Что такое гидролиз жира
Гидролиз жиров
Общие понятия о гидролизе жиров
С точки зрения химического строения жиры представляют собой сложные эфиры, образованные путем взаимодействия глицерина с высшими предельными и непредельными кислотами, т.е. производные высших карбоновых кислот, спиртов и других соединений.
Рис. 1. Общая структурная формула и классификация жиров.
Гидролиз жиров
Гидролиз жиров – одно из самых важнейших свойств соединений этого класса. По-другому эта реакция называется омыление. Эта реакция может протекать в кислой, щелочной или спиртовой среде. В ходе гидролиза липиды распадаются на составляющие их вещества: глицерин и кислоты. Например, если жир образован глицерином и стеариновой кислотой, на выходе мы получим именно эти продукты:
Примеры решения задач
Задание | Определите массу глицерина, который можно получить из 40,3 г триглицерида пальмитиновой кислоты, если выход продукта составляет 70%. |
Решение | Глицерин из триглицерида пальмитиновой кислоты можно получить путем гидролиза. Запишем уравнение реакции: |
Выход какого-либо продукта реакции представляет собой отношение практической и теоретической масс, выраженное в процентах:
Теоретическую массу глицерина можно рассчитать по уравнению реакции. Для начала определим количество моль триглицерида пальмитиновой кислоты. Молярная масса триглицерида – 806 г/моль.
υ (триглицерид) = m (триглицерид)/ M (триглицерид) = 40,3/806 = 0,05 моль.
Согласно уравнению реакции, число моль триглицерида пальмитиновой кислоты и глицерина равны:
Тогда, теоретическую массу глицерина можно рассчитать по формуле (молярная масса глицерина – 92 г/моль):
Исходя их этого, выражение для вычисления практической массы:
mprac = ή /100% × mtheor = 70/100 × 4,6 = 3,22 г.
Гидролиз жиров
В результате гидролиза происходит расщепление связей в молекулах глицеридов при действии воды, причем элементы воды присоединяются по месту возникающих свободных валентностей с образованием двух структурных элементов жиров — жирных кислот и глицерина. Участвующая в реакции вода диссоциирует на водород и гидроксил. Водород присоединяется к кислотному остатку, а гидроксил — к спиртовому радикалу. Практически процесс распада триглицеридов протекает последовательно, с образованием промежуточных продуктов реакции — моно- и диглицеридов:
Глубина гидролитического распада определяется содержанием свободных жирных кислот и характеризуется величиной кислотного числа жира (КЧ). Жиры, содержащиеся в незрелых семенах растений, отличаются наличием большего количества свободных жирных кислот. По мере созревания семян кислотность жира в них снижается. В масле полностью созревших семян свободные жирные кислоты отсутствуют, но в процессе извлечения его из сырья и хранении они образуются вследствие гидролиза. При хранении масличных семян в условиях относительно высокой температуры и повышенной влажности процесс гидролиза в масле протекает особенно интенсивно. Масло даже свежей выработки из семян, хранившихся в неблагоприятных условиях, может иметь высокое кислотное число. Этот показатель сильно возрастает и при неудовлетворительных условиях хранения масла.
При хранении жиров скорость гидролитического распада увеличивается под воздействием фермента липазы, содержащегося в жирах или вырабатываемого некоторыми микроорганизмами. Животные и растительные ткани всегда содержат в большем или меньшем количестве этот жирорасщепляющий фермент. При получении масел и жиров, особенно при их плохой первичной очистке, в жиры часто попадают тканевые элементы, содержащие липазу. Поэтому плохо профильтрованные жиры могут при хранении расщепляться, в результате чего кислотное число их увеличивается. Это особенно заметно при хранении нерафинированного влажного касторового масла. В очень влажном жире могут развиваться плесени и дрожжи, которые вырабатывают два фермента: липазу и липоксидазу. Липаза гидролизует жиры, а липоксидаза окисляет жирные кислоты и глицериды. При повышенной влажности активность ферментов не прекращается даже при температуре ниже О °С. Липаза легко разрушается при нагревании жира до 80 °С.
Скорость гидролитического расщепления жиров находится в прямой зависимости от концентрации водородных ионов, которые, как и ионы гидроксила, являются катализаторами этой реакции. Процесс гидролиза протекает значительно быстрее в присутствии некоторых металлов или их оксидов, например Zn, ZnO, CaO, MgO.
Низкомолекулярные кислоты сильно меняют вкус и запах жира. По этим изменениям и определяется пищевая порча жира. Из-за гидролиза особенно сильно изменяются органолептические показатели коровьего и кокосового масел, имеющих в своем составе низкомолекулярные летучие жирные кислоты. Высокомолекулярные жирные кислоты вкуса и запаха не имеют, а потому увеличение их содержания при гидролизе не изменяет органолептических показателей жира.
Номенклатура жиров
Общее название жиров – триацилглицерины (триглицериды).
Существует несколько способов назвать молекулу жира.
Например, жир, образованный тремя остатками стеариновой кислоты, будет иметь следующие названия:
Физические свойства жиров
Жиры растворимы в органических растворителях и нерастворимы в воде. С водой жиры не смешиваются.
Животные жиры — предельные | Растительные жиры (масла) — непредельные |
Твёрдые, образованы предельными кислотами – стеариновой и пальмитиновой. Все животные жиры, кроме рыбьего – твёрдые. | Жидкие, образованы непредельными кислотами – олеиновой, линолевой и другими. Все растительные жиры, кроме пальмового масла – жидкие. |
Химические свойства жиров
1. Гидролиз (омыление) жиров
Жиры подвергаются гидролизу в кислой или щелочной среде или под действием ферментов.
1.1. Кислотный гидролиз
Под действием кислот жиры гидролизуются до глицерина и карбоновых кислот, которых входили в молекулу жира.
Например, при гидролизе тристеарата глицерина в кислой среде образуется стеариновая кислота и глицерин |
1.2. Щелочной гидролиз — омыление жиров
При щелочном гидролизе жиров образуется глицерин и соли карбоновых кислот, входивших в состав жира.
2. Гидрирование (гидрогенизация) ненасыщенных жиров
Гидрогенизация жиров — это процесс присоединения водорода к остаткам непредельных кислот, входящих в состав жира.
При этом остатки непредельных кислот переходят в остатки предельных, жидкие растительные жиры превращаются в твёрдые (маргарин).
Например, триолеат глицерина при гидрировании превращается в тристеарат глицерина: |
Количественной характеристикой степени ненасыщенности жиров служит йодное число, показывающее, какая масса йода может присоединиться по двойным связям к 100 г жира. |
3. Мыло и синтетические моющие средства
При щелочном гидролизе жиров образуются мыла – соли высших жирных кислот.
Стеарат натрия – твёрдое мыло.
Стеарат калия – жидкое мыло.
Моющая способность мыла зависит от жесткости воды. Оно хорошо мылится и стирает в мягкой воде, плохо стирает в жёсткой воде и совсем не стирает в морской воде, так как содержащие в ней ионы Ca 2+ и Mg 2+ дают с высшими кислотами нерастворимые в воде соли.
Например, тристеарат глицерина взаимодействует с сульфатом кальция |
Поэтому наряду с мылом используют синтетические моющие средства.
Их производят из других веществ, например из алкилсульфатов — солей сложных эфиров высших спиртов и серной кислоты.
Далее алкилсульфат гидролизуется щелочью:
Эти соли содержат в молекуле от 12 до 14 углеродных атомов и обладают очень хорошими моющими свойствами. Кальциевые и магниевые соли этих веществ растворимы в воде, а потому такие мыла моют и в жесткой воде. Алкилсульфаты содержатся во многих стиральных порошках.
Биологически важные вещества
Жиры – это сложные эфиры, образованные глицерином и высшими одноосновными карбоновыми кислотами (жирными кислотами). . |
Жиры образуются при взаимодействии глицерина и высших карбоновых кислот:
(содержит одну двойную связь в радикале)
(две двойные связи в радикале)
СН3-(СН2)4-СН = СН-СН2-СН = СН-СООН
(три двойные связи в радикале)
СН3СН2СН=CHCH2CH=CHCH2CH=СН(СН2)4СООН
Номенклатура жиров
Общее название жиров – триацилглицерины (триглицериды).
Существует несколько способов назвать молекулу жира.
Например, жир, образованный тремя остатками стеариновой кислоты, будет иметь следующие названия:
Физические свойства жиров
Жиры растворимы в органических растворителях и нерастворимы в воде. С водой жиры не смешиваются.
Животные жиры — предельные | Растительные жиры (масла) — непредельные |
Твёрдые, образованы предельными кислотами – стеариновой и пальмитиновой. Все животные жиры, кроме рыбьего – твёрдые. | Жидкие, образованы непредельными кислотами – олеиновой, линолевой и другими. Все растительные жиры, кроме пальмового масла – жидкие. |
Химические свойства жиров
1. Гидролиз (омыление) жиров
Жиры подвергаются гидролизу в кислой или щелочной среде или под действием ферментов.
1.1. Кислотный гидролиз
Под действием кислот жиры гидролизуются до глицерина и карбоновых кислот, которых входили в молекулу жира.
Например, при гидролизе тристеарата глицерина в кислой среде образуется стеариновая кислота и глицерин |
1.2. Щелочной гидролиз — омыление жиров
При щелочном гидролизе жиров образуется глицерин и соли карбоновых кислот, входивших в состав жира.
2. Гидрирование (гидрогенизация) ненасыщенных жиров
Гидрогенизация жиров — это процесс присоединения водорода к остаткам непредельных кислот, входящих в состав жира.
При этом остатки непредельных кислот переходят в остатки предельных, жидкие растительные жиры превращаются в твёрдые (маргарин).
Например, триолеат глицерина при гидрировании превращается в тристеарат глицерина: |
Количественной характеристикой степени ненасыщенности жиров служит йодное число, показывающее, какая масса йода может присоединиться по двойным связям к 100 г жира. |
3. Мыло и синтетические моющие средства
При щелочном гидролизе жиров образуются мыла – соли высших жирных кислот.
Стеарат натрия – твёрдое мыло.
Стеарат калия – жидкое мыло.
Моющая способность мыла зависит от жесткости воды. Оно хорошо мылится и стирает в мягкой воде, плохо стирает в жёсткой воде и совсем не стирает в морской воде, так как содержащие в ней ионы Ca 2+ и Mg 2+ дают с высшими кислотами нерастворимые в воде соли.
Например, тристеарат глицерина взаимодействует с сульфатом кальция |
Поэтому наряду с мылом используют синтетические моющие средства.
Их производят из других веществ, например из алкилсульфатов — солей сложных эфиров высших спиртов и серной кислоты.
Далее алкилсульфат гидролизуется щелочью:
Эти соли содержат в молекуле от 12 до 14 углеродных атомов и обладают очень хорошими моющими свойствами. Кальциевые и магниевые соли этих веществ растворимы в воде, а потому такие мыла моют и в жесткой воде. Алкилсульфаты содержатся во многих стиральных порошках.
Белки
Белки (полипептиды) – биополимеры, построенные из остатков α-аминокислот, соединенных пептидными (амидными) связями.
Образование белковой макромолекулы можно представить как реакцию поликонденсации α-аминокислот:
Макромолекулы белков имеют стереорегулярное строение, исключительно важное для проявления ими определенных биологических свойств.
Структуры белков
Первичная структура — последовательность α-аминокислотных звеньев в полипептидной цепи | Вторичная структура – спиральная структура полипептидной цепи, закрепленная водородными связями между группами N-H и С=О |
Химические свойства белков
Качественные реакции на белки
Денатурация белка
Это разрушение структуры белка при нагревании, изменении кислотности среды, действии излучения, спирта, тяжелых металлов, радиации.
Пример денатурации — свертывание яичных белков при варке яиц.
Денатурация бывает обратимой и необратимой.
Анализируя продукты гидролиза, можно установить количественный состав белков.
Углеводы
Углеводы (сахара) – органические соединения, имеющие сходное строение, состав большинства которых отражает формула Cx(H2O)y, где x, y ≥ 3. |
Исключение составляет дезоксирибоза, которая имеют формулу С5Н10O4 (на один атом кислорода меньше, чем рибоза).
Классификация углеводов
По числу структурных звеньев
Некоторые важнейшие углеводы:
Моносахариды | Дисахариды | Полисахариды | ||||||||||||||||||||||||
Глюкоза С6Н12О6 Дезоксирибоза С5Н10О4 | Сахароза С12Н22О11 Целлобиоза С12Н22О11 | Целлюлоза (С6Н10О5)nПо числу атомов углерода в молекулеПо размеру кольца в циклической форме молекулыХимические свойства, общие для всех углеводов1. ГорениеВсе углеводы горят до углекислого газа и воды.
2. Взаимодействие с концентрированной серной кислотойКонцентрированная серная кислота отнимает воду от углеводов, при этом образуется углерод С («обугливание») и вода.
Моносахариды
Моносахариды являются структурными звеньями олигосахаридов и полисахаридов. Важнейшие моносахариды
|