Что такое гиромагнитное отношение
Гиромагнитное отношение
Гиромагни́тное отноше́ние (магнитомехани́ческое отноше́ние) — отношение дипольного магнитного момента элементарной частицы (или системы элементарных частиц) к её механическому моменту.
Для различных состояний атомной системы гиромагнитное отношение определяется формулой:
В случае ядер, за единицу гиромагнитного отношения принимают величину:
Согласно классической теории, гиромагнитное отношение является коэффициентом пропорциональности между угловой скоростью прецессии магнитного момента, помещённого во внешнее магнитное поле, и вектором магнитной индукции.
В квантовой теории гиромагнитным отношением определяется величина расщепления уровней в эффекте Зеемана.
См. также
Ссылки
Полезное
Смотреть что такое «Гиромагнитное отношение» в других словарях:
ГИРОМАГНИТНОЕ ОТНОШЕНИЕ — то же, что магнитомеханическое отношение … Большой Энциклопедический словарь
ГИРОМАГНИТНОЕ ОТНОШЕНИЕ — (см. МАГНИТОМЕХАНИЧЕСКОЕ ОТНОШЕНИЕ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия
гиромагнитное отношение — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN gyromagnetic ratio … Справочник технического переводчика
гиромагнитное отношение — то же, что магнитомеханическое отношение. * * * ГИРОМАГНИТНОЕ ОТНОШЕНИЕ ГИРОМАГНИТНОЕ ОТНОШЕНИЕ, то же, что магнитомеханическое отношение (см. МАГНИТОМЕХАНИЧЕСКОЕ ОТНОШЕНИЕ) … Энциклопедический словарь
гиромагнитное отношение — giromagnetinis santykis statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. gyromagnetic coefficient; gyromagnetic ratio vok. gyromagnetisches Verhältnis, n;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
гиромагнитное отношение — giromagnetinis santykis statusas T sritis fizika atitikmenys: angl. gyromagnetic ratio vok. gyromagnetisches Verhältnis, n rus. гиромагнитное отношение, n pranc. rapport gyromagnétique, m … Fizikos terminų žodynas
Гиромагнитное отношение — отношение магнитного момента атомных частиц (электронов, протонов, нейтронов, атомных ядер и т.д.) к их моменту количества движения. Подробнее см. Магнитомеханическое отношение … Большая советская энциклопедия
ГИРОМАГНИТНОЕ ОТНОШЕНИЕ — то же, что магнитомеханическое отношение … Большой энциклопедический политехнический словарь
ГИРОМАГНИТНОЕ ОТНОШЕНИЕ — то же, что магнитомеханическое отношение … Естествознание. Энциклопедический словарь
Магнитный момент атома. Гиромагнитное отношение
Рис. 2. Круговой контур с током в неоднородном поле
Если поле неоднородно, то кроме сил, растягивающих или сжимающих кольцо, появляются силы, направленные в данной конфигурации вниз (рис. 3).
Рис. 3.43. Силы, действующие на кольцо с током в магнитном поле:
в однородном поле силы направлены вдоль радиуса и растягивают контур (а), в неоднородном поле (б) появляется составляющая Вr магнитной индукции и появляется сила, действующая вдоль оси Z
Так как поле симметрично, то результирующая всех сил, действующих на элементы с током в направлении оси равна:
(1)
Для вычисления составляющей воспользуемся тем, что для магнитного поля
, т. е. поток силовых линий вектора
через замкнутую поверхность равен нулю. Вычислим поток силовых линий через поверхность небольшого цилиндра радиусом
и высотой
(рис. 4).
С точностью до членов первого порядка малости имеем:
Первое слагаемое в этом выражении определяет величину потока через боковую поверхность цилиндра. Второе — представляет величину результирующего потока через основания цилиндра.
Отсюда вытекает, что
Рис.4. К вычислению потока вектора
Следовательно, величину силы, действующей на контур в вертикальном направлении, можно выразить следующим образом:
(2)
Магнитный момент кольца направлен вверх, а сила, действующая на кольцо, направлена вниз. Очевидно, что, изменив направление тока, мы изменим и направление силы.
Итак, мы можем сделать следующее заключение.
1. Если магнитный момент параллелен вектору внешнего неоднородного поля, то сила действует в направлении увеличения магнитной индукции внешнего поля. Контур втягивается в соленоид.
2. Если магнитный момент антипараллелен вектору , то сила действует в направлении уменьшения магнитной индукции. Контур выталкивается из соленоида.
3.Если поле однородное, то сила, действующая в вертикальном направлении, равна нулю.
Теперь у нас появляется возможность объяснить результаты опытов, описанных выше, по крайней мере, на качественном уровне. Можно предположить, что вещество, втягивающееся в соленоид, содержит частицы, магнитные моменты которых параллельны вектору . Вещество, которое выталкивается из соленоида, содержит частицы, магнитные моменты которых направлены противоположно вектору
.
Теперь нам нужно понять: почему в одних веществах эти моменты параллельны вектору , а в других наоборот? Это мы и попытаемся
сделать.
Достаточно очевидно, что поведение магнетика в магнитном поле должно быть связано с внутренней структурой самого вещества. Поскольку вещество состоит из атомов и молекул, то, следует, оставаясь в рамках классической физики, вновь обратиться к модели атома.
Атом любого элемента является электронейтральным. Положительный заряд атома сосредоточен в ядре, а отрицательный заряд определяется электронами, число которых в точности равно числу протонов. Электроны являются материальными точками, имеющими заряд и массу
, и вращаются вокруг неподвижного ядра по круговым орбитам.
Движение электрона по орбите представляет собой электрический ток. Поэтому электрон, вращающийся по орбите, создает магнитное поле. Другими словами, это приводит к появлению магнитного момента атома.
В рамках классической модели возможное наличие магнитного момента атома обусловлено лишь движением электронов по орбите. В классической физике это является единственным элементом, определяющим поведение атома в магнитном поле.
Для введения основных понятий рассмотрим атом водорода, в состав которого входит один протон и, движущийся вокруг него по круговой орбите радиуса , один электрон (рис.5).
Вычислим силу кругового тока, обусловленного движением электрона по круговой орбите. По определению, сила тока — это количество заряда, протекшего через поперечное сечение за единицу времени. В данном случае электрон за 1 секунду пересечет воображаемое сечение раз, где
— частота вращения электрона. Поэтому имеем:
(3)
Здесь — период вращения, а
— линейная скорость электрона.
В атоме водорода электрон вращается вокруг ядра с частотой, равной примерно Поэтому сила кругового тока равна
Магнитный момент электрона, обусловленный вращением вокруг ядра, равен:
(4)
Направление вектора определяется правилом правого винта, но поскольку электрон — отрицательно заряженная частица, то направление вектора магнитного момента такое, как показано на рис.5. Данный магнитный момент принято называть орбитальным магнитным моментом электрона.
Движущийся по круговой орбите электрон обладает моментом импульса, который равен:
,
где — радиус орбиты,
— масса электрона,
— его линейная скорость. Вектор
направлен противоположно вектору
, а его величина равна:
. (5)
Здесь мы использовали связь линейной и угловой
скоростей движения по круговой орбите
, и связь угловой скорости с периодом вращения
.
Теперь нетрудно найти отношение:
. (6)
Это отношение магнитного момента электрона к его механическому моменту количества движения называется гиромагнитным (магнитомеханическим) отношением орбитальных моментов электрона. Мы считали, что электрон движется по круговой орбите, но можно показать, что такое же соотношение справедливо и при движении электрона по эллиптической орбите.
Соотношение (6) сыграло фундаментальную роль в развитии всей физики. Гиромагнитное отношение указывает на наличие связи между магнитными и механическими свойствами магнетика. Действительно, если изменились его магнитные свойства, то это должно привести к изменению механических свойств. Справедливо и обратное — изменение механических свойств должно привести к намагничению магнетика.
Впервые в опытах Эйнштейна и де Гааза было показано, что намагничение магнетика в виде железного стержня, помещенного в магнитное поле соленоида, приводит к его вращению. В опытах Барнетта было установлено, что быстрое вращение железного образца приводит к его намагничению. Мы намеренно выделили материал магнетика. Результаты этих опытов позволили определить значение гиромагнитного отношения для железа. Оказалось, что это значение примерно в два раза больше, чем это следует из формулы (6).
Эти данные показывают, что магнитные свойства железа нельзя объяснить наличием лишь орбитальных магнитных моментов электронов. Дальнейший ход развития физики привел к необходимости высказать гипотезу о наличии у электрона собственного внутреннего механического момента количества движения. Этот момент получил название спин электрона. На первом этапе электрон представлялся в виде заряженного вращающегося шара. Отсюда и появилось название спин (to spin — вращаться). Было показано, что значение собственного гиромагнитного отношения для электрона в атоме равно
.
Весь ход развития современной физики полностью подтвердил гипотезу о спине. В настоящее время под спином следует понимать внутреннее свойство самого электрона, такое же как, например, его масса и заряд.
Таким образом, полный механический момент электрона представляет векторную сумму орбитального механического момента электрона и его спина (собственного механического момента)
. Полный магнитный момент электрона
также представляет собой векторную сумму магнитного момента электрона из-за его орбитального движения и собственного магнитного момента электрона
.
На примере атома водорода мы ввели понятия момента количества движения одного электрона, его спина и определили гиромагнитное соотношение. Однако одним электроном обладает только атом простейшего элемента — водорода. Для других элементов количество электронов определяется зарядовым числом данного элемента. В этом случае магнитный момент атома равен векторной сумме магнитных моментов всех электронов его составляющих:
, (7)
где — полный магнитный момент
-го электрона. При этом данная сумма может в ряде случаев равняться нулю. Анализируя даже эти, неполные данные, можно сделать вывод, что изучение поведения магнетиков в магнитном поле дает гораздо больше сведений
о строении материи, чем изучение поведения вещества в электрических
полях.
Гиромагнитное Отношение
Смотреть что такое «Гиромагнитное Отношение» в других словарях:
ГИРОМАГНИТНОЕ ОТНОШЕНИЕ — то же, что магнитомеханическое отношение … Большой Энциклопедический словарь
ГИРОМАГНИТНОЕ ОТНОШЕНИЕ — (см. МАГНИТОМЕХАНИЧЕСКОЕ ОТНОШЕНИЕ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия
гиромагнитное отношение — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN gyromagnetic ratio … Справочник технического переводчика
Гиромагнитное отношение — (магнитомеханическое отношение) отношение дипольного магнитного момента элементарной частицы (или системы элементарных частиц) к её механическому моменту. В системе СИ единицей измерения гиромагнитного отношения является с·А·кг−1 = с−1·Тл−1.… … Википедия
гиромагнитное отношение — то же, что магнитомеханическое отношение. * * * ГИРОМАГНИТНОЕ ОТНОШЕНИЕ ГИРОМАГНИТНОЕ ОТНОШЕНИЕ, то же, что магнитомеханическое отношение (см. МАГНИТОМЕХАНИЧЕСКОЕ ОТНОШЕНИЕ) … Энциклопедический словарь
гиромагнитное отношение — giromagnetinis santykis statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. gyromagnetic coefficient; gyromagnetic ratio vok. gyromagnetisches Verhältnis, n;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
гиромагнитное отношение — giromagnetinis santykis statusas T sritis fizika atitikmenys: angl. gyromagnetic ratio vok. gyromagnetisches Verhältnis, n rus. гиромагнитное отношение, n pranc. rapport gyromagnétique, m … Fizikos terminų žodynas
Гиромагнитное отношение — отношение магнитного момента атомных частиц (электронов, протонов, нейтронов, атомных ядер и т.д.) к их моменту количества движения. Подробнее см. Магнитомеханическое отношение … Большая советская энциклопедия
ГИРОМАГНИТНОЕ ОТНОШЕНИЕ — то же, что магнитомеханическое отношение … Большой энциклопедический политехнический словарь
ГИРОМАГНИТНОЕ ОТНОШЕНИЕ — то же, что магнитомеханическое отношение … Естествознание. Энциклопедический словарь
Что такое гиромагнитное отношение
В 1922 году немецкие физики О. Штерн и В. Герлах поставили опыты, целью которых было измерение магнитных моментов Pm атомов различных химических элементов. Для химических элементов, образующих первую группу таблицы Менделеева и имеющих один валентный электрон, магнитный момент атома равен магнитному моменту валентного электрона, т.е. одного электрона.
Идея опыта заключалась в измерении силы, действующей на атом в сильно неоднородном магнитном поле. Неоднородность магнитного поля должна быть такова, чтобы она сказывалась на расстояниях порядка размера атома. Только при этом можно было получить силу, действующую на каждый атом в отдельности.
Схема опыта изображена на рис. 7.9. В колбе с вакуумом, 10 –5 мм рт. ст., нагревался серебряный шарик К, до температуры испарения.
Атомы серебра летели с тепловой скоростью около 100 м/с через щелевые диафрагмы В и, проходя резко неоднородное магнитное поле, попадали на фотопластинку А.
Если бы момент импульса атома (и его магнитный момент
) мог принимать произвольные ориентации в пространстве (т.е. в магнитном поле), то можно было ожидать непрерывного распределения попаданий атомов серебра на фотопластинку с большой плотностью попаданий в середине. Но на опыте были получены совершенно неожиданные результаты: на фотопластинке получились две резкие полосы – все атомы отклонялись в магнитном поле двояким образом, соответствующим лишь двум возможным ориентациям магнитного момента (рис. 7.10).
Этим доказывался квантовый характер магнитных моментов электронов. Количественный анализ показал, что проекция магнитного момента электрона равна магнетону Бора:
.
Таким образом, для атомов серебра Штерн и Герлах получили, что проекция магнитного момента атома (электрона) на направление магнитного поля численно равна магнетону Бора.
.
Опыты Штерна и Герлаха не только подтвердили пространственное квантование моментов импульсов в магнитном поле, но и дали экспериментальное подтверждение тому, что магнитные моменты электронов тоже состоят из некоторого числа «элементарных моментов», т.е. имеют дискретную природу. Единицей измерения магнитных моментов электронов и атомов является магнетон Бора (ħ – единица измерения механического момента импульса).
Кроме того, в этих опытах было обнаружено новое явление. Валентный электрон в основном состоянии атома серебра имеет орбитальное квантовое число l = 0 (s—состояние). Но при l = 0 (проекция момента импульса на направление внешнего поля равна нулю). Возник вопрос, пространственное квантование какого момента импульса обнаружилось в этих опытах и проекция какого магнитного момента равна магнетону Бора.
В 1925 г. студенты Геттингенского университета Гаудсмит и Уленбек предположили существование собственного механического момента импульса у электрона (спина) и, соответственно, собственного магнитного момента электрона Pms.
Введение понятия спина сразу объяснило ряд затруднений, имевшихся к тому времени в квантовой механике. И в первую очередь – результатов опытов Штерна и Герлаха.
Авторы дали такое толкование спина: электрон – вращающийся волчок. Но тогда следует, что «поверхность» волчка (электрона) должна вращаться с линейной скоростью, равной 300 с, где с – скорость света. От такого толкования спина пришлось отказаться.
В современном представлении – спин, как заряд и масса, есть свойство электрона.
П. Дирак впоследствии показал, что существование спина вытекает из решения релятивистского волнового уравнения Шредингера.
Из общих выводов квантовой механики следует, что спин должен быть квантован: , где s – спиновое квантовое число.
Аналогично, проекция спина на ось z (Lsz) (ось z совпадает с направлением внешнего магнитного поля) должна быть квантована и вектор может иметь (2s + 1) различных ориентаций в магнитном поле.
Из опытов Штерна и Герлаха следует, что таких ориентаций всего две: , а значит s = 1/2, т.е. спиновое квантовое число имеет только одно значение.
Для атомов первой группы, валентный электрон которых находится в s—состоянии (l = 0), момент импульса атома равен спину валентного электрона. Поэтому обнаруженное для таких атомов пространственное квантование момента импульса в магнитном поле является доказательством наличия у спина лишь двух ориентаций во внешнем поле. (Опыты с электронами в p—состоянии подтвердили этот вывод, хотя картина получилась более сложной) (желтая линия натрия – дуплет из-за наличия спина).
Численное значение спина электрона:
.
По аналогии с пространственным квантованием орбитального момента проекция спина
квантуется (аналогично, как
, то и
). Проекция спина на направление внешнего магнитного поля, являясь квантовой величиной, определяется выражением:
,
где – магнитное спиновое квантовое число,
, т.е. может принимать только два значения, что и наблюдается в опыте Штерна и Герлаха.
Итак, проекция спинового механического момента импульса на направление внешнего магнитного поля может принимать два значения:
Так как мы всегда имеем дело с проекциями, то говоря, что спин имеет две ориентации, имеем в виду две проекции.
Проекция спинового магнитного момента электрона на направление внешнего магнитного поля:
.
Отношение – спиновое гиромагнитное отношение.