Что такое гибридное скрещивание в биологии
Законы Менделя
С него часто начинаются генетические задачи (в качестве первого скрещивания). Этот закон гласит о том, что при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения будут единообразны по данным признакам.
Анализирующее скрещивание
Анализируя полученное потомство, можно сделать вывод о генотипе гибридной особи.
Неполное доминирование
«При скрещивании гетерозиготных гибридов (Aa) первого поколения F1 во втором поколении F2 наблюдается расщепление по данному признаку: по генотипу 1 : 2 : 1, по фенотипу 3 : 1″
В нем речь идет о дигибридном скрещивании, то есть мы исследуем не один, а два признака у особей (к примеру, цвет семян и форма семян). Каждый ген имеет два аллеля, поэтому пусть вас не удивляют генотипы AaBb 🙂 Важно заметить, что речь в данном законе идет о генах, которые расположены в разных хромосомах.
Запомните III закон Менделя так: «При скрещивании особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга, комбинируясь друг с другом во всех возможных сочетаниях.
Очевидно, что расщепление по фенотипу среди гибридов второго поколения составляет: 9:3:3:1.
Пример решения генетической задачи №1
Доминантный ген отвечает за развитие у человека нормальных глазных яблок. Рецессивный ген приводит к почти полному отсутствию глазных яблок (анофтальмия). Гетерозиготы имеют глазное яблоко малых размеров (микрофтальмия). Какое строение глазных яблок будет характерно для потомства, если оба родителя страдают микрофтальмией?
Пример решения генетической задачи №2
Полидактилия и отсутствие малых коренных зубов передаются как аутосомно-доминантные признаки. Гены, отвечающие за развитие этих признаков, расположены в разных парах гомологичных хромосом. Какова вероятность рождения детей без аномалий в семье, где оба родителя страдают обеими болезнями и гетерозиготны по этим парам генов.
В данном случае мы построим решетку Пеннета, которая сделает генотипы потомства более наглядными. Вы видите, что на потомстве буквально нет ни одного живого места: почти все 16 возможных потомков больны либо одним, либо другим заболеванием, кроме одного, aabb. Вероятность рождения такого ребенка очень небольшая 1/16 = 6.25%.
Пример решения генетической задачи №3
У голубоглазой близорукой женщины от брака с кареглазым мужчиной с нормальным зрением родилась кареглазая близорукая девочка и голубоглазый мальчик с нормальным зрением. Ген близорукости (A) доминантен по отношению к гену нормального зрения (a), а ген кареглазости (D) доминирует над геном голубоглазости (d). Какова вероятность рождения в этой семье нормального кареглазого ребенка?
Первый этап решения задачи очень важен. Мы учли описания генотипов родителей и, тем не менее, белые пятна остались. Мы не знаем гетерозиготна (Aa) или гомозиготная (aa) женщина по гену близорукости. Такая же ситуация и с мужчиной, мы не можем точно сказать, гомозиготен (DD) он или гетерозиготен (Dd) по гену кареглазости.
Аутосомно-доминантный тип наследования
Я не забыл о том, что по ходу изучения генетики вас надо научить видеть различные варианты наследования на генеалогическом древе (родословной) =) Из предыдущей статьи мы узнали о том, как выглядит и чем характеризуется аутосомно-рецессивный тип наследования, сейчас поговорим об аутосомно-доминантном, с которым мы столкнулись в задачах выше.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Дигибридное скрещивание и полигибридное скрещивание: значение и польза для человека
В этой статье читатель ознакомиться с информацией о том, что являет собой процесс скрещивания, селекция, а также будут рассмотрены их различные формы, особенности протекания, гибридное и дигибридное скрещивание и значение селекции в природе и жизни человека.
Что такое скрещивание
Скрещивание – это вариант из списка методов селекции представителей животного и растительного мира. Процесс искусственного или естественного объединения генотипов, различающихся между собой наследственной информацией, которую они несут. Происходит скрещивания при оплодотворении.
Существует довольно обильное количество способов скрещивания живых организмов, и если говорить о растениях, то выделяют следующие:
Дигибридный способ скрещивания
Дигибридное скрещивание – это процесс, при котором происходит скрещивание организмов, имеющих различия по альтернативным признакам в двух парах, например, форма цветка и его окрас. По третьему закону Грегора Менделя при скрещивании такого типа различные гены аллельных пар, находящиеся в разных гомологичных хромосомах, наследуют свои признаки в независимом порядке один от другого.
Представители царств Растений, Животных, Грибов и Микроорганизмов носят различия в своем генетическом материале, и впоследствии они имеют разнообразные признаки. Процесс анализа наследования пары признаков базируется на изучении наследственности, которую несет каждая пара признака, при этом не стоит обращать внимание на иные пары. После отслеживания наследуемых качеств организма остается только сравнить и объединить результаты наблюдений.
Скрещивание дигибридным образом носит значимый селекционный характер и является очень важным явлением в природе и человеческой деятельности.
Полигибридный способ скрещивания
Полигибридное скрещивание растений представляет собой процесс скрещивания форм, которые отличаются одна от другой одновременно по трем и более парам определенных признаков. В данном способе скрещивания гетерозиготные особи по n признаку могут создать гаметы 2 n типа. F2 может образовать потомство с 3 n генотипом.
Определив частоту воспроизведения конкретного генотипа в родительском потомстве, различающегося каким-либо числом генов, которые наследуются независимо, можно просчитать шанс проявления конкретного генотипа всех генных пар по отдельности, после чего полученные варианты перемножаются.
Например, вам необходимо сделать расчет на частоту AabbCc генотипа при скрещивании с AaBbcc. Можно произвести расчет либо по решетке Пеннета, либо обычным умножением, а именно Aa*Aa=1/2, bb*Bb=1/4 и Cc*Cc=1/2, и как следствие получаем вероятность проявления представителей вида с AabbCc генотипом 1/2*1/4*1/2=1/16.
Селекция
Селекция – это отдел науки, изучающий методы, которые позволят создать новые или улучшенные уже существующие виды живых организмов. Скрещивание растений, животных, выведение штаммов среди микроорганизмов – всем этим занимается именно данная наука. Она использует множество различных способов скрещивания, например, дигибридное скрещивание или полигибридное.
Необходимость селекции
Значение селекции как растений, так и животных заключается в том, что это явление позволяет создавать различные новые формы живых существ, имеющих более устойчивые способности к различным негативным воздействиям, например, лучше переносить перепады низких и высоких температур, будут хуже подвергаться нападкам паразитических насекомых. Растения могут давать гораздо больше урожая и в более короткие сроки, лучше бороться с болезнями и быть устойчивыми к ним. Среди животных можно выводить формы, имеющие конкретные необходимые признаки, и избавляться от дефектов породы.
Заключение
Теперь, ознакомившись с предоставленной информацией, можно четко сформулировать, что представляет собой дигибридное скрещивание, основные особенности различных видов скрещивания растений, способы селекционного воспроизведения новых сортов. А также можно определить роль скрещивания для человека как потребителя растительной продукции.
Основные понятия
Для понимания законов наследования необходимо ознакомиться с понятиями, которой пользуется генетика. Генотип — совокупность генов, присущих одному организму. Они получаются от родителей в индивидуальном порядке и могут влиять друг на друга. Фенотип — анатомические, физиологические и биохимические особенности, сформировавшиеся у организма во время его развития и определенные генотипом.
Гены — это сегменты дезоксирибонуклеиновой кислоты (ДНК), состоящие из белков или полипептидов, в которых зашифрован код того или иного признака. Они содержатся в хромосомах — внутриклеточных структурах всех органов и тканей живого организма. Цепочки генов в хромосомах могут насчитывать тысячи фрагментов. Каждый вид имеет свой набор хромосом, т. е. определенное их количество. Родительские хромосомы, похожие по строению и размеру, называются гомологичными, а их участки, кодирующие одни и те же белки, — аллельными генами.
Клетки, участвующие в оплодотворении (мужские и женские), называются гаметами, им присуща гаплоидность — половинный набор хромосом. Если в процессе участвуют клетки с разным генотипом, то он называется скрещиванием. В зависимости от способа оплодотворения бывает естественным и искусственным. Особи, полученные от скрещивания, называются гибридами. Зигота — оплодотворенная клетка, в которой два гаплоидных набора родительских хромосом сливаются в один диплоидный.
Во время деления зиготы участки аллелей генов могут взаимозаменяться, в результате у потомства происходит замещение по генотипу или по фенотипу. Полученные генотипы разделяются на гомозиготные и гетерозиготные организмы. У первых гомологичные хромосомы содержат аллели генов с одинаковым состоянием одного и того же признака (только доминантным или только рецессивным), по которому могут образоваться гаметы только одного сорта. При скрещивании таких особей по этой особенности расщепления не происходит.
Гетерозиготные организмы имеют в гомологичных хромосомах аллели, кодирующие разные состояния признака (и доминантные, и рецессивные). Они образуют гаметы двух сортов, а при их скрещивании происходит расщепление примет. Доминантный аллель гена позволяет развиться признаку и в гомо-, и в гетерозиготном состоянии, рецессивный — только в гомозиготном.
Гибридологический анализ
Данный метод генетики основан на скрещивании особей одного вида с альтернативными (контрастными) признаками (АП) и отслеживании их дальнейшего развития у следующих поколений потомства. При этом должны соблюдаться условия:
При изучении моно- и дигибридного скрещивания в биологии используются следующие общепринятые символы:
К альтернативным относятся такие признаки, которые радикально отличаются у какого-либо вида. Например, контрастные признаки у гороха: по цвету цветков — красные и белые; по виду кожуры — гладкие и сморщенные; по высоте растения — высокие и низкие.
Законы Менделя
Для определения закономерностей, по которым в потомстве происходит распределение наследственных АП, Г. Мендель анализировал результаты, полученные при скрещивании разных сортов гороха и их гибридов с 1856 по 1864 год.
Растение, выбранное им, было удобно по ряду качеств:
Успеху ученого способствовало то, что он отслеживал наследование только определенного числа признаков. В зависимости от этого скрещивание бывает:
Моногибриным является такое скрещивание, при котором наследственные закономерности выявляются только по одной паре АП, развитие которых определяется единственной парой аллельных генов.
Моногибридный метод
При моногибридном скрещивании все особи F1 наследуют одинаковые особенности, полученные только от одного из родителей. У гороха это оказались красные цветы, белые полностью отсутствовали. Проявляющийся признак Г. Мендель назвал преобладающим или доминантным, а отсутствующий — отступающим или рецессивным.
Выявленные закономерности нашли отражение в гипотезе о чистоте гамет, предполагавшей наличие какого-то материального фактора, определяющего доминантный характер того или иного признака. Позднее гипотеза подтвердилась, предполагаемый фактор был обнаружен и получил название «ген». У каждой особи два гена, унаследованных один от отца, другой от матери. Их функция — определение признака, который разовьется у новой особи.
При формировании гаметы в нее попадает только один ген. Половина гамет несет доминантную особенность, другая половина — рецессивную. При этом любое сочетание гамет дает гибридам одинаковые генотипические и фенотипические черты. Таким образом происходит наследование у гибридов первого поколения. Эту генетическую закономерность назвали законом доминирования или законом единообразия гибридов первого поколения (первый закон Менделя).
Неполное доминирование
Если в поколении F1 появляются гетерозиготные особи с фенотипом, полностью отличным от фенотипа гомозиготных форм родителей, то говорят, что наследование носит промежуточный характер. При этом выраженность АП оказывается с более или менее выраженным уклоном в сторону кого-то из родителей. Это происходит в том случае, если рецессивные аллели неактивны, а доминантные не имеют достаточной степени активности, чтобы уровень проявления АП доминантной гомозиготы родителя был достаточным для наследования потомством этой черты в полной мере.
Например, если при скрещивании львиного зева с пурпурными и белыми цветками все потомство оказалось с розовыми, это говорит о неполном доминировании аллели, несущей информацию о пурпурном окрашивании. В последующих поколениях происходит фенотипическое расщепление — на два розовых цветка приходит один белый и один пурпурный, т. е. устанавливается соотношение 1:2:1.
Процесс самоопыления
Дальнейшие исследования ученый проводил самоопылением гибридов F1. Было установлено, что в F2 появляются особи как с доминантными признаками (красные цветы, желтые семена), так и с рецессивными (белые цветы, зеленые семена) в соотношении 3:1. Это явление называется законом расщепления гибридов второго поколения или вторым законом Менделя.
При самоопылении происходит равновероятное сочетание гамет во время оплодотворения. В F2 может появиться как нерасщепляющееся гомозиготное потомство с одинаковыми аллельными генами (АА или аа) в гомологичных хромосомах, так и гетерозиготные особи с расщеплением и разными аллелями (Аа), образующими два вида гамет.
Дигибридное скрещивание
Организмы отличаются многими фенотипическим чертам, что обусловлено разными генами. Для понимания, как наследуются несколько АП одновременно, нужно провести независимые исследования каждой пары, не уделяя внимания другим. Затем все выявленные особенности сопоставляются и систематизируются. Именно такую задачу выполнил Мендель. Чтобы результат получился достоверным, он скрещивал родительские формы гороха, отличающиеся только двумя парами АП (двумя парами аллелей).
Такой способ комбинирования называется дигибридным, а гибриды, имеющие отличия по двум аллелям, — дигетерозиготными. Если наблюдается отличие по трем и более аллельным генам, то организм называется три- или полигетерозиготным. В результате двойного комбинирования могут получаться разные фенотипы в зависимости от того, как располагаются гены, определяющие АП — в одной или в разных хромосомах.
Для определения наследования признаков при дигибридном скрещивании Мендель выбирал гомозиготные растения с такими АП:
Исследования проводились только для одной пары признаков, но на протяжении многих лет ученый сочетал АП друг с другом в разных вариантах. Выяснилось, что в F1 появляются особи только с одним АП. Это подтверждало, что правило о единообразии у F1 выполняется, а полученная окраска, высота или гладкость являются доминантными чертами.
Самоопыление гибридов F1 дало в F2 особей с четырьмя фенотипами. Два из них совпадали с родительским, а у двух других появились особенности, сочетающие материнские и отцовские черты. Например, при изучении наследования окраски и гладкости семян получились растения четырех фенотипов: желтые гладкие, желтые морщинистые, зеленые гладкие, зеленые морщинистые в соотношении 9:3:3:1.
Особенности расщепления
Результаты показали, что при дигибридном скрещивании у наследования признаков независимая сущность. Можно отметить, что при этом способе скрещивания в F2 наряду с известными появляются новые классовые разновидности. При количественном анализе полученных гибридов выяснилось, что дигибридное расщепление совмещает в себе два моногибридных, происходящих независимо. Первое обусловило разнообразие фенотипов. При рассмотрении второго выясняется, что ход каждого моногибридного скрещивания не нарушается, а соотношения получаются 3:1 у желтых и зеленых, и 3:1 — у гладких и морщинистых.
Такой характер распределения АП при наследовании определяется законом независимого комбинирования или третьим законом Менделя при дигибридном скрещивании расщепление по каждой особенности проходит независимо от других признаков. Этот закон является основой комбинативной изменчивости, который справедлив для всех живых организмов, но только в отношении генов, расположенных в разных гомологичных хромосомах, что было доказано прямым цитологическим методом.
Для наглядности вариантов комбинирования доминантных и рецессивных генов английским генетиком Р. Пеннетом была предложена графическая схема дигибридного скрещивания в виде решетки. Она отображает сочетаемость разных аллелей родительских генов. Решетка Пеннета для опытов Г. Менделя представляет собой таблицу, в которой собраны все возможные варианты генотипов и фенотипов F2.
По одной стороне записываются женские гаметы, по другой — мужские. В ячейках таблицы получаются все возможные варианты, которые можно получить при скрещивании по двум парам контрастных признаков. Законы, выведенные Г. Менделем, легли в основу современных методов селекции растений и животных.
При этом результаты процесса будут зависеть от очередности поколения, давая чистую доминанту для первого из них и расщепление для второго, и более подробное ознакомление с его основными законами и понятиями поможет найти ответы на важные вопросы.
Основные термины и понятия
В основе любой схемы моногибридного скрещивания лежит генетика — наука, изучающая все ключевые закономерности наследственности и изменчивости организмов вследствие селекции. И главный вопрос, который изучается при исследовании моногибридного скрещивания, — моногенное наследование. Под ним подразумевается наследование, проявление которого обусловлено одним конкретным геном с его различными формами-аллелями.
Их краткая характеристика такова:
Помимо моногибридного, существует еще несколько типов скрещивания, обладающих особыми свойствами и закономерностями.
Что касается рассматриваемого типа, осуществляемого только по одной паре признаков, то его можно условно классифицировать по двум схемам моногибридного скрещивания. Одна из них подразумевает полное доминирование, в результате которого может проявляться только преобладающий признак.
Если же доминирование является неполным, то признак принимает среднее или, как его еще принято называть, промежуточное значение между доминантой и рецессивным геном.
Научные опыты и примеры
Первым ученым, которому удалось выявить и доказать существование определенных закономерностей наследования признаков при моногибридном скрещивании, стал австрийский монах-августинец Грегор Иоганн Мендель, изучавший биологию и ботанику. Произошло это важное для науки открытие в XIX веке в результате проведения опыта, в процессе которого ученый провел скрещивание гороха, имеющего пару отличительных признаков.
Первый закон Менделя
Для того чтобы определить наличие закономерности при скрещивании разных живых организмов и выполнить составление на основе полученных результатов таблицы вероятности формирования наследственных признаков, Менделю пришлось анализировать 22 сорта гороха, имеющих отличительные характеристики по ключевым показателям.
Речь шла о следующих различиях, задействованных в опыте родительских бобовых культур:
Главное различие между первым и вторым законом Менделя заключается в характеристиках, свойственных I и II поколениям, полученным в результате селекции родителей с противоположными генами.
Так, согласно наблюдениям ученого при скрещивании двух разных особей, первое гибридное поколение получается одинаковым, походя только на одного из родителей (I закон Менделя), тогда как уже в его потомстве будет наблюдаться расщепление по фенотипу в соотношении 3 к 1.
При более подробном рассмотрении опытов выясняется, что перед процедурой скрещивания Мендель использовал только чистые родительские линии культур, получая интересующее его поколение посредством проведения их опыления. Еще одним ключевым моментом, который выделял ученый, заключался в том, при проведении опыта с растениями, обладающими альтернативными генами, один из них в итоге не будет передан потомку в первом поколении.
По теории Менделя, именно те признаки, которые передаются следующему поколению, будут называться доминантными, тогда как другие гены, так и не получившие своего проявления, — рецессивными, то есть подавляемыми. Примечательно, что эти результаты впоследствии были объяснены таким биологическим процессом, как мейоз, но ученый не мог этого знать, поскольку это открытие еще не было сделано.
Если же рассматривать это понятие сейчас, то объясняется оно особым взаимоотношением генов, ведь в природе нет равнозначных аллелей, и все они доминируют или рецессируют по сравнению друг с другом в условиях анализа конкретных признаков. В итоге получается, что в случае проникновения вместе с гаметой в зиготу двух разных аллелей (гетерозигота), проявится та из них, которая будет преобладать.
Что же касается гена рецессии, то он может проявиться только тогда, когда конкурирующая с ним аллель также окажется подавляемой (гомозигота), причем с равной степенью вероятности. Стоит отметить, что в первой закономерности, выведенной австрийским ученым, применялись исключительно идентичные по генотипу и фенотипу растительные организмы, оттого ей и было присвоено название закона единообразия I поколения.
Вторая закономерность
Выведя первую закономерность, ученый решил не останавливаться на достигнутом, решив вырастить полученное в результате селекции гибридное семя и задействовать его в проведении дальнейших опытов. Каково же было его удивление, когда при последующем скрещивании выращенных гибридов с чистопородными видами, стало возникать расщепление между поколениями второго порядка, причем по строго определенной схеме.
То есть при скрещивании выведенного доминанта первого поколения с рецессивным геном в их потомстве присутствовали представители и первого, и второго гена в соотношении ¾ (из четырех три горошины доминирующие желтые и одна подавляемая зеленая), что было невозможно при первом опыте с чистопородными особями. Естественно, речь идет о статистической погрешности, высчитанной Менделем от общего количества исследуемых горошин второго поколения.
Проще говоря, необязательно родить четверых детей, чтобы самый младший из них унаследовал рецессивный голубой цвет глаз отца или бабушки, а первые три — доминирующий карий по материнской линии. Так, результат расщепления может возникать сразу, проявляясь у первого ребенка, другое дело, что вероятность такого проявления будет составлять ¼ против ¾, свойственной доминанте.
Задачи и их решение
Изучив первый и второй закон моногибридного скрещивания Менделя, стоит закрепить полученные знания на практике. И существует множество простых задач по моногибридному скрещиванию с решением, ознакомление с которыми поможет не только не совершать распространенных ошибок, но и научиться неплохо разбираться в рассматриваемом вопросе в целом.
Цвет глаз
Одна из популярных тем — цвет глаз, который может унаследовать ребенок от своих родителей. К примеру, в семье Никитиных дочь родилась с карими глазами, а сын с голубыми, тогда как их мать голубоглазая, а ее родители кареглазые. Вопрос заключается в том, по какому принципу идет унаследование этого признака и каким генотипом обладают члены семьи.
Чтобы ответить на него, необходимо в первую очередь проанализировать генотип голубоглазой матери и ее кареглазых родителей, ведь так как коричневый цвет преобладает над голубым, то такая наследственность становится возможной только в случае гетерозиготности дедушки и бабушки (Аа).
Что же касается детей, то кареглазая дочь также является гетерозиготной, тогда как ее брат, получивший по наследству голубые глаза, как и сама мать, напротив, относятся к гомозиготным с сочетанием aa по рецессивному признаку (карие глаза подавляют голубые).
Гребень птицы
Знание основных понятий моногибридного скрещивания зачастую применяется на практике и в народном хозяйстве, позволяя фермерам выводить определенную породу птицы, скота и другой живности. Хорошим тому примером может стать задача о петухе и двух курицах с гребнем розовидного типа, при скрещивании которых удалось вывести 14 цыплят с аналогичным признаком от одной несушки и 9 от другой, притом что 7 из них унаследовали родительский ген, а оставшиеся 2 — нет, получив листовидную пластинку на головке.
Вопрос к заданию, как и в предыдущем случае, заключается в определении генотипов всех трех участников скрещивания с учетом того фактора, что сам признак относится к аутосомным моногенным генам. Уже из одного только условия становится очевидно, что первая курица была гомозиготной, дав чистопородный выводок. Однако этого нельзя сказать о второй несушке, которая дала небольшой процент цыплят с отличающимся признаком, являясь гетерозиготной.
А так как количество цыплят с другим геном оказалось гораздо меньшим по сравнению с основным, становится очевидно, что он является рецессивным, уступая доминанте, коей и является аллель розовидного гребня.
Анализ по двум признакам
Естественно, биологические задачи не ограничиваются проведением анализа по одному только гену. К примеру, может потребоваться вычислить наследственность по цвету и по превосходству одной руки над другой. При этом условие задачи может иметь следующее содержание:
Из представленных 16 вариантов только 9 подходят под заданные условия. Это означает, что вероятность появления в семье младенца, который будет иметь идентичные родительским признаки, соответствует 9/16.