Что такое геометрическое место
Геометрическое место точек
Геометрическое место точек (ГМТ) — это фигура, состоящая из всех точек плоскости, удовлетворяющих определённому условию.
Чтобы выяснить, что собой представляет некоторая фигура F — геометрическое место точек, удовлетворяющих заданному условию P, нужно доказать:
1) если определённая точка принадлежит фигуре F, то она удовлетворяет заданному условию P;
2) если определённая точка удовлетворяет заданному условию P, то она принадлежит фигуре F.
(то есть требуется доказать прямую теорему — свойство P точек, принадлежащих фигуре F, и обратную теорему — признак фигуры F: если точка удовлетворяет условию P, то она принадлежит F).
Геометрическое место точек, равноудалённых от данной точки — окружность.
Это следует непосредственно из определения окружности.
Некоторые теоремы о ГМТ
1) Геометрическим местом точек, равноудалённых от двух данных точек, является серединный перпендикуляр к отрезку, соединяющему эти точки.
2) Геометрическим местом точек, равноудалённых от сторон неразвёрнутого угла, является биссектриса этого угла.
3) Геометрическим местом точек, удалённых от данной прямой на расстояние h, состоит из двух прямых, параллельных данной прямой и отстоящих от неё на h.
4) Геометрическим местом точек, равноудалённых от двух параллельных прямых, является прямая, параллельная этим прямым и проходящая через середину их общего перпендикуляра.
Понятие ГМТ часто используют при решении задач на построение.
Что такое геометрическое место
Древнеегипетскую и вавилонскую культуру в области математики продолжали греки. Они не только усвоили весь опыт их геометрии, но и пошли гораздо дальше. Ученые древней Греции сумели привести в систему накопленные геометрические знания и, таким образом, заложить начала геометрии как дедуктивной науки.
Греческие купцы познакомились с восточной математикой, прокладывая торговые пути. Но люди Востока почти не занимались теорией, и греки быстро это обнаружили. Они задавались вопросами: почему в равнобедренном треугольнике два угла при основании равны; почему площадь треугольника равна половине площади прямоугольника при одинаковых основаниях и высотах?
К сожалению, не сохранилось первоисточников, описывающих ранний период развития греческой математики. Только благодаря восстановленным текстам четвертого столетия до нашей эры и трудам арабских ученых, которые были богаты переводами сочинений авторов античной Греции, мы располагаем изданиями Евклида, Архимеда, Аполлония и других великий людей. Но в этих произведениях уже представлена вполне развитая математическая наука.
Математика древней Греции прошла длительный и сложный путь развития, начиная с VI столетия до н.э. и по VI век. Историки науки выделяют три периода ее развития в соответствии с характером знаний:
Геометрическое место точек (ГМТ).
Определения.
Геометрическое место – термин, применявшийся в старой литературе по геометрии и до сих пор применяющийся в учебной литературе, для обозначения множества точек, удовлетворяющих некоторому условию, как правило, геометрического характера. Например: геометрическое место точек, равноудаленных от двух данных точек A и B – это серединный перпендикуляр к отрезку AB. Иногда говорят и о геометрическом месте прямых и других фигур.
Название связано с представлением о линии как о «месте», на котором располагаются точки.
Примеры.
Пример 1.
Срединный перпендикуляр любого отрезка есть геометрическое место точек (т.е. множество всех точек), равноудалённых от концов этого отрезка. Пусть PO перпендикулярно AB и AO = OB :
Таким образом, каждая точка срединного перпендикуляра отрезка обладает следующим свойством: она равноудалена от концов отрезка.
Пример 2.
Биссектриса угла есть геометрическое место точек, равноудалённых от его сторон.
Пример 3.
Окружность есть геометрическое место точек (т.е. множество всех точек), равноудалённых от её центра ( на рис. показана одна из этих точек – А ).
Теоретическая часть.
Касательная. Предположим, секущая PQ ( рис.2 ) проходит через точки K и M окружности. Предположим также, что точка M движется вдоль окружности, приближаясь к точке K. Тогда секущая PQ будет менять своё положение, вращаясь вокруг точки K. По мере приближения точки M к точке K секущая PQ будет стремиться к некоторому предельному положению АВ. Прямая AB называется касательной к окружности в точке K. Точка K называется точкой касания. Касательная и окружность имеют только одну общую точку – точку касания.
Сегмент – это часть круга, ограниченная дугой ACB и соответствующей хордой AB ( рис.4 ). Длина перпендикуляра CD, проведенного из середины хорды AB до пересечения с дугой ACB, называется высотой сегмента.
рис. 4
Сектор – это часть круга, ограниченная дугой AmB и двумя радиусами OA и OB, проведенными к концам этой дуги ( рис.5 ).
Центральный угол – угол, образованный двумя радиусами ( ∠AOB, рис.5 ). Вписанный угол – угол, образованный двумя хордами AB и AC, проведенными из их одной общей точки ( ∠BAC, рис.4 ). Описанный угол – угол, образованный двумя касательными AB и AC, проведенными из одной общей точки ( ∠BAC, рис.3 ).
Соотношения между элементами круга.
Вписанный угол ( ∠ABC, рис.7 ) равен половине центрального угла, опирающегося на ту же дугу AmC ( ∠AOC, рис.7 ). Поэтому, все вписанные углы ( рис.7 ), опирающиеся на одну и ту же дугу ( AmC, рис.7 ), равны. А так как центральный угол содержит то же количество градусов, что и его дуга ( AmC, рис.7 ), то любой вписанный угол измеряется половиной дуги, на которую он опирается ( в нашем случае AmC ).
Все вписанные углы, опирающиеся на полукруг (∠APB, ∠AQB, …, рис.8 ), прямые.
Угол (∠AOD, рис.10), образованный двумя секущими ( AO и OD ), измеряется полуразностью дуг, заключённых между его сторонами: ( AnD – BmC ) / 2.
Угол (∠DCB, рис.11), образованный касательной и хордой ( AB и CD ), измеряется половиной дуги, заключённой внутри него: CmD / 2.
Произведения отрезков хорд ( AB и CD, рис.13 или рис.14), на которые они делятся точкой пересечения, равны: AO · BO = CO · DO.
Квадрат касательной равен произведению секущей на её внешнюю часть ( рис.12): OA 2 = OB · OD. Это свойство можно рассматривать как частный случай рис.14.
Интересный факт:
Поздравляем с Пи-раздником вас.
Фанаты будут соревноваться, вспоминая знаки числа «Пи». И постараются превзойти рекорд 24-летнего китайского студента Лю Чао, который назвал по памяти без ошибок 68890 знаков. На это у него ушло 24 часа и 4 минуты.
Отмечать праздник придумал американский физик Ларри Шо (Larry Shaw).
На вопрос, сколько знаков в числе «Пи» после запятой, точного ответа нет. Скорее всего, их бесконечное число. А главная особенность в том, что последовательность этих знаков не повторяется. Сегодня их известно 12411 триллионов. Обследовано 500 миллиардов. И повторений не найдено.
Список использованных источников:
Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме, где на международном уровне собирается образовательный совет свежей мысли и действия. Создав блог, Вы не только повысите свой статус, как компетентного преподавателя, а и сделаете весомый вклад в развитие школы будущего. Гильдия Лидеров Образования открывает двери для специалистов высшего ранга и приглашает к сотрудничеству в направлении создания лучших в мире школ.
Метод геометрических мест точек
Одним из методов решения задач на построение является метод геометрических мест. Понятие геометрического места является одним из важнейших в геометрии. Термин «геометрическое место точек» был введен еще древнегреческим ученым и философом Аристотелем (384-222 гг. до новой эры), который представлял себе линию, как некоторое «место», где могут быть размещены точки. Понятие линии как следа движущей точки или совокупность точек, возникли значительно позже.
Геометрическим местом точек (сокращенно ГМТ), обладающих определенным свойством, называется множество всех точек, которые обладают этим свойством.
При решении задач этим методом надо знать основные геометрические места точек на плоскости:
1. ГМТ, равноудаленных от двух данных точек.
2. ГМТ, находящихся на данном расстоянии oт данной точки.
3. ГМТ, удаленных на расстояние d oт данной прямой.
4. ГМТ, равноудаленных от двух данных параллельных прямых.
5. ГМТ, равноудаленных от сторон угла.
6. ГМТ, из которых данный отрезок виден под данным углом.
Некоторые геометрические места точек, часто используемые
Рассмотрим построение основных ГМТ, перечисленных в предыдущем пункте.
1. Геометрическим местом точек, равноудаленных от двух данных
точек, является серединный перпендикуляр к отрезку с концами в этих
2. Геометрическим местом точек, находящихся на данном расстоянии
oт данной точки, является окружность с центром в данной точке и радиусом, равном данному отрезку.
3. Геометрическим местом точек, удаленных на расстояние d oт
данной прямой в выбранной полуплоскости, является прямая
параллельная данной и находящаяся на расстоянии d от нее.
А выбираем произвольно.
4. Геометрическим местом точек, равноудаленных от двух данных
параллельных прямых, является прямая, находящаяся на одинаковом
расстоянии от данных прямых (ось симметрии этих прямых).
5. Геометрическим местом точек, равноудаленных от сторон угла,
является биссектриса этого угла. (См. построение 4).
6. Геометрическим местом точек, из которых данный отрезок виден под
данным углом, является дуга окружности, опирающейся на этот отрезок.
I случай:
— данный угол,
АВ – данный отрезок.
Действительно, ∟АМВ, как угол, вписанный в окружность, измеряется
половиной малой дуги АВ, так как центральный угол ∟АОВ = 2α, то
При этом заметим, что центр окружности О и вершина М угла лежат по
одну сторону от данного отрезка
II случай:
Полуокружность
(Любой угол, опирающийся на диаметр –
прямой).
III случай:
Что такое геометрическое место точек?
Что такое геометрическое место точек приведите примеры?
Чем может являться геометрическое место точек?
Окружность есть геометрическое место точек, равноудалённых от данной точки, называемой центром окружности. Парабола есть геометрическое место точек, равноудалённых от точки (называемой фокусом) и прямой (называемой директрисой).
Как найти геометрическое место точек?
Метод геометрических мест применяется чаще всего при построениях. Например, серединный перпендикуляр к отрезку можно определить как геометрическое место точек, равноудаленных от точек концов отрезков; окружность можно определить как геометрическое место точек, равноудаленных от данной точки.
Что является геометрическим местом точек равноудаленных от сторон ромба?
Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.
Что является геометрическим местом точек на плоскости удалённых от данной точки на расстояние не превышающее данное?
Вспомним определение окружности. Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, удаленных от данной точки на данное расстояние.
Что на плоскости является геометрическим местом точек удаленных на заданное расстояние от точки?
Круг — это геометрическое место точек, удаленных от заданной точки на заданное расстояние.
Что является геометрическим местом точек равноудаленных от двух параллельных прямых?
4) Геометрическим местом точек, равноудалённых от двух параллельных прямых, является прямая, параллельная этим прямым и проходящая через середину их общего перпендикуляра.
Что представляет из себя геометрическое место точек удаленных от данной точки на расстояние?
Геометрическим местом точек называется фигура, которая состоит из всех точек плоскости, обладающих определённым свойством. Например, окружность, можно определить как геометрическое место точек, равноудалённых от данной точки.
Где лежат точки равноудаленные от двух данных точек?
Геометрическим местом точек на плоскости называется фигура, которая состоит из всех точек плоскости, обладающих определенным свойством. Т. 1.29. Геометрическое место точек, равноудаленных от двух данных точек, есть серединный перпендикуляр к отрезку, соединяющему эти точки.
Что представляет собой геометрическое место точек расположенных на прямых проходящих через данную точку на прямой и перпендикулярных этой прямой?
Какой геометрической фигурой является множество точек пространства удаленных от данной точки на расстояние не большее данного?
Сферой назывется множество (геометрическое место) точек пространства, удаленных от данной точки на данное расстояние. Шаром называется множество (геометрическое место) точек пространства, удаленных от данной точки не более чем на данное расстояние.
Какая фигура является Гмт равноудаленных от концов отрезка?
1 Ответ Ответ: Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку. Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.
Презентация. Геометрия 7 класс. Геометрическое место точек
Описание презентации по отдельным слайдам:
Тема урока: Геометрическое место точек Геометрия – 7 класс Велиханова Марина Александровна, учитель математики КГУ «Банновская средняя школа», отдела образования акимата Федоровского района
Цели обучения: 7.1.1.31 знать определение геометрического места точек
1) На отрезке АВ найдите геометрическое место точки, равноудаленной от его концов. Геометрическое место точки, находящейся на отрезке и равноудаленной от его концов, есть середина отрезка. А В
2) Что представляет собой геометрическое место точек, равноудаленных от концов отрезка? А В
2) Что представляет собой геометрическое место точек, равноудаленных от концов отрезка? Геометрическое место точек, равноудаленных от концов отрезка – серединный перпендикуляр к отрезку А В
6 см О 4) Как выглядит ГМТ, расстояние от которых до заданной точки не больше 6 см? Кругом называют ГМТ, расстояние от которых до заданной точки не больше данного положительного числа.
Задачи на нахождение ГМТ Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки фигуры, указанной в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, принадлежат этой фигуре
Задача. Доказать, что биссектриса угла есть геометрическое место точек, равноудаленных от его сторон. 1) Построим CDBC, ADBA 2) BD-биссектриса CBD=ABDBCD=BAD AD = CD 3)KM = EM – доказывается аналогично А В С D M E K
ЗАПОМНИТЕ Самые известные примеры ГМТ. Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку. Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.
Задания для самостоятельной работы Желаю успеха!
Задание 1. Ответьте на вопросы. 1) Что, на ваш взгляд, является геометрическим местом точек, равноудаленным от данной точки? 2) Что будет являться геометрическим местом точек, равноудаленных от сторон угла? 3) Дайте определение геометрического места точек, равноудаленных от концов данного отрезка.
Задание 3. Можно ли круг радиуса 5 см считать геометрическим местом точек, удаленных от центра этого круга на расстояние: А) длиной 5 см; Б) не больше 5 см; В) не менее 5 см; Г) не больше 4 см? Нет Да Нет Нет
Задание 4. Отрезок AB равен 4 см. Можно ли считать срединный перпендикуляр этого отрезка геометрическим местом точек, которые: А) удалены от A и B на 2 см; Б) удалены от A и B на одинаковые расстояния; В)* являются вершинами равнобедренных треугольников с основанием AB? Нет Да Да
На уроке мы Познакомились с определением геометрического места точек Изучили самые известные пример ГМТ Рассмотрели задания на нахождение ГМТ
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-1088497
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
В России утвердили новый порядок формирования федерального перечня учебников
Время чтения: 1 минута
Дума приняла закон о бесплатном проживании одаренных детей в интернатах при вузах
Время чтения: 1 минута
Рособрнадзор объявил сроки и формат ЕГЭ
Время чтения: 1 минута
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
Минтруд представил проект программ переобучения безработных на 2022 год
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.