Что такое геоинформационные технологии своими словами
Понятие ГИС
Кадастровые инженеры, проектировщики, геологи и другие специалисты часто сталкиваются с необходимостью использования картографических данных в работе. Современные разработки позволяют получать со спутника изображения местности в мельчайших деталях, а специально созданное программное обеспечение – использовать эти сведения для аналитических целей и выводить их в нужном формате.
Поговорим о структурах, позволяющих обобщать и исследовать географический материал для осуществления максимально обоснованных и оптимальных в каждом конкретном случае мер.
Определение ГИC (GIS): как расшифровывается аббревиатура и что это такое
Геоинформационные системы (ГИС) – это прогрессивные компьютерные технологии, которые используются для создания карт и оценки фактически существующих объектов, а также происшествий, происходящих в мире. При этом визуализация и пространственные обзоры сочетаются со стандартными процессами с базами данных: введением сведений и получением статистических результатов.
Именно обозначенные характеристики позволяют широко применять эти программы для решения многих проблем:
Анализ физических явлений и событий на планете.
Осмысление и обозначение их основных причин.
Изучение вопроса перенаселения.
Планирование перспективных решений в градостроительстве.
Оценка результатов текущей предпринимательской деятельности.
Экологические проблемы – загрязнение местностей, уменьшение размеров лесных массивов.
Кроме глобальных целей, с помощью такого обеспечения можно регулировать частные ситуации, например:
Поиск оптимального пути между точками.
Выбор удобного расположения для фирмы.
Нахождение нужного здания по адресу.
Географический анализ не только что появившееся направление. Но рассматриваемые нами технологии наиболее соответствуют требованиям современности. Это максимально эффективный, результативный и удобный процесс, автоматизирующий процедуру сбора соответствующего материала и его обработки.
Сегодня геоинформационные системы – это прибыльная область деятельности, в которой заняты миллионы людей в разных странах. Только в России более 200 различных компаний разрабатывают и внедряют такие технологии во все сферы хозяйствования.
Структура ГИС
Имеет несколько составных элементов.
Аппаратура. Это разнообразные виды компьютерных платформ, от персональных машин до глобальных централизованных серверов.
Программное обеспечение. Здесь присутствуют все нужные инструменты для получения, обработки и визуализации материала. Отдельными составными частями можно обозначить компоненты для:
— введения и манипулирования сведениями;
— управления базой данных (СУБД);
— отображения пространственных запросов;
Информация. Сообщения о географическом местоположении объектов и относящиеся к ним табличные параметры пользователь может собирать самостоятельно или приобретать их у других лиц. Кроме того, ГИС соотносит полученные данные с теми, которые есть в других источниках.
Исполнители. Пользователями сервиса являются как его разработчики, так и разнопрофильные инженеры, которые применяют эти технологии в своей ежедневной трудовой деятельности.
Методы. Исходя из особенностей функционирования каждой конкретной организации, использующей систему, составляется план и правила ее применения. Это определяет результативность работы с ней.
Какие возможны манипуляции в программах
Утилиты выполняют несколько процессов:
Ввод. При этом материал преобразуется в требуемый цифровой формат. Во время оцифровки за основу берутся бумажные карты, которые обрабатываются на сканерных аппаратах. Это актуально на крупных объектах, для маленьких задач можно вводить сведения через дигитайзер.
Манипулирование. Технологии имеют разные способы видоизменения материалов и обозначения определенных частей, необходимых для выполнения непосредственной задачи. Например, они позволяют приводить масштаб с разных элементов к единому значению для дальнейшей общей обработки.
Управление. При значительном объеме информации и большом числе пользователей рационально использовать системы управления базами данных для сбора и структурирования материала. Чаще всего применяют реляционную модель, когда сведения хранятся в таблицах.
Запрос и анализ. Программа позволяет получить ответы на многие примитивные и более детальные вопросы, начиная от личности владельца участка и заканчивая преимущественными видами почв под смешанным объектом. Также есть возможность создавать шаблоны для нахождения по определенному виду запроса. Для анализа используются такие инструменты как оценка близости и исследование наложения.
Визуализация. Это искомый результат большинства пространственных действий. Карты оснащены сопроводительной документацией, объемными изображениями, табличными значениями и графиками, мультимедийными и фотографическими отчетами.
Виды ГИС
Классификация географических информационных систем происходит по принципу охвата территории:
Глобальные (национальные и субконтинентальные) – дают возможность оценить ситуацию в масштабах планеты. Благодаря чему можно спрогнозировать и предотвратить природные и техногенные катаклизмы, оценить размер бедствия, спланировать ликвидацию последствий и организацию гуманитарной помощи. Применяются во всем мире с 1997 года.
Региональные (локальные, субрегиональные, местные) – действуют на муниципальном уровне. Такие технологии отражают многие ключевые сферы: инвестиционные, имущественные, навигационные, обеспечения безопасности населения и другие. Они помогают принимать решения при развитии определенного района, что способствует привлечению к нему капитала и росту его экономики.
Как функционирует система
ГИС хранит фактическую информацию о предметах в виде подборки тематических слоев, объединенных по принципу географического положения. Такой подход обеспечивает решение разноплановых задач по реорганизации местности и проведению мероприятий.
Для нахождения местоположения объекта используются координаты точки, ее адрес, индекс, номер земельного участка и т.п. Эти сведения наносятся на карты после процедуры геокодирования.
Технологии могут работать с растровыми и векторными моделями.
В векторной форме материал кодируется и сохраняется как набор координат. Она больше подходит для стабильных элементов с постоянными свойствами: реками, трубопроводами, полигоны.
Растровая схема включает блоки информации об отдельных составляющих. Она адаптирована для работы с переменными характеристиками, например, типы почв и доступность объектов.
Смежные инновации
ГИС тесно взаимодействует с другими приложениями. Рассмотрим связь и главные отличия со схожими информационными технологиями.
СУБД. Они служат для накопления, хранения и координирования разных материалов, поэтому часто входят в программную поддержку географических систем. В отличие от последних не имеют инструментов для оценки и пространственного изображения данных.
Средства настольного картографирования. В качестве сведений используют карты, но имеют ограниченные возможности для их управления и анализа.
Дистанционное зондирование и GPS. Здесь информация собирается с использованием специальных датчиков: бортовых камер летательных машин, сенсоров глобального позиционирования и прочих. При этом материал собирается в виде картинок с осуществлением их обработки и изучения. Однако из-за отсутствия некоторых инструментов их нельзя считать геоинформационным системами.
САПР. Это программы для составления различных чертежей, планов помещений и архитектурных разработок. Они применяют комплекс элементов с закрепленными параметрами. Многие из них имеют возможность импортировать значения из ГИС.
Среди подобных утилит стоит отметить продукцию компании ZWSOFT:
GEONIUM – аналог GeoniCS. Позволяет автоматизировать проектно-изыскательные работы. При этом создаются чертежи, соответствующие действующим нормативам оформления и стандартам. Содержит шесть модулей, использование которых решает различные инженерные, в том числе и геологические, задачи.
GEODirect – аналог GeoniCS Изыскания. Осуществляет анализ и интерпретацию результатов лабораторных и полевых исследований, выполняет статистическую обработку по заданным параметрам, вычисляет различные нормативные и расчетные показатели,формирует отчетность по стандартам стран СНГ.
ПроГео – утилита для кадастровых инженеров с полным набором инструментов, автоматизирующих подготовку документов. Постоянное обновление позволяет всегда предоставлять актуальную информацию по оформлению бумаг согласно требованиям проверяющих органов.
ZWCAD – система автоматизированного проектирования для архитекторов, инженеров, конструкторов. Имеет новое ядро на базе гибридных технологий, сочетающее понятный интерфейс, поддержку Unicode, возможность создавать трехмерные модели на основе их сечений. Имеет встроенную возможность вставки растровых карт по файлам географической привязки (географической регистрации).
Примеры ГИС для новичков
Программ, созданных для целей такого географического анализа, очень много. Рассмотрим для примера некоторые из них.
Mapinfo
Основными функциональными возможностями является:
применение понятной и удобной обменной схемы для передачи данных другим структурам;
активное окно можно сохранять в разных форматах: bmp, tif, jpg и wmf;
поддержка значительного количества географических проекций и систем координат;
можно вводить материал через дигитайзер.
Используя утилиту можно и делать тематические карты, и строить 3D ландшафты.
DataGraf
Инструмент для пространственной визуализации, моделирования ситуаций, построения синтетических показателей. Оптимален для изучения основ компьютерной картографии в учебных учреждениях.
создавать векторные карты;
привязывать к каждому элементу неограниченное число тематических баз данных;
копировать данные в другой файл через буфер обмена;
вручную изменять характеристики объектов и их местоположения.
QuickMAP
Простое средство для освоения базового уровня. Решает преимущественно иллюстративные задачи. Позволяет создавать оцифрованные карты на основе обычной картинки и в любом графическом формате.
Применение ГИС
Возможности для использования географических технологий очень обширны. Среди областей, где наиболее применимы эти системы, можно выделить:
Землеустройство. Утилиты нужды для составление кадастров, вычисление площадей элементов, разметка границ земельных участков.
Управление размещением объектов. Здесь их применение актуально для построения архитектурного плана, согласование сети промышленных, торговых и других точек специального назначения.
Районное развитие. Инженерные изыскания конкретных мест, решения задач по оптимизации инфраструктуры и привлечению инвесторов в настоящее время невозможны без детального изучения с помощью подобных структур.
Охрана природы. Программы позволяют осуществлять проведение экологического мониторинга, планирование использования ресурсов.
Прогнозирование ЧС. Отслеживание изменений в разных геологических состояниях позволяет предсказать возможность катастроф, разрабатывать меры для их предотвращения и минимизации потерь от них.
Краткие итоги
Мы дали расшифровку понятия ГИС, подробно рассмотрели, что такое геоинформационные системы и где они применяются. В заключении скажем, что это очень перспективное направление, которые активно развивается. Без использования подобных технологий уже невозможно представить работу специалистов многих областей.
Что такое геоинформационные технологии своими словами
Геоинформационные системы и технологии
В связи с глубоким взаимопроникновением ГИС и других информационных технологий целесообразно рассмотреть взаимосвязь ГИТ с другими технологиями.
Близкородственны к ГИТ картографические (геодезические) технологии, применяющиеся при обработке данных полевых геодезических съемок и построении по ним карт (при построении карт по аэроснимкам с использованием фотограмметрических методик и при работах с цифровой моделью рельефа местности). Здесь также наблюдается тенденция к интеграции, т.к. подавляющее число современных ГИС включают в себя средства координатной геометрии (COGO), которые позволяют непосредственно использовать данные полевых геодезических наблюдений, в том числе прямо с приборов с цифровой регистрацией или с приемников спутниковой глобальной системы позиционирования (GPS). Фотограмметрические пакеты обычно ориентируются на совместную работу с ГИС и в ряде случаев включаются в ГИС как модули.
Таким образом, ГИТ можно рассматривать как некое расширение технологии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относится к объектам, для которых важную роль играет их пространственное положение, форма и взаиморасположение. Следовательно, ГИТ во многих приложениях значительно расширяют возможности обычных СУБД.
ГИТ, так же как и любая другая технология, ориентирована на решение определенного круга задач. Поскольку области применения ГИС достаточно широки (военное дело, картография, география, градостроительство, организация транспортных диспетчерских служб, и т.д.), то ввиду специфики проблем, решаемых в каждой из них, и особенностей, связанных с конкретным классом решаемых задач и с требованиями, предъявляемыми к исходным и выходным данным, точности, техническим средствам и прочее, говорить о какой-то единой ГИС-технологии достаточно проблематично.
Вместе с тем любая ГИТ включает в себя ряд операций, которые можно рассматривать как базовые. Они различаются в конкретных реализациях только деталями, например, программным сервисом сканирования и постсканерной обработки, возможностями геометрического преобразования исходного изображения в зависимости от исходных требований и качества материала и т.д.
Поскольку приведенная модель является обобщенной, то естественно, что она либо не содержит отдельных блоков, свойственных какой-либо конкретной технологии, либо наоборот имеет в своем составе те блоки, которые в ряде случаев могут отсутствовать.
По результатам анализа обобщенной модели ГИС-технологии можно выделить следующие базовые операции ГИТ:
Для ввода исходной информации используются растровые сканирующие устройства, дигитайзеры, полутоновые сканеры аэрофотонегативов. Полученные цифровые массивы данных поступают в комплекс технических средств обработки растровых и векторных данных, построенный на базе рабочих станций и персональных профессиональных ЭВМ. На этой же инструментальной базе осуществляются все этапы проектирования, преобразования исходной информации и создания цифровой тематической карты.
Сформированная цифровая картографическая модель поступает в комплекс технических средств формирования выходной картографической продукции, включающей в себя плоттеры, принтеры, специализированные устройства вывода на фотоноситель и т.д.
Исходные и обработанные цифровые данные хранятся в подсистеме архивного хранения данных, базирующейся в настоящее время на стримерах или на оптических дисках.
Области применения ГИТ в настоящее время чрезвычайно многообразны.
Прежде всего, это различные кадастры, системы управления распределенным хозяйством и инфраструктурой. Здесь развиты специализированные приложения, например, для систем: электрических сетей энергетической компании, кабельной сети телефонной или телевизионной компании, сложного трубопроводного хозяйства большого химического завода, земельного кадастра, оперирующие недвижимостью, а также такие приложения, как комплексные системы, обслуживающие многие составляющие инфраструктуры города или территории
и способные решать сложные задачи управления и планирования. Конкретные цели и задачи в таких системах очень разнообразны: от задач инвентаризации и учета, справочных систем общего пользования до налогообложения, градо- строительно-планировочных задач, планирования новых транспортных маршрутов и оптимизации перевозок, распределения сети ресурсов и услуг (складов, магазинов, станций скорой помощи, пунктов проката автомобилей).
Еще одной развитой областью применения ГИТ является учет, изучение и использование природных ресурсов, включая сюда и охрану окружающей среды. Здесь также встречаются как комплексные системы, так и специализированные: для лесного хозяйства, водного хозяйства, изучения и охраны дикой фауны и флоры и т.д. К этой области применения непосредственно примыкает использование ГИТ в геологии, как в научных, так и в практических ее задачах. Это не только задачи информационного обеспечения, но и, например, задача прогнозирования месторождений полезных ископаемых, контроль экологических последствий разработок и т.п. В геологических применениях, как и в экологических, велика роль приложений, требующих сложного программирования или комплексирования ГИТ со специфическими системами обработки и моделирования. Особенно в этом плане выделяются приложения в области нефти и газа. Здесь на стадии поисков и разведки широко используются данные сейсморазведки и весьма специфическое и развитое ПО по их обработке и анализу. Велика потребность в комплексных решениях, увязывающих собственно геологические и иные проблемы, что невозможно решить без привлечения универсальных ГИС.
Отдельно следует выделить сугубо транспортные задачи. Среди них: планирование новых маршрутов транспорта и оптимизация процесса перевозок с возможностью учета распределения ресурсов и меняющейся транспортной обстановки (ремонты, пробки, таможенные барьеры). Особенно перспективными в стратегическом плане предполагаются навигационные системы, особенно базирующиеся на спутниковых системах навигации с использованием цифровой картографии.
Анализ существующего на сегодняшний день опыта применения ГИТ показывает, что основной формой применения ГИТ является различные по целям, сложности, составу и возможностям ГИС.
Так как в ГИС осуществляется комплексная обработка информации (от ее сбора до хранения, обновления и предоставления), их можно рассматривать со следующих различных точек зрения:
ГИС с развитыми аналитическими возможностями близки к системам статистического анализа и обработки данных, причем в ряде случаев они интегрированы в единые системы, например:
имплантация в современную ГИС ARC/INFO мощного статистического пакета S-PLUS;
добавление некоторых возможностей пространственной статистики и картографической визуализации в массовые статистические пакеты (SYSTATfor Windows);
Наиболее развитые ГИС (обычно с сильной поддержкой и растровой модели), имеющие хорошие средства программирования, широко используются для моделирования природных и техногенных процессов, в том числе распространения загрязнений, лесных пожаров и др. Некоторые обычные СУБД, работающие в графических средах типа MS Windows, также включают в себя простейшие средства картографической визуализации.
Наличие широкого спектра тенденций развития в разных областях информационных технологий, интересы которых сходятся в области ГИТ, а также появление универсальных пакетов широкого применения привело к тому, что границы определения ГИТ становятся менее четкими. Поэтому в настоящее время сложилось понятие полнофункциональная ГИС (full GIS).
Полнофункциональная ГИС должна обеспечивать:
Помимо полнофункциональных ГИС общего назначения, выделяют специализированные, которые часто имеют нечеткие границы со специализированными пакетами, не являющимися в этом смысле ГИС. Например, ГИС, ориентированные на задачи планирования связи, транспортные и навигационные задачи, задачи инженерных изысканий и проектирования сооружений.
Топологические векторные структуры данных по своей природе сложны, а процессы их использования требуют интенсивных расчетов, существенно больших, чем работа с обычной векторной графикой, в том числе и в части операций с плавающей точкой. Серьезные приложения часто требуют работы с длинными целыми и действительными числами двойной точности. Для работы с ГИС нужны дисплеи высокого разрешения и быстрый графический адаптер или акселератор, причем требования к палитре жестче, чем в САПР. Они скорее аналогичны требованиям к издательским системам профессиональной полиграфии. Особенно высокие требования к скорости отрисовки предъявляет типичная для ГИС (и менее типичная для САПР) задача заливки штриховками большого числа замкнутых многоугольников (полигонов) сложной формы.
Серьезные проекты с использованием ГИС требуют работы с большими объемами данных, от сотен мегабайт до нескольких десятков гигабайт. Особенно высокие требования к объемам дисковой и основной памяти, а также к быстродействию компьютера, предъявляют ГИС с обработкой изображения в виде растровых структур, например, в задачах геометрической коррекции аэроснимков, моделирования природных процессов и при работе с рельефом земной поверхности. Один цветной аэроснимок высокого разрешения стандартного формата, если перевести его в цифровую форму без потери «точности» (24 bit, 1200 dpi) занимает около 200 Мб. Во многих задачах регионального характера требуется использовать совмещенную и геометрически откорректированную мозаику из мйогих таких снимков, тем более, что признано целесообразным использовать растровую подложку из такой мозаики аэро- или космических снимков (digital orthophoto) в качестве базового слоя для векторных карт, т.е. фотоснимки «впечатываются» в изображение карты. То же замечание справедливо и для работы с аэрокосмическими снимками, которые, как правило, должны обрабатываться различными способами, чтобы избирательно выделить на них различную информацию (операции различного рода фильтрации, преобразования контраста, операции с использованием быстрого преобразования Фурье, классификационные алгоритмы, дискриминантный, кластерный и факторный анализ, а также метод главных компонент). Поэтому вместо того, чтобы хранить десятки версий обработки, что потребовало бы до сотен Гбайт на 1 кадр, рациональнее
выполнять их по требованию. Современные специализированные рабочие станции справляются с такой задачей, для ПК же она еще трудна. Иногда операция с одним кадром на ПК длится несколько минут. Когда необходимо моделировать сложные природные процессы, в частности распространение загрязнения, лесных пожаров, либо применять данные аэрокосмических съемок, использование специализированной рабочей станции неизбежно.
Следует отметить, что скорость накопления объемов аэрокосмических (особенно космических) данных пока идет в том же темпе или даже опережает темпы роста вычислительных мощностей ПК и рабочих станций. Действительно, ежемесячно над каждым участком Земли размером с большой город собирается не менее 800-1000 Мбайт спутниковых изображений. И если даже учесть, что половина их по условиям облачности непригодна для использования в ГИТ- приложениях, все равно это составляет огромный поток. И еще одно замечание: разрешение систем сбора дистанционной информации постоянно растет, а увеличение геометрического разрешения на местности с 20 до 10 м увеличивает объем данных в 4 раза. Так что каждые 2-4 года компьютерная система должна в несколько раз увеличивать свою производительность, чтобы не отстать от темпов развития устройств сбора информации. Отсюда ясно, что еще длительное время технической основой мощных полнофункциональных ГИС с аналитическими функциями будут оставаться специализированные рабочие станции.
Еще одним моментом, который обуславливает необходимость обращения существенного внимания к рабочим WVZY-станциям является тот факт, что сегодня основные пакеты наиболее «серьезных» ГИС еще не переведены на ПК.
Основными направлениями использования ПК при работе с ГИС в настоящее время являются:
Так как современные ГИС представляют собой, как правило, сложные программно-информационные комплексы, разработанные специально для применения в конкретных областях информационной деятельности или для решения специализированных задач, то в их состав входят:
К модулям тематической обработки данных относятся: