Что такое геостационарная орбита
Орбита захоронения: почему над Землей летают тысячи никому не нужных спутников
На разных орбитах Земли, по предварительным данным, находятся более 750 тыс. объектов, которые можно назвать космическим мусором. В основном это различные гайки, болты и частицы фюзеляжа, движущиеся со скоростью более 28 тыс. км/час. Однако среди них есть и огромные старые спутники с ядерными элементами, разгонные блоки и шаттлы: их, как правило, отправляют на специальную орбиту захоронения. «Хайтек» разобрался, что находится на орбите захоронения и почему человечество не может утилизировать эти космические объекты.
Читайте «Хайтек» в
Существует несколько официальных орбит захоронения. «Классическая» располагается на высоте 35 986 км от уровня моря — ровно на 200 км выше геостационарной орбиты, где находятся тысячи околоземных спутников. На эту орбиту отправляются все отработанные орбитальные аппараты для уменьшения вероятности их столкновения с другими — уже рабочими — объектами.
В конце срока эксплуатации каждого геостационарного спутника он отправляется на такую орбиту, при этом для каждого она рассчитывается отдельно по специальной формуле.
Геостационарная орбита — круговая орбита, которая расположена ровно над экватором Земли. Искусственные спутники, которые находятся на ней, абсолютно не движутся по отношению к спутниковым антеннам, расположенным на Земле. Поэтому для взаимодействия спутника с антенной необходимо просто один раз запустить его, после чего ученые будут всегда знать, где находится космический аппарат даже без специальных настроек для антенн. Как правило, на геостационарную орбиту запускают коммуникационные и телетрансляционные спутники.
Высота 35 786 км над уровнем моря выбрана из-за того, что она обеспечивает спутникам период обращения, равный периоду вращения Земли относительно всех звезд — 23 часа 56 минут 4,091 секунды.
Еще одна крупнейшая мусорная орбита для крупных спутников находится на высоте от 600 до 1 000 км. На эту орбиту отправляются военные разведывательные спутники с ядерной энергетической установкой. На этих высотах находятся десятки активных зон реакторов у таких спутников. Считается, что части спутников смогут находиться на низкой мусорной орбите более 2 тыс. лет, после чего гравитация Земли постепенно притянет активные реакторы.
Такая опасная «Легенда»
Впервые низкую мусорную орбиту для отработанных ядерных установок использовал Советский Союз в программе «Легенда» в 1978 году. За десять лет СССР запустил более 30 спутников-разведчиков с ядерными силовыми установками малой мощности типа БЭС-5 «Бук» и «Топаз» для обеспечения этой системы. С ее помощью советские, а потом и российские военные, поскольку программа существовала до 2006 года, могли отслеживать и прогнозировать тактическую обстановку в Мировом океане, передавать в режиме реального времени информацию о кораблях и подводных лодках, как отечественных, так и иностранных.
В январе 1978 года — практически сразу же после запуска — военный советский спутник «Космос-954» с ядерным реактором вышел из строя и стал полностью неуправляемым. Даже попытки вывести его на орбиту захоронения оказались неэффективными, поэтому спутник с действующим ядерным реактором вошел в атмосферу Земли, разрушился там на тысячи частей и рухнул на северную часть Канады и США. Тогда Советскому Союзу пришлось выплатить несколько миллионов долларов компенсации, поскольку местные жители нашли более 65 кг стержней от топливных элементов реактора.
После этого случилось еще несколько подобных инцидентов, когда ядерные реакторы от советской программы «Легенда» падали на Землю либо частично сгорали в атмосфере Земли, оставляя за собой длительный шлейф из урана-235.
В итоге в 1988 году после очередной аварии был принят всемирный запрет на применение спутников с ядерной энергетической установкой на низких околоземных орбитах, вследствие чего строительство и запуски спутников УС-А были прекращены. Кроме того, СССР уже было невыгодно поддерживать программу, поскольку один спутник мог работать всего 120 дней, а его запуск и разработка обходились в миллионы долларов.
Сейчас у человечества пока нет технологий, которые бы позволили уничтожить оставшиеся ядерные реакторы от «Легенды» без нанесения вреда окружающей среде. При этом время распада урана-235, на которых работают эти спутники, составляет около 700 млн лет.
Опасность орбит захоронения мусора
Разговоры о возможной экологической катастрофе в околоземном космическом пространстве возникли практически сразу после запуска первых спутников Земли еще в 50-х годах прошлого века. Но впервые в официальном дискурсе тема появилась только в докладе ООН «Воздействие космической деятельности на окружающую среду» в конце 1993 года.
В докладе отмечалось, что эта проблема — глобальная, а не национальная, поскольку касается абсолютно каждой страны. Кроме того, космический мусор — как тот, что находится на орбитах захоронения, так и обычный, может негативно сказаться на освоении человечеством космоса.
Сейчас только 10% всех объектов космического мусора фиксируются наземными станциями, а траектория их движения известна. Ученые считают, что в будущем, если человечество продолжит с такой скоростью выводить объекты в космос, в том числе на геостационарную орбиту, рано или поздно произойдет каскадный эффект. При нем один космический объект столкнется с другим, после чего он достаточно сильно меняет орбиту и сталкивается с другими искусственными объектами, которые находится на своих орбитах. Гипотетически это может буквально за несколько дней оставить человечество полностью без связи.
Сейчас на орбитах существует не менее 20 тыс. объектов крупного космического мусора, столкновение с которым приведет к полному разрушению спутника и любого космического аппарата.
Еще одной опасностью эксперты считают развитие проектов по покрытию интернетом всей Земли. Например, проект Starlink Илона Маска подразумевает запуск 12 тыс. новых спутников для раздачи интернета по всей Земле. Сейчас компания уже запустила 60 тестовых устройств. Запущенные аппараты будут работать на высоте 550 км. Каждый спутник оснащен собственным двигателем, который позволит им корректировать орбиту в случае необходимости.
Даже если в течение десяти лет хотя бы 30% этих спутников придут в негодность, на орбите появятся еще 4 тыс. объектов космического мусора.
Важно, что на околоземных орбитах также постоянно происходит так называемый эффект Кесслера, когда одни кусочки мусора постоянно сталкиваются с другими, что приводит к абсолютно неконтролируемому делению этих объектов. Согласно математическим расчетам, столкновение двух космических частей мусора приводит в среднем к появлению еще шести-семи небольших объектов.
Кроме того, некоторые крупные космические объекты, у которых полностью истекает срок эксплуатации, взрываются с надеждой, что в дальнейшем эти небольшие обломки притянутся атмосферой Земли и сгорят в ней. Однако существуют десятки примеров, когда куски мусора оставались на орбитах, как в случае столкновения двух искусственных спутников «Космос-2251» и Iridium 339 в феврале 2009 года или тестирования Индией своих противоспутниковых пушек в марте 2019 года.
На сегодняшний день пока не существует действующих технологий для борьбы с космическим мусором, кроме отправки спутников на орбиты захоронений, где бы они фиксировано вращались вокруг Земли.
Множество стартапов и национальных космических агентств разрабатывают собственные системы для уничтожения космического мусора. Инженеры из Университета Карлоса III в Мадриде недавно предложили новый способ деорбитальной работы спутников. Ученые предлагают оборудовать их лентами, которые будут отражать солнечный свет и позволят вырабатывать электричество для питания резервных двигателей. Это, в свою очередь, позволит бороться с космическим мусором и увеличить срок их эксплуатации. Хотя бы в качестве устройств для отталкивания мусора от орбиты Земли.
В феврале 2019 года британский спутник RemoveDEBRIS впервые в истории с помощью гарпуна и сети поймал искусственный космический мусор на низкой околоземной орбите.
Сейчас вся космическая сфера ждет не только появления технологий, позволяющих уничтожать космический мусор либо отталкивать его от Земли, но и законодательной базы для этого. Группа ученых из четырех крупных американских университетов занимается созданием единого документа, регламентирующего правила освоения космоса. В документе будут установлены правила, которыми должны руководствоваться частные и государственный компании для работы за пределами Земли. При этом ученые не будут вводить новые правила, а просто соберут в одном месте все существующие, которые были введены в разных странах, а также укажут на противоречия в этих документах.
Всё, что вам нужно знать о Геостационарной спутниковой орбите
В данном материале мы рассмотрим базовые принципы и понятия геостационарной орбиты (GEO).
Весьма популярной спутниковой орбитой является геостационарная орбита. Она используется для размещения спутников многих типов, включая спутники, ведущие прямое телерадиовещание, спутники, обеспечивающие связь, а также релейные системы.
Преимуществом геостационарной орбиты является то, что спутник, находящийся на ней, постоянно располагается в одной и той же позиции, что позволяет направлять на него фиксированную антенну наземной станции.
Читайте также: Высокие эллиптические спутниковые орбиты (HEO)
Этот фактор является чрезвычайно важным для организации таких систем, как прямое телерадиовещание через спутник, где использование постоянно движущейся антенны, следующей за спутником, было бы крайне непрактичным.
Необходимо внимательно относиться к использованию сокращений, принятых для обозначения геостационарной орбиты. Мы можем встретить аббревиатуры GEO и GSO, и обе они используются для обозначения как геостационарной, так и геосинхронной орбиты.
Развитие геостационарных орбит
Идеи относительно возможности использования геостационарной орбиты для размещения на ней спутников выдвигались на протяжении многих лет. В качестве возможного автора положений, лежащих в основе данной идеи, часто называют российского теоретика и научного фантаста Константина Циолковского. Однако впервые о возможности размещения космических аппаратов на высоте 35 900 километров над Землёй с периодом обращения в 24 часа, дающим им возможность «парить» в одной точке над экватором, написали Герман Оберт и Герман Поточник.
Следующий важный шаг на пути к рождению Геостационарной орбиты был сделан в октябре 1945 года, когда научный фантаст Артур Чарльз Кларк написал серьёзную статью для Wireless World – ведущего британского издания в области радио и электроники. Статья была озаглавлена как «Внеземная релейная связь: смогут ли космические ракеты обеспечить охват сигналом всего мира?».
Кларк попытался экстраполировать то, что уже было возможно благодаря использованию существующих на тот момент ракетных технологий, разработанных немецкими учёными, на то, что могло бы стать возможным в будущем. Он высказал мысль о возможности покрытия сигналом всей Земли при использовании всего трёх геостационарных спутников.
В своей статье Кларк указал необходимые характеристики орбиты, а также уровни мощности передатчиков, возможности выработки электроэнергии при помощи солнечных батарей и даже рассчитал возможное влияние солнечных затмений.
Статья Кларка значительно опережала время. Лишь в 1963 году агентство NASA смогло запустить в космос спутники, способные проверить данную теорию на практике. Первым полноценным спутником, способным начать практические испытания теории Кларка, стал спутник Syncom 2, запущенный 26 июля 1963 года (по правде говоря, спутник Syncom 2 не смог этого сделать, поскольку его не удалось доставить на необходимую геостационарную орбиту).
Основы теории Геостационарной орбиты
С увеличением высоты орбиты, на которой находится спутник, увеличивается и период его обращения по данной орбите. На высоте 35 790 километров над Землёй спутнику требуется 24 часа для полного витка вокруг планеты. Такая орбита известна как геосинхронная, так как она синхронизирована с периодом обращения Земли вокруг своей оси.
Частным случаем геосинхронной орбиты является геостационарная орбита. При использовании такой орбиты направление движения спутника вокруг Земли соответствует направлению вращения самой планеты, а период обращения космического аппарата примерно равен 24 часам. Это значит, что спутник вращается с той же угловой скоростью, что и Земля, в том же направлении и, стало быть, постоянно находится в одной и той же точке относительно поверхности планеты.
Читайте также: Низкая околоземная орбита (LEO)
Чтобы гарантировать то, что спутник обращается вокруг Земли с той же скоростью, с которой обращается вокруг своей оси сама планета, необходимо чётко уяснить – каков же на самом деле период обращения Земли вокруг своей оси. Большинство хронометражных устройств измеряет обращение Земли относительно текущего положения Солнца, а вращение Земли вокруг своей оси в сочетании с её вращением вокруг Солнца даёт продолжительность дня. Однако это совсем не тот период обращения Земли, который интересует нас с точки зрения расчета геостационарной орбиты – время, необходимое для одного полного обращения. Этот отрезок времени известен как «звёздные сутки», продолжительность которых составляет 23 часа 56 минут и 4 секунды.
Законы геометрии говорят нам о том, что единственный вариант для того, чтобы, делая один виток в сутки, спутник всегда оставался над одной точкой земной поверхности, состоит в его обращении в том же направлении, в котором вращается сама Земля. Кроме того, спутник не должен смещаться на своей орбите ни на север, ни на юг. Всего этого можно достичь лишь в том случае, если орбита спутника проходит над экватором.
На диаграмме показаны различные типы орбит. Поскольку плоскость любой орбиты должна проходить через центр Земли, на рисунке представлены два возможных варианта. При этом даже если обращение космических аппаратов на обеих орбитах будет осуществляться со скоростями, равными скорости вращения Земли вокруг своей оси, орбита, обозначенная как «геосинхронная», будет полдня смещаться на север относительно экватора, а оставшиеся полдня – на юг и, стало быть, не будет стационарной. Для того, чтобы спутник стал стационарным, он должен располагаться над экватором.
Дрейф на геостационарной орбите
Даже если спутник расположен на геостационарной орбите, на него воздействуют некоторые силы, способные медленно изменять его позицию в течение времени.
Такие факторы, как эллиптическая форма Земли, притяжение Солнца и Луны, а также ряд других увеличивают потенциальную возможность отклонения спутника от своей орбиты. В частности, не совсем круглая форма Земли в районе экватора приводит к тому, что спутник притягивает к двум устойчивым точкам равновесия – одна из них находится над Индийским океаном, а вторая – приблизительно на противоположной части Земли. В результате имеет место явление, получившее название либрации с востока на запад, или движение вперёд и назад.
Для того чтобы преодолеть последствия такого движения, на борту спутника имеется определённый запас топлива, который позволяет ему проводить «поддерживающие манёвры», возвращающие аппарат чётко в необходимую орбитальную позицию. Необходимый промежуток между временем проведения таких «поддерживающих манёвров» определяется в соответствии с так называемым допуском отклонения спутника, который устанавливается, главным образом, с учётом ширины луча антенны наземной станции. Это значит, что при нормальной работе спутника не требуется никакой подстройки антенны.
Читайте также: Типы спутниковых орбит и их определения
Очень часто период активной эксплуатации спутника рассчитывается из количества топлива на его борту, необходимого для поддержания расположения спутника в одной орбитальной позиции. Чаще всего этот период составляет несколько лет. После чего спутник начинает дрейфовать в направлении одной из точек равновесия, после чего возможно его снижение и последующее вхождение в атмосферу Земли. Поэтому желательно использовать последнее имеющееся у него на борту топливо для того, чтобы поднять спутник на более высокую орбиту, дабы избежать его возможного негативного воздействия на работу других космических аппаратов.
Покрытие с геостационарной орбиты
Совершенно очевидным является тот факт, что один геостационарный спутник не способен обеспечить полного покрытия сигналом поверхности Земли. Однако, каждый геостационарный спутник «видит» примерно 42% земной поверхности, при этом охват падает по направлению к спутнику, который не может «видеть» поверхность. Это происходит вокруг экватора и также в направлении полярных регионов.
Расположив на геостационарной орбите группировку из трёх равноудалённых друг от друга спутников, можно обеспечить покрытие сигналом всей поверхности Земли от экватора и вплоть до 81° северной и южной широты.
Отсутствие покрытия в полярных регионах не является проблемой для большинства пользователей, однако при необходимости обеспечения стабильного покрытия полярных широт требуется использования спутников, вращающихся на других орбитах.
Геостационарная орбита
и длина пути сигнала
Одной из проблем, возникающих при использовании спутников, находящихся на геостационарной орбите, является задержка сигнала, вызванная расстоянием, которое он вынужден проделывать.
Минимальное расстояние до любого из геостационарных спутников составляет 35790 км. И это лишь в том случае, если пользователь находится непосредственно под спутником, и сигнал попадает к нему по кратчайшему пути. В действительности же пользователь вряд ли будет находиться точно в данной точке, а стало быть расстояние, которое вынужден будет проделать сигнал, в реальности гораздо больше.
Исходя из длины кратчайшего расстояния от наземной станции до спутника, расчётное минимальное время движения сигнала в одну сторону – то есть, с Земли на спутник или со спутника на Землю – составляет примерно 120 миллисекунд. А это значит, что время полного маршрута сигнала – с Земли на спутник и со спутника назад на Землю – составляет примерно четверть секунды.
Таким образом, для того, чтобы получить ответ в процессе диалога, проходящего через спутник, требуется полсекунды, поскольку сигнал должен пройти через спутник дважды: один раз – в движении в направлении удалённого слушателя, а второй раз назад – с ответом. Эта задержка усложняет телефонные разговоры, для проведения которых используется спутниковый канал связи. Репортёру, получившему вопрос из студии вещания, требуется некоторое время на то, чтобы ответить. Наличие такого эффекта задержки стало причиной того, что многие линии дальней связи используют кабельные каналы вместо спутниковых, ибо задержки в кабеле намного меньшие.
Преимущества и недостатки спутников,
расположенных на геостационарной орбите
Несмотря на то, что геостационарная орбита широко используется на практике для развёртывания различных технологий, она всё же подходит не для всех ситуаций. Размышляя над возможным использованием данной орбиты следует учесть целый ряд её преимуществ и недостатков:
Однако, несмотря на все имеющиеся недостатки геостационарной орбиты, спутники, расположенные на ней, широко используются во всём мире благодаря главному их преимуществу, которое способно перевесить все недостатки: геостационарный спутник всегда находится в одной орбитальной позиции относительно той или иной точки на Земле.
Геостационарные спутники Земли как основа развития спутниковой связи
Что такое геостационарная орбита
Точка стояния
Позиции спутников на геостационарной орбите
Функционирование геостационарной орбиты возможно только на окружности, расположенной над экватором. Если бы спутники были видны невооруженным глазом, то линия их видимости совпадала бы с характерным для данной местности «поясом Кларка». Данный термин характеризует космическое пространство, расположенное на расстоянии около 36 000 км, где показатели орбит приближены к геостационарной.
Для перемещения спутников с орбиты, имеющей низкую высоту, на геостационарную, применяются ГПО — геопереходные эллиптические орбиты с низко расположенным перигеем и апогеем, находящимся на высоте, приближенной к геостационарной орбите.
После окончания периода активного существования сателлит переводится на орбиту захоронения, которая располагается на 200−300 км выше ГСО.
Параметры геостационарной орбиты
ГСО характеризуется следующими основными параметрами:
Высотой геостационарной орбиты называется удаление от Земного центра, где угловая скорость сателлита, сравнимая с угловой скоростью вращения Земли, создает орбитальную скорость, идентичную первой космической скорости, применяемой для поддержания круговой орбиты на данной высоте.
Для расчета главного параметра ГСО — радиуса — необходимо, чтобы спутниковая скорость обеспечивала период вращения 24 часа вокруг Земли.
Расчетный радиус орбиты имеет значение 42 164 км. Если вычесть радиус экватора Земли, 6 378 км, получается высота ГСО — 35 786 км.
2. Орбитальная скорость
Скорость перемещения по ГСО равна угловой скорости, умноженной на радиус орбиты, и составляет 3.07 км/сек, что в 2.5 раза меньше первой космической скорости (ПКС), равной 8 км/сек на околоземной орбите, имеющей радиус 6400 км. Уменьшения ПКС можно добиться, увеличив радиус орбиты более чем в 6 раз, получив значение 43 000 км.
Понятие геостационарных спутников
Виды геостационарных спутников
Спин-стабилизированные спутники
Спин-стабилизацией называется обеспечение устойчивого положения спутника с помощью вращения. Данный тип сателлитов имеет форму барабана с расположенными у внешней поверхности солнечными элементами, оснащен нескрученным антенным модулем на верхней стороне, а также имеет ями-направленную антенну, привязанную к определенным участкам Земной поверхности. С нижней стороны находится сопло апогейного двигателя.
Ось вращения проходит параллельно вектору вращения спутниковой орбиты и перпендикулярна текущему вектору скорости орбиты. При пересечении сателлитом тени Земли, солнечные элементы, расположенные один за другим, выравниваются вращением. В определенный момент времени одна половина элементов уходит в тень, а другая освещается под благоприятными углами.
Трехосные или спиновые стабилизированные спутники
Перечень геостационарных спутников
Перечень геостационарных спутников, определяется международной линией перемены дат — символической линией, проведенной по поверхности Земли, которая проходит от полюса к полюсу. С разных сторон линии перемены дат местное время отличается на сутки.
Список существующих сателлитов представлен в следующей таблице:
Советская орбитальная хитрость
История космонавтики, как и любой другой отрасли, хранит примеры остроумных решений, когда желаемая цель достигалась красивым и неожиданным способом. СССР/России не повезло с доступностью геостационарной орбиты. Но вместо того, чтобы достать до нее более тяжелыми ракетами или пытаться снизить массу полезной нагрузки, разработчиков осенила идея использования специальной орбиты. Об этой орбите и спутниках, которые ее используют до сих пор, наш сегодняшний рассказ.
Физика
Говоря о геостационарных и высокоэллиптических орбитах необходимо вспомнить такое понятие как наклонение орбиты. В данном случае, наклонение орбиты — это угол между плоскостью экватора Земли и плоскостью орбиты спутника:
Если мы стартуем с космодрома и начинаем разгоняться строго на восток, то получившаяся орбита будет иметь наклонение, равное широте космодрома. Если мы начинаем разгоняться, отклонившись к северу, то получившееся наклонение будет больше. Если мы, подумав, что это должно уменьшить наклонение, начнем разгоняться на юго-восток, получившаяся орбита будет иметь также большее наклонение, чем наша широта. Почему? Посмотрите на картинку: при разгоне строго на восток самой северной точкой проекции орбиты (синяя линия) будет наш космодром. А если мы будем разгоняться на юго-восток, то самая северная точка проекции получившейся орбиты будет севернее нашего космодрома, и наклонение орбиты окажется больше широты космодрома:
Вывод: при запуске космического аппарата начальное наклонение его орбиты не может быть меньше широты космодрома.
Для того, чтобы выйти на геостационарную орбиту (наклонение 0°) нужно обнулить наклонение, но на это требуется дополнительное топливо (физика этого процесса — отдельный интересный разговор). Космодром Байконур имеет широту 45°, а, учитывая, что отработанные ракетные ступени не должны падать в Китай, ракеты запускаются на северо-восток на трассы с наклонением 65° и 51,6°. В результате, четырехступенчатая ракета-носитель 8К78, которая запускала к Луне полторы тонны, а к Марсу — почти тонну, на геостационарную орбиту смогла бы вывести всего
100 кг. Уместить в такую массу полноценный геостационарный спутник связи в начале 60-х годов не могла ни одна страна. Надо было придумывать что-то другое. На помощь пришла орбитальная механика. Чем больше высота спутника, тем медленнее относительно Земли он движется. На высоте 36 000 км над экватором спутник будет постоянно висеть над одной точкой Земли (на этой идее и работает геостационарная орбита). А если мы выведем спутник на орбиту, которая представляет собой вытянутый эллипс, то его скорость будет очень сильно меняться. В перицентре (самая близкая к Земле точка орбиты) он будет лететь очень быстро, а вот в районе апоцентра (самая удаленная от Земли точка орбиты) будет на несколько часов практически зависать на месте. Если отметить точками путь спутника с интервалом один час, получится следующая картина:
Кроме почти неподвижности, на большой высоте спутник будет видеть обширный участок нашей планеты и сможет обеспечивать связь между удаленными пунктами. Большое наклонение орбиты будет означать, что даже в Арктике с приемом сигнала не будет проблем. А если выбрать наклонение близкое к 63,4°, то гравитационные помехи от Земли будут минимальными, и на орбите можно будет находиться практически без коррекции. Так родилась орбита «Молния» с параметрами:
Воплощение в железе
На высокоэллиптическую орбиту ракета 8К78 могла вывести целых 1600 кг. Для разработчиков это было счастье — можно было сделать мощный спутник с большими возможностями и параллельно «утереть нос» американцам, спутники связи которых не превышали по массе 300 кг. Получившийся аппарат впечатлял своими характеристиками:
В состав оборудования спутника входило три ретранслятора мощностью 40 Вт и два резервных мощностью 20 Вт, а электричество для них вырабатывали солнечные батареи суммарной мощностью в полтора киловатта. Для приема и передачи данных использовались две управляемые параболические антенны диаметром 1,4 метра. Аппаратом управляло транзисторное программно-временное устройство, предок современных компьютеров, а ориентацию поддерживал уникальный трехстепенной силовой гироскоп. Система управления реализовывала сложные алгоритмы полетных режимов с трехосной ориентацией. На рабочем участке аппарат поддерживал постоянную ориентацию солнечными батареями на Солнце, сопровождая Землю управляемыми основными антеннами. Завершив рабочий участок, аппарат поворачивался по данным инфракрасной вертикали до тех пор, пока не занимал положение, параллельное вектору орбитальной скорости в перицентре. В районе перицентра, по хранящимся в памяти командам, он мог совершать коррекцию орбиты.
Вид сверху, хорошо виден конус двигательной установки и шар-баллоны сжатого азота для системы ориентации
Вид снизу, видны солнечные батареи, блок датчиков на торце и антенны
Предполагалось, что срок активного существования аппарата превысит один год, цифра, по тем временам, фантастическая. Аппарат получил название «Молния», и, забегая вперед, скажем, что он оказался настолько эпохальным, что и орбиту и ракету-носитель 8К78 назвали в его честь.
Эксплуатация
Ракета-носитель «Молния-М», потомок РН «Молния»
В то время начало эксплуатации не могло быть легким. 4 июня 1964 года первая «Молния» не долетела до орбиты из-за аварии ракеты-носителя. 22 августа 1964 года второй аппарат был успешно выведен на близкую к расчетной орбиту. Но вот беда — обе основные антенны, которые должны были дублировать друг друга, не раскрылись. Расследование установило, что во время испытаний на одной из антенн было обнаружено повреждение изоляции кабеля, и штанги антенн, по решению конструктора, обмотали дополнительно хлорвиниловой лентой. В космосе в тени солнечных батарей лента замерзла, и пружины, которые и так с трудом раскрывали антенны, не смогли пересилить смерзшийся пластик. Вторая «Молния» была потеряна. На будущее проблему было легко исправить, пружины на антенных штангах заменили на электродвигатели, которые гарантированно полностью раскрывали антенны. Наконец, 23 апреля 1965 года третья «Молния» была успешно запущена и оказалась полностью работоспособной. Был нервный момент, когда главное реле не захотело включаться с первого раза, но, после нескольких томительных минут непрерывной отправки с Земли команд на включение ретранслятора, он все-таки включился. Между Москвой и Владивостоком установилась связь через первый советский спутник-ретранслятор:
Первые телевизионные кадры, переданные при помощи «Молнии»
Большая мощность сигнала означала, что для его приема не нужны большие антенны, по стране стали строить сравнительно небольшие павильоны «Орбита»:
Сетью станций спутникового вещания была быстро покрыта северная и восточная часть СССР:
А спутниковое телевидение из технического чуда быстро стало обыденностью, председатель крайкома на Дальнем Востоке сразу заявил, что в случае проблем с трансляцией передач будет жаловаться лично Брежневу. К 1984 году количество станций «Орбита» превысило сотню, сделав советское спутниковое ТВ доступным даже в небольших городах. Станции ретранслировали московский сигнал на местный телецентр, который, уже, в свою очередь, обслуживал значительный район.
Первые спутники «Молния» не смогли перешагнуть рубеж срока существования в один год. Из-за того, что спутник каждые сутки четыре раза пролетал через радиационные пояса, солнечные батареи стали быстро деградировать. Первая «Молния» смогла прожить с апреля по ноябрь. В конструкцию спутника добавили резервные солнечные панели, которые раскрывались при необходимости после деградации основных. Уже «Молния» №7 смогла активно существовать с октября 1966 по январь 1968. Для советских спутников это был очень большой срок.
«Молнии» разрабатывали в ОКБ С.П. Королева, а уже в 1965 году производство стали передавать в Красноярск «филиалу №2» под руководством Михаила Решетнева. С этого началась славная история предприятия, известного сейчас как АО ИСС им. академика Решетнева. Аппараты «Молния» активно развивались. Параболическая антенна была заменена на четырехспиральную:
Интересные кадры испытаний и рассказ о четырехспиральной антенне:
Дополнительные солнечные панели
Аппараты перешли на сантиметровый диапазон волн, научились вещать не на всю страну, а на отдельные временные зоны, постоянно возрастало количество каналов связи и их пропускная способность. Со временем «Молнии» перестали использоваться для гражданского телевещания и стали, в основном, спутниками военной связи. Последний аппарат семейства «Молния», «Молния-3К» был запущен в 2001 году.
Сегодня и завтра
Гражданское ТВ-вещание в СССР/России со временем перешло на геостационарную орбиту. Появилась более грузоподъемная ракета-носитель «Протон», которая начала выводить спутники на геостационар с 1975 года. Павильон «Орбиты» требовал двенадцатиметровую подвижную антенну и проигрывал спутниковым «тарелкам», которые сейчас встречаются повсеместно. Спутники «Молния» закончили свою жизнь. Но орбита «Молния» не умерла. Она востребована для наших высоких широт, и сейчас по ней летают спутники связи «Меридиан», с 2012 года идет разработка метеорологической системы «Арктика». Уникальные свойства орбиты используются и за океаном — американский военный спутник NROL-35, предположительно относящийся к спутникам системы предупреждения о ракетном нападении и запущенный в декабре 2014 года, был выведен именно на орбиту «Молния». Кто знает, может быть, молния в руках у девушки на эмблеме миссии — намек на название орбиты?
Вариант орбиты «Молния», орбита «Тундра» с апоцентром 46-52 тысячи километров и периодом обращения в одни сутки, используется тремя спутниками радиосвязи Sirius XM и японской навигационной системой QZSS.
В будущем орбита «Молния» не будет забыта. Геостационарная орбита перегружена, как вариант, спутники могут начать уходить на высокоэллиптические орбиты. И даже за пределами Земли изобретению советских баллистиков может найтись применение: в проекте пилотируемой миссии на Марс HERRO для управления в реальном времени роботами на поверхности предлагается использовать аналог орбиты «Молния»:
Дополнительные материалы
По тегу «незаметные сложности» — ракеты, двигатели, стартовые сооружения, датчики, системы ориентации и прочее.
КДПВ — картина А.Леонова «Молния — космический ретранслятор»