода самолета на ось ВПП и следования вдоль нее зависит также от точности залегания зоны курсового радиомаяка и установки на нуль курсовой стрелки поворотом кнопки на щитке управления СП-50.
Что такое глиссадный радиомаяк
Курсо-глиссадная система ( сокр. КГС, в английской терминологии — Instrument Landing System, ILS) — радионавигационная система обеспечения захода на посадку по приборам.
Бортовое оборудование ЛА (например Курс-МП, VIM-95 и др.), представляет собой комплекс из двух радиоприёмных устройств с направленными антеннами (курсовая и глиссадная). Для упрощённого рассмотрения принципа работы бортовой части КГС рассмотрим работу курсового канала. В случае, если самолет находится точно на пересечении двух лепестков диаграммы, глубина модуляции обоих сигналов одинакова, а их разность, соответственно равна нулю. Если ЛА отклонился влево или вправо, то один сигнал начинает преобладать над другим. И чем дальше от линии курса, тем больше мощность выходного сигнала. Полярность сигнала показывает в какую сторону отклонение. Глиссадный маяк работает точно по такому же принципу, только в вертикальной плоскости. Выходной сигнал выдаётся на планки командно-пилотажного прибора КППМ, по которому экипаж визуально фиксирует точность захода на посадку.
Рабочий диапазон частот КГС:
Дальность действия в соответствии с нормами ICAO:
Согласно документам ICAO КГС делятся на категории.
Стандартная КГС, которая классифицируется как КГС I категории, позволяет выполнять заходы на посадку при облачности не ниже 60 м над полосой и видимости 700 м (2400 фт), либо при видимости 550 м (1800 фт) если есть освещение осевой линии и зоны посадки.
Более сложные системы II и III категории позволяют выполнять посадку при почти нулевой видимости, но требуют cпециальной дополнительной сертификации самолёта и пилота.
Заходы по II категории позволяют выполнять посадку при высоте принятия решения 30м (100фт) и видимости 400м (1200фт).
При посадке по III категории самолёт приземляется с использованием системы автоматической посадки, высота принятия решения отсутствует, а видимость должна быть не ниже 250 м (700фт) по категории IIIa, либо от 50-250 м по категории IIIb. Каждая КГС, сертифицированная по III категории, имеет свои собственные установленные высоты принятия решения и минимумы. Некоторые КГС имеют сертификацию для посадок в условиях нулевой видимости (категория IIIc).
Системы II и III категорий должны иметь освещение осевой линии, зоны посадки и другие вспомогательные средства.
КГС должна выключаться в случае сбоев. С увеличением категории оборудование должно выключаться быстрее. Например, курсовой маяк I категории должен выключиться через 10 секунд после обнаружения сбоя, а маяк III категории должен выключиться менее чем через 2 секунды.
Курсовой радиомаяк КРМ-90 системы посадки СП-90
Глиссадный радиомаяк
Владельцы патента RU 2624459:
Изобретение относится к области радионавигации, в частности к системам инструментального захода летательного аппарата на посадку, и может быть использовано при разработке радиомаячных систем посадки, предназначенных для вывода самолетов на взлетно-посадочную полосу (ВПП) аэродрома.
Недостатком известного радиомаяка является низкая точность вывода самолета на ВПП в условиях изменения высоты антенн радиомаяка (выпадение или таяние снега) относительно подстилающей поверхности, что приводит к изменению угла глиссады. Выпадение, стаивание более 10 см слоя снега приводит к аварийному уходу угла глиссады.
Техническим результатом изобретения является повышение точности вывода самолетов на взлетно-посадочную полосу путем изменения эффективной высоты верхней и нижней антенн радиомаяка при изменении высоты подстилающей поверхности, приводящей к изменению угла глиссады.
При условии принижения средней высоты снежного покрова порогового значения формируют команду управления на перемещение антенны радиомаяка на величину принижения таким образом, чтобы высота контрольной антенны глиссадного радиомаяка была равна:
На фигуре 2 приведена структурная схема радиомаяка.
На фигуре 2 обозначено:
Выходной сигнал может быть подан на формирователя команды управления, который замкнет цепь обмотки сигнала управления в одну сторону. Если выходное напряжение становится меньше, чем опорное, сигнал на выходе схемы сравнения обнуляется и формирователь команды управления сформирует управляющий сигнал в другую сторону.
Глиссадный радиомаяк функционирует следующим образом.
Антенная система ГРМ формирует в пространстве равносигнальную зону ГРМ. Контроль стабильности положения глиссады осуществляется КВП.
При выполнении условия H0-Hснега>Hпорог сигнал на выходе схемы сравнения 6 обнуляется. Формирователь команды управления 5 переключает контакты в другую сторону и формирует команду управления на перемещение антенны радиомаяка на величину принижения H0=H0-Hснега.
В результате изменения высот передающих антенн радиомаяка и приемной антенны КВП обеспечивается номинальная точность вывода самолетов на взлетно-посадочную полосу в условиях изменения подстилающей поверхности, приводящей к изменению угла глиссады.