Что такое геометрия лобачевского
Геометрия Лобачевского
Из Википедии — свободной энциклопедии
Геометрия Лобачевского (или гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных аксиомах, что и обычная евклидова геометрия, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием.
Евклидова аксиома о параллельных (точнее, одно из эквивалентных ей утверждений, при наличии других аксиом) может быть сформулирована следующим образом:
На плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.
В геометрии Лобачевского вместо неё принимается следующая аксиома:
Через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.
Аксиома Лобачевского является точным отрицанием аксиомы Евклида (при выполнении всех остальных аксиом), так как случай, когда через точку, не лежащую на данной прямой, не проходят ни одной прямой, лежащей с данной прямой в одной плоскости и не пересекающей её, исключается в силу остальных аксиом (аксиомы абсолютной геометрии). Так, например, сферическая геометрия и геометрия Римана, в которых любые две прямые пересекаются, и следовательно, не выполнена ни аксиома о параллельных Евклида, ни аксиома Лобачевского, не совместимы с абсолютной геометрией.
Геометрия Лобачевского имеет обширные применения как в математике, так и в физике. Историческое и философское её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии, математики и науки в целом.
Николай Иванович Лобачевский и его вклад в науку
Геометрия Евклида
Проникновение геометрии в Древнюю Грецию превратило ее из эмпирической и установленной на глаз науки в цепь связанных между собой постулатов и аксиом, каждые из которых заняли определенное место в создаваемой строгой науке. Именно в Древней Греции геометрия приобрела тот современный вид, который мы помним из средней школы: каждое предположение логически вытекает из предыдущего, вместе с которым обусловливает последующее.
Нужно отметить, что, попав на благодатную почву, геометрия как наука стала бурно развиваться и даже превращаться в своеобразный культ. Каждая теорема, которую логически выводили на основании других, была маленькой победой человеческого ума, так как знания, полученные опытным путем, подтверждались строгими правилами. Ученые Древней Греции старались свести к необходимому минимуму те факты, которые устанавливают опытным путем, то есть созерцанием и наблюдением. Превратить геометрию в науку, каждое положение которой выводится по правилам логики, — вот какой была цель научной школы Платона. Согласно тенденциям этой школы любая научная дисциплина, в том числе и геометрия, должна выводиться или развиваться из как можно меньшего числа исходных положений, которые составляют костяк данной науки. Кроме этого, Платон и его последователи старались освободить изложение геометрии от наглядных выводов.
Центром интеллектуальной жизни греческого мира в конце 4 века до нашей эры стала Александрия. Именно здесь развернулась деятельность Евклида. Как раз его «Начала» буквально вытеснили все руководства по геометрии, существовавшие ранее. Все прежние сочинения были полностью забыты, более того — потеряны, как только появилось это руководство, содержащее основы геометрии. Именно эта работа затем властвовал на протяжении более двух тысяч лет везде, где преподавали геометрию.
Фундаментальный и основополагающий труд Евклида состоит из тринадцати книг и предлагает значительный объем знаний — от учения о параллельных линиях до теоремы Пифагора.
Любой современный человек, ознакомившись с трудами «Начала», с удивлением обнаружит, что многое, что содержится там, он когда-то узнал в школе. Немало формулировок отдельных теорем, построений и доказательств сохранили свое значение и сегодня и приводятся в современных книгах практически в оригинальном виде.
Книги Евклида построены по одному принципу — вначале располагаются аксиомы и постулаты, которые служат для определения основ геометрии. До сих пор непонятна разница между аксиомами и постулатами, выдвинутыми в «Началах», однако последующие переиздания содержат пять главных постулатов.
Даже неспециалист увидит, что последний постулат отличен от других. Если предыдущие четыре достаточно понятны, наглядны и их практически невозможно оспорить, то пятый сразу же вызывает некое «отторжение».
Такая же ситуация возникла и после выхода «Начал». Уже через несколько столетий после издания этого труда безошибочность пятого постулата стали ставить под сомнение, поскольку он резко отличался от остальных более сложной формулировкой, а также отсутствием очевидности. Многие ученые заявляли, что пятый постулат — это теорема, которую сам Евклид так и не смог доказать. Более того, интересен факт, что именно пятый постулат условно делит геометрию на две части: абсолютную геометрию, где использовались доказательства на основании четырех постулатов, и собственно евклидову геометрию, полностью основанную на пятом постулате (каждое доказательство в этой части геометрии опирается на него).
В итоге было решено доказать ее вместо Евклида, опираясь на остальные постулаты и аксиомы, приведенные в «Началах». Решение этой задачи пытались найти более сотни ученых-геометров. Однако во всех случаях предложенные доказательства содержали либо грубые очевидные ошибки, либо глубоко скрытые неточности. Со временем пятый постулат заменили более простой формулировкой, однако сама по себе проблема оставалась нерешенной. В школьных учебниках пятый постулат Евклида обычно описывается как более «очевидная» аксиома: «На плоскости через точку, лежащую вне прямой, проходит только одна параллель к этой прямой».
«Очевидность» этой аксиомы означает, что ее можно доказать, если принять пятый постулат. Или если заменить этой аксиомой классическую формулировку пятого постулата, то он также может быть доказан. Однако доказать верность без использования таких «уловок» не удавалось. В итоге еще в начале XIX века проблема параллелей оставалась нерешенной.
Геометрия Лобачевского
Разрешить проблему параллелей удалось русскому математику Николаю Ивановичу Лобачевскому. Однако доказательство было выполнено косвенно. Он просто допустил, что пятый постулат неверен, и на основании этого вывел новую (так называемую не евклидову) геометрию. Тот факт, что новая геометрия непротиворечива, удалось доказать лишь спустя тридцать лет. Отсюда следует, что проблема параллелей снимается сама собой.
Лобачевский вместо пятого постулата сформулировал новую аксиому параллельных прямых, которая по смыслу оказалась прямо противоположна пятому постулату Евклида:
Через точку вне прямой можно провести не одну прямую, не встречающуюся с данной прямой, а по крайней мере две.
На основании этой теоремы и остальных четырех постулатов абсолютной геометрии Лобачевский и получил свою, которая была так же логически безупречна, как и геометрия Евклида.
Аксиома Лобачевского на первый взгляд может показаться абсурдной или как минимум странной. Кажется, что он подменяет очевидное неочевидным, противоречит установившимся геометрическим представлениям. Но если этот вопрос рассмотреть глубже, то неочевидность именно пятого постулата Евклида будет налицо.
Так, если внимательно прочитать первые четыре постулата Евклида, можно заметить, что они относятся к фигурам ограниченного размера, а пятый — нет. Он оперирует неограниченной, бесконечной прямой. В итоге если мы захотим проверить правильность данного постулата на практике, то не сможем это сделать, поскольку такой эксперимент осуществить невозможно. Можно представить следующую ситуацию. Например, если предположить, что угол MCL очень маленький, а затем продлить отрезки CL и AB, то, даже обладая необширной фантазией, можно представить, что при таких условиях эти прямые не пересекутся даже на расстоянии, выходящем за пределы нашей планеты! В то же время если взять какую-либо ограниченную часть пространства, например круг, то каким бы большим он ни был, мы можем провести множество прямых, проходящих через точку С и не пересекающих прямую AB.
Поэтому нет никаких оснований считать утверждение Лобачевского неправильным.
Отличие двух противоположных по своей сути предположений заключается только в том, что евклидов постулат более понятен человеческому сознанию.
Он соответствует нашему обыденному восприятию, в конце концов мы к нему привыкли… В этом случае можно вспомнить, что у древних было распространено представление, будто Земля плоская, а факт, что она круглая (как предполагала революционная гелиоцентрическая теория Коперника), полностью отрицался. Однако в отличие от теории Коперника, в которой говорилось об ином расположении и движении тел в пространстве, понимание идеи Лобачевского требует более абстрактного мышления.
Неудивительно, что свою геометрию Лобачевский назвал воображаемой, а Евклидову — употребительной, что подчеркивало ее более естественные основы. Более того, в поздних трудах для своей новой теории ученый применял термин «пангеометрия» (всеобщая геометрия). Такое название подчеркивало, что геометрия Евклида — всего лишь частный (предельный) случай геометрии Лобачевского.
Доказательства непротиворечивости геометрии Лобачевского
Не секрет, что геометрия Лобачевского не получила признания при его жизни из-за необычности. Более того, он был осмеян и к концу своих дней морально опустошен, так как считал, что теории суждено умереть вместе с создателем. Все осложнялось тем, что ученому не удалось найти объективных доказательств непротиворечивости своей теории. Для признания правоты Лобачевского потребовалось не только время, но и дальнейшее развитие математической науки, нахождение связей между различными ее разделами.
Теория Лобачевского прошла проверку временем и не оказалась пустышкой, которая, как думали его современники, в будущем сама уничтожит себя.
Фактический материал, который позволил устранить сомнения в непротиворечивости новой геометрии, был получен при разработке теории поверхностей. Если проследить за изменением свойств фигур, расположенных на изгибаемых поверхностях, то можно сделать некоторые неожиданные выводы. Сама теория поверхностей разрабатывалась немецким математиком Карлом Фридрихом Гауссом, а затем развивалась российским ученым Фердинандом Миндингом. Одним из главных понятий в теории поверхностей были так называемые геодезические линии, которые можно сравнить с обыкновенными прямыми на плоскости. И геодезические линии, и прямые выполняют одну и ту же функцию — определяют кратчайшее расстояние между точками. Разница лишь в том, что в искривленном пространстве геодезические линии представляют собой, грубо говоря, искривленные линии. Например, на сфере геодезическими линиями являются большие окружности, опоясывающие ее.
В результате Миндинг вывел формулы для геодезических треугольников (в них стороны образованы геодезическими линиями), которые совпали с планиметрией Лобачевского. Удивительно, но факт — доказательства непротиворечивости новой геометрии практически лежали на поверхности и существовали уже при жизни ученого. Однако ни один из математиков не заметил этого, так как они не были знакомы с работами друг друга. Потребовалось время, и только через 28 лет после открытия Миндинга (по прошествии 12 лет после смерти Лобачевского) итальянский геометр Эудженио Бельтрами сопоставил эти два исследования, провел строгие расчеты и вывел модель геометрии Лобачевского — три псевдосферические поверхности.
Таким образом и была убедительно доказана непротиворечивость, иными словами — верность геометрии Лобачевского. Она выражает свойства определенных криволинейных фигур в пространстве Евклида (таком, которое описывается аксиомами геометрии Евклида), а значит, не может быть противоречивой. Если бы она была таковой, то тогда геометрия Евклида противоречила бы сама себе, что не является истиной. Со временем было показано, что данная модель лишь частично доказывает непротиворечивость неевклидовой геометрии. Однако начало было положено.
Как только была доказана непротиворечивость геометрии Лобачевского, идеи на ее основе стали оказывать влияние на дальнейшее развитие математической науки.
Интересно, что вскоре была опубликована переписка Гаусса, в которой фигурировало его настоящее мнение о Лобачевском, скрываемое в годы непризнания неевклидовой геометрии. Ведь симпатия к ученому и его открытию тогда грозила всеобщим осмеянием.
Полная реабилитация Лобачевского дала импульс к появлению новых моделей неевклидовой геометрии, полностью подтверждающих непротиворечивость геометрии ученого.
Сферы применения неевклидовой геометрии Лобачевского
Практическое применение неевклидовой геометрии нашли только в конце XIX века. В конце труда «О началах геометрии» Лобачевский высказал мысль: «Оставалось бы исследовать, какого рода перемена произойдет от введения воображаемой геометрии в механику…» Непризнание его достижений оставляло мало надежды на то, что пожелания ученого сбудутся. Однако время расставило все точки над «i», его теория не только была признана верной, но и получила практическое применение.
Лобачевский показал, что в пределах Солнечной системы для расчетов достаточно применять простую евклидову геометрию. Свою геометрию он использовал для математического анализа, а точнее — для вычисления определенных интегралов. Будучи уверенным в верности собственной теории и в том, что классическая геометрия — частный (а вернее — предельный) случай неевклидовой геометрии, ученый был убежден, что его система имеет гораздо больший потенциал: она не может не описывать более глобальные закономерности природы.
После того как непротиворечивость геометрии Лобачевского была доказана, на нее обратили внимание самые выдающиеся математики того времени. В 1881-м на ее основе была создана новая дисциплина — теория автоморфных функций, построенная великим французским математиком и физиком Анри Пуанкаре, которая имеет огромное значение для фундаментальной науки.
Важное практическое приложение геометрии Лобачевского нашел русский физик Александр Фридман. Используя в 1922 году идеи теории относительности и решая уравнение Эйнштейна, он пришел к выводу, что Вселенная расширяется с течением времени.
Вскоре эта теория блестяще подтвердилась на практике, но уже, как это часто бывает, после смерти Фридмана. Наблюдения американского астронома Эдвина Хаббла подтвердили это. В 1929 году он, не знакомый с теорией Фридмана, обнаружил, что удаленные туманности как бы «разбегаются» в разные стороны. При этом скорость этого «разбегания» оказалась пропорциональна расстоянию между ними.
Следующим важным применением геометрии Лобачевского является то, что она оказалась естественной частью теории относительности.
Законы сложения относительных скоростей, полученные Альбертом Эйнштейном, напрямую связаны с геометрией Лобачевского.
А в 1950-х годах советский физик Н. А. Черников стал успешно использовать геометрию Лобачевского для исследования столкновений элементарных частиц в ускорителе, а также при изучении других вопросов физики элементарных частиц и ядерных реакций.
Все идеи, которые были выдвинуты на основании геометрии Лобачевского, описать практически невозможно. Многие еще только находятся на пути развития, и до их практического применения остается еще много времени. Однако сама фундаментальность открытия дает полную уверенность в том, что неевклидова геометрия будет приводить к новым изобретениям, так как потенциал ее безграничен.
Краткая биография
Николай Иванович Лобачевский родился 20 ноября (1 декабря) 1792 года в Нижнем Новгороде в семье чиновника. После смерти отца в 1800 году семья пере ехала в Казань, где Николай Лобачевский провел всю свою жизнь. Там он окончил гимназию, поступил в только что основанный Казанский императорский университет. За бойкий характер и неповиновение Лобачевского хотели исключить, однако он был на хорошем счету у многих преподавателей, что и спасло его. После окончания университета в 1811-м получил степень магистра по физике и математике с отличием, остался работать при университете и в 1816-м дослужился до профессора. Спустя четыре года после ревизорской проверки был назначен на должность декана физико-математического факультета, однако на продолжении семи лет не проявлял никакой творческой активности из-за тяжелой обстановки в университете. В течение этого времени написал две книги «Геометрия» и «Алгебра», которые так и не увидели свет.
23 (11) февраля 1826 года Лобачевский сделал первый доклад о новой «воображаемой геометрии». В 1827-м назначен ректором университета и с голо вой погрузился в хозяйственные дела — реорганизацию штата, строительство механических мастерских, лабораторий и обсерватории. В этот период Казанский императорский университет приобрел статус авторитетного и лучшего учебного заведения страны. При нем издавался научный журнал «Ученые записки Казанского университета». Лобачевский сам читал ряд спецкурсов для студентов, писал наставления учителям математики и курировал преподавание в училищах и гимназиях. Благодаря его действиям многие сотрудники и студенты университета были спасены во время эпидемии холеры 1830 года, были избавлены от уничтожения астрономические инструменты, книги и здание университета во время большого пожара в Казани в 1842-м.
Геометрия Лобачевского
Геометрия Лобачевского (гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского.
Евклидова аксиома о параллельных (точнее, одно из эквивалентных ей утверждений) гласит:
Через точку, не лежащую на данной прямой, проходит не более одной прямой, лежащей с данной прямой в одной плоскости и не пересекающей её.
В геометрии Лобачевского, вместо неё принимается следующая аксиома:
Через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.
Содержание
История
Попытки доказательства пятого постулата
Отправным пунктом геометрии Лобачевского послужил V постулат Евклида — аксиома, эквивалентная аксиоме о параллельных. Он входил в список постулатов в «Началах» Евклида. Относительная сложность и неинтуитивность его формулировки вызывала ощущение его вторичности и порождала попытки вывести его как теорему из остальных постулатов Евклида.
Среди многих пытавшихся доказать пятый постулат были, в частности, следующие крупные учёные.
При этих попытках доказательства пятого постулата математики вводили (явно или неявно) некоторое новое утверждение, казавшееся им более очевидным.
Были предприняты попытки использовать доказательство от противного:
Наконец, стало возникать понимание о том, что возможно построение теории, основанной на противоположном постулате:
Создание неевклидовой геометрии
Лобачевский в работе «О началах геометрии» (1829), первой его печатной работе по неевклидовой геометрии, ясно заявил, что V постулат не может быть доказан на основе других посылок евклидовой геометрии, и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий.
Одновременно и независимо к аналогичным выводам пришёл Янош Бойяи, а Карл Фридрих Гаусс пришёл к таким выводам ещё раньше. Однако труды Бойяи не привлекли внимания, и он вскоре оставил эту тему, а Гаусс вообще воздерживался от публикаций, и о его взглядах можно судить лишь по нескольким письмам и дневниковым записям. Например, в письме 1846 года астроному Г. Х. Шумахеру Гаусс так отозвался о работе Лобачевского:
Это сочинение содержит в себе основания той геометрии, которая должна была бы иметь место и притом составляла бы строго последовательное целое, если бы евклидова геометрия не была бы истинной… Лобачевский называет ее «воображаемой геометрией»; Вы знаете, что уже 54 года (с 1792 г.) я разделяю те же взгляды с некоторым развитием их, о котором не хочу здесь упоминать; таким образом, я не нашёл для себя в сочинении Лобачевского ничего фактически нового. Но в развитии предмета автор следовал не по тому пути, по которому шёл я сам; оно выполнено Лобачевским мастерски в истинно геометрическом духе. Я считаю себя обязанным обратить Ваше внимание на это сочинение, которое, наверное, доставит Вам совершенно исключительное наслаждение. [3]
В итоге Лобачевский выступил как первый наиболее яркий и последовательный пропагандист новой геометрии. Хотя геометрия Лобачевского развивалась как умозрительная теория, и сам Лобачевский называл её «воображаемой геометрией», тем не менее именно он впервые открыто предложил её не как игру ума, а как возможную и полезную теорию пространственных отношений. Однако доказательство её непротиворечивости было дано позже, когда были указаны её интерпретации (модели).
Утверждение геометрии Лобачевского
Лобачевский умер в 1856 году. Спустя несколько лет была опубликована переписка Гаусса, в том числе несколько восторженных отзывов о геометрии Лобачевского, и это привлекло внимание к трудам Лобачевского. Появляются переводы их на французский и итальянский языки, комментарии видных геометров. Публикуется и труд Бойяи.
В 1868 году выходит статья Э. Бельтрами об интерпретациях геометрии Лобачевского. Бельтрами определил метрику плоскости Лобачевского и доказал, что она имеет всюду постоянную отрицательную кривизну. Такая поверхность тогда уже была известна — это псевдосфера Миндинга. Бельтрами сделал вывод, что локально плоскость Лобачевского изометрична участку псевдосферы (см. ниже). Окончательно непротиворечивость геометрии Лобачевского была доказана в 1871 году, после появления модели Клейна.
Вейерштрасс посвящает геометрии Лобачевского специальный семинар в Берлинском университете (1870). Казанское физико-математическое общество организует издание полного собрания сочинений Лобачевского, а в 1893 году столетие русского математика отмечается в международном масштабе.
Модели
Модели геометрии Лобачевского дали доказательство её непротиворечивости, точнее показали, что геометрия Лобачевского столь же непротиворечива, как геометрия Евклида.
Сам Лобачевский дал основы своей аналитической геометрии, и тем самым он уже фактически наметил такую модель. Он также заметил что орисфера в пространстве Лобачевского изометрична евклидовой плоскости, тем самым фактически предложил обратную модель. Тем не менее, само понятие о модели прояснилось в работах Клейна и других.
Псевдосфера
Итальянский математик Э. Бельтрами в 1868 году заметил, что геометрия на куске плоскости Лобачевского совпадает с геометрией на поверхностях постоянной отрицательной кривизны, простейший пример которых представляет псевдосфера. Если точкам и прямым на конечном куске плоскости Лобачевского сопоставлять точки и кратчайшие линии (геодезические) на псевдосфере и движению в плоскости Лобачевского сопоставлять перемещение фигуры по псевдосфере с изгибанием, то есть деформацией, сохраняющей длины, то всякой теореме геометрии Лобачевского будет отвечать факт, имеющий место на псевдосфере. При этом длины, углы, площади понимаются в смысле естественного измерения их на псевдосфере.
Однако здесь даётся только локальная интерпретация геометрии, то есть на ограниченном участке, а не на всей плоскости Лобачевского.
Модель Клейна
В 1871 году Клейн предложил первую полноценную модель плоскости Лобачевского.
Плоскостью служит внутренность круга, прямой — хорда круга без концов, а точкой — точка внутри круга. «Движением» назовём любое преобразование круга в самого себя, которое переводит хорды в хорды. Соответственно, равными называются фигуры внутри круга, переводящиеся одна в другую такими преобразованиями. Тогда оказывается, что любой геометрический факт, описанный на таком языке, представляет теорему или аксиому геометрии Лобачевского. Иными словами, всякое утверждение геометрии Лобачевского на плоскости есть не что иное, как утверждение евклидовой геометрии, относящееся к фигурам внутри круга, лишь пересказанное в указанных терминах. Евклидова аксиома о параллельных здесь явно не выполняется, так как через точку , не лежащую на данной хорде а (то есть «прямой»), проходит сколько угодно не пересекающих её хорд («прямых») (например,
,
).
В этой модели расстояние между точками и
на хорде
определяется через двойное отношение
Модель Пуанкаре
Позже Пуанкаре, в связи с задачами теории функций комплексного переменного дал другую модель. За плоскость Лобачевского принимается внутренность круга, прямыми считаются дуги окружностей, перпендикулярных окружности данного круга, и его диаметры, движениями — преобразования, получаемые комбинациями инверсий относительно окружностей, дуги которых служат прямыми.
Модель Пуанкаре замечательна тем, что в ней углы изображаются обычными углами.
Поверхность постоянной отрицательной кривизны
Другое аналитическое определение геометрии Лобачевского состоит в том, что геометрия Лобачевского определяется как геометрия риманова пространства постоянной отрицательной кривизны. Это определение было фактически дано ещё в 1854 году Риманом и включало модель геометрии Лобачевского как геометрии на поверхностях постоянной кривизны. Однако Риман не связал прямо своих построений с геометрией Лобачевского, а его доклад, в котором он о них сообщил, не был понят и был опубликован лишь после его смерти (в 1868 году).
Содержание геометрии Лобачевского
Лобачевский строил свою геометрию, отправляясь от основных геометрических понятий и своей аксиомы, и доказывал теоремы геометрическим методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, так как именно здесь начинается отличие геометрии Лобачевского от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельных, являются общими для обеих геометрий; они образуют так называемую абсолютную геометрию, к которой относятся, например, теоремы о равенстве треугольников. Вслед за теорией параллельных строились другие разделы, включая тригонометрию и начала аналитической и дифференциальной геометрии.
Приведём (в современных обозначениях) несколько фактов геометрии Лобачевского, отличающих её от геометрии Евклида и установленных самим Лобачевским.
Через точку P, не лежащую на данной прямой R (см. рисунок), проходит бесконечно много прямых, не пересекающих R и находящихся с ней в одной плоскости; среди них есть две крайние x, y, которые и называются параллельными прямой R в смысле Лобачевского. В моделях Клейна (Пуанкаре) они изображаются хордами (дугами окружностей), имеющими с хордой (дугой) R общий конец (который по определению модели исключается, так что эти прямые не имеют общих точек).
Угол между перпендикуляром PB из P на R и каждой из параллельных (называемый углом параллельности) по мере удаления точки P от прямой убывает от 90° до 0° (в модели Пуанкаре углы в обычном смысле совпадают с углами в смысле Лобачевского, и потому на ней этот факт можно видеть непосредственно). Параллель x с одной стороны (а y с противоположной) асимптотически приближается к а, а с другой — бесконечно от неё удаляется (в моделях расстояния определяются сложно, и потому этот факт непосредственно не виден).
Для точки, находящейся от заданной прямой на расстоянии PB = a (см. рисунок), Лобачевский дал формулу для угла параллельности П(a) [4] :
Здесь q — некоторая постоянная, связанная с кривизной пространства Лобачевского. Она может служить абсолютной единицей длины аналогично тому, как в сферической геометрии особое положение занимает радиус сферы.
Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.
В геометрии Лобачевского не существует подобных, но неравных треугольников; треугольники равны, если их углы равны.
Сумма углов всякого треугольника меньше и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность
, где
,
,
— углы треугольника, пропорциональна его площади:
Из формулы видно, что существует максимальная площадь треугольника, и это конечное число: .
Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой, или гиперциклом.
Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью, или орициклом.
Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность — предельная сфера, или орисфера; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.
Длина окружности не пропорциональна радиусу, а растёт быстрее. В частности, в геометрии Лобачевского число не может быть определено как отношение длины окружности к её диаметру.
Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от ; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от
, и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы геометрии Лобачевского переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле «предельный» случай геометрии Лобачевского.
Заполнение плоскости и пространства правильными политопами
Плоскость Лобачевского может быть замощена не только правильными треугольниками, квадратами и шестиугольниками, но и любыми другими правильными многоугольниками. При этом в одной вершине паркета должно сходиться не менее 7 треугольников, 5 квадратов, 4 пяти- и шестиугольников и 3 многоугольников с числом сторон более 6. Каждое замощение (в одной вершине сходится M N-угольников) требует строго определённого размера единичного N-угольника, в частности, его площадь должна равняться:
В отличие от обычного пространства, которое можно заполнить правильными многогранниками только одним способом (по 8 кубов в вершине), трёхмерное пространство Лобачевского можно заполнить правильными многогранниками четырьмя способами:
Кроме этого, существует 11 способов заполнить пространство Лобачевского правильными мозаичными орисферами.