Что такое генетика растений

Генетика растений

Полезное

Смотреть что такое «Генетика растений» в других словарях:

ГЕНЕТИКА РАСТЕНИЙ — ГЕНЕТИКА РАСТЕНИЙ, наука о НАСЛЕДСТВЕННОСТИ и ИЗМЕНЧИВОСТИ растений. Начиная с 1900 г., исследования в ГЕНЕТИКЕ установили принципы селекции растений, к которым, в частности, относится ГИБРИДИЗАЦИЯ контролируемое скрещивание различных видов… … Научно-технический энциклопедический словарь

генетика растений — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN plant genetics The scientific study of the hereditary material of plants for purposes such as hybridization, improved food resources and increased production. (Source: EEN)… … Справочник технического переводчика

Генетика — I Генетика (от греч. génesis происхождение) наука о законах наследственности и изменчивости организмов. Важнейшая задача Г. разработка методов управления Наследственностью и наследственной Изменчивостью для получения нужных человеку форм… … Большая советская энциклопедия

Генетика — I Генетика (от греч. génesis происхождение) наука о законах наследственности и изменчивости организмов. Важнейшая задача Г. разработка методов управления Наследственностью и наследственной Изменчивостью для получения нужных человеку форм… … Большая советская энциклопедия

генетика — [нэ], и; ж. [от греч. genētikos относящийся к рождению, происхождению]. Наука о законах наследственности и изменчивости организмов. Г. человека. Г. растений. Медицинская г. Космическая г. * * * генетика (от греч. génesis происхождение), наука о… … Энциклопедический словарь

Генетика — Фрагмент ДНК Генетика (от греч. γενητως … Википедия

Генетика развития растений — (биология развития растений) частная отрасль генетики, изучающая особенности развития растений, гены, экспрессирующиеся и обеспечивающие нормальное формирование и функционирование тканей и органов растений. Генетика развития растений является… … Википедия

ГЕНЕТИКА — (от греч. genesis происхождение), обычно определяется как физиология изменчивости и наследственности. Именно так определил содержание генетики Бетсон (Bateson), предложивший в 1906 г. этот термин, желая подчеркнуть, что из трех основных элементов … Большая медицинская энциклопедия

ГЕНЕТИКА — (от греч. genesis происхождение), наука о наследственности и изменчивости живых организмов и методах управления ими. В её основу легли закономерности наследственности, обнаруженные Г. Менделем при скрещивании разл. сортов гороха (1865), а также… … Биологический энциклопедический словарь

ГЕНЕТИКА ЧЕЛОВЕКА — (демографич. аспекты), раздел генетики, изучающий явления наследственности и изменчивости у человека. Материальной основой наследственности у человека, как и у др. организмов, являются гены, расположенные в хромосомах и передающиеся в поколениях… … Демографический энциклопедический словарь

Источник

Генетика развития растений

Генетика развития растений (биология развития растений) —- частная отрасль генетики, изучающая особенности развития растений, гены, экспрессирующиеся и обеспечивающие нормальное формирование и функционирование тканей и органов растений.

Генетика развития растений является одним из наиболее бурно развивающихся направлений современной генетики, которое имеет огромное фундаментальное и прикладное значение. В настоящее время в ряде отечественных вузов биологического и сельскохозяйственного профиля осуществляется подготовка специалистов для работы в различных областях биологии и генетики развития растений.

Содержание

Становление науки

Современное состояние биологии характеризуется бурным переходом от описательного отражения действительности к расшифровке конкретных закономерностей, лежащих в основе живой природы. При этом традиционные биологические вопросы типа «как выглядит объект?» и «что с ним происходит?» сменились на совершенно новые — «почему он выглядит именно так?» и «как он функционирует?».

Безусловно, попытки ответить на эти вопросы неоднократно предпринимались и раньше. Однако по-настоящему возможным это стало лишь с пониманием того, что каждое проявление жизни, каким бы сложным оно не казалось, является в конечном итоге результатом функционирования определенных молекул при всем многообразии их взаимодействий. Современная наука располагает всего лишь двумя прямыми подходами, позволяющими исследовать биологические функции молекул. Первый подход заключается в анализе последствий, вызванных инактивацией определенных молекул организма (этого можно достичь, либо используя узко специфичные ингибиторы, либо получая мутации, нарушающие нормальный биосинтез именно данных молекул). Напротив, альтернативный подход предполагает увеличение активности исследуемых молекул либо при их добавлении извне, либо за счет усиления их биосинтеза in vivo (например, в случае трансформации организма дополнительными копиями соответствующего гена). При этом, независимо от выбранного подхода, основную роль в таких исследованиях играют методы молекулярной биологии и генетики. Именно по этой причине синтез молекулярно биологического и генетического подходов, получивший название молекулярная генетика, стал ведущей идеологией большинства направлений современной биологии. Одним из таких направлений является биология развития. Если в своем первоначальном виде эта наука сформировалась на стыке эмбриологии, физиологии и цитологии, то именно использование молекулярно-генетических подходов позволяет успешно расчленять сложнейшие процессы развития на множество «элементарных» стадий, каждая из которых обслуживается строго определенными молекулами и контролируется особой группой генов.

В то же время, учитывая значительное своеобразие высших растений, правомочно поставить следующий вопрос: существуют ли некие особенности клеточной дифференцировки или морфогенеза, характерные только для данной группы эукариот? В этом плане молекулярная генетика развития растении несомненно представляет не только фундаментальный, но и огромный практический интерес.

История

За свою более чем 200-летнюю историю биология развития высших растений прошла через несколько этапов, отражающих постепенную эволюцию взглядов на существо изучаемой проблемы.

Направления

Генетика развития растений проводит свои исследования в следующих направления:

Методы

Основные понятия

Онтогенез (индивидуальное развитие, от греч. ontos — существо и лат. genesis — происхождение) растения — это естественный процесс с последовательной сменой нескольких возрастных этапов, среди которых принято выделять:

В онтогенезе реализуются потенции генотипа в определенных условиях среды, в результате чего формируются растения определенного фенотипа.

Онтогенез растения включает в себя два существенных аспекта: собственно жизнь особи (она начинается со стадии зиготы и продолжается вплоть до естественной смерти) и воспроизведение новых особей (также начинается с зиготы, но заканчивается формированием гамет).

В процессе эволюции у высших растений произошло пространственное совмещение гапло- и диплофаз в одном организме: гаметофит развивается прямо на спорофите. Этот момент очень важен, поскольку спорофит имеет собственную эффективную систему зашиты, за счет чего защищенным становится и гаметофит.

Рост — понятие, характеризующее необратимые количественные изменения, происходящие во время развития организма.

Дифференцировка — качественные изменения, происходящие в процессе развитии организма наряду с количественными.

Морфогенез — это процесс формообразования, то есть закладки, роста и развития органов растения. Таким образом, дифференцировка, рост и морфогенез являются тесно взаимосвязанными процессами.

Детерминация — процесс, когда дифференцировка приводит к необратимому изменению клеток. Этот процесс называют

Модельные растения

Генетика развития в своих исследованиях использует модельные растения. Такие растения должны иметь короткий цикл развития, иметь небольшое количество хромосом и обладать высокой плодовитостью.

Результаты, полученные при изучении модельных растений, можно экстраполировать на растения, которые трудно изучить.

Источник

ГЕНЕТИКА РАСТЕНИЙ

Смотреть что такое «ГЕНЕТИКА РАСТЕНИЙ» в других словарях:

генетика растений — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN plant genetics The scientific study of the hereditary material of plants for purposes such as hybridization, improved food resources and increased production. (Source: EEN)… … Справочник технического переводчика

Генетика растений — раздел генетики (См. Генетика), изучающий наследственность и изменчивость высших растений (генетические исследования грибов и водорослей обычно относят к генетике микроорганизмов (См. Генетика микроорганизмов)), Для генетического изучения … Большая советская энциклопедия

Генетика — I Генетика (от греч. génesis происхождение) наука о законах наследственности и изменчивости организмов. Важнейшая задача Г. разработка методов управления Наследственностью и наследственной Изменчивостью для получения нужных человеку форм… … Большая советская энциклопедия

Генетика — I Генетика (от греч. génesis происхождение) наука о законах наследственности и изменчивости организмов. Важнейшая задача Г. разработка методов управления Наследственностью и наследственной Изменчивостью для получения нужных человеку форм… … Большая советская энциклопедия

генетика — [нэ], и; ж. [от греч. genētikos относящийся к рождению, происхождению]. Наука о законах наследственности и изменчивости организмов. Г. человека. Г. растений. Медицинская г. Космическая г. * * * генетика (от греч. génesis происхождение), наука о… … Энциклопедический словарь

Генетика — Фрагмент ДНК Генетика (от греч. γενητως … Википедия

Генетика развития растений — (биология развития растений) частная отрасль генетики, изучающая особенности развития растений, гены, экспрессирующиеся и обеспечивающие нормальное формирование и функционирование тканей и органов растений. Генетика развития растений является… … Википедия

ГЕНЕТИКА — (от греч. genesis происхождение), обычно определяется как физиология изменчивости и наследственности. Именно так определил содержание генетики Бетсон (Bateson), предложивший в 1906 г. этот термин, желая подчеркнуть, что из трех основных элементов … Большая медицинская энциклопедия

ГЕНЕТИКА — (от греч. genesis происхождение), наука о наследственности и изменчивости живых организмов и методах управления ими. В её основу легли закономерности наследственности, обнаруженные Г. Менделем при скрещивании разл. сортов гороха (1865), а также… … Биологический энциклопедический словарь

ГЕНЕТИКА ЧЕЛОВЕКА — (демографич. аспекты), раздел генетики, изучающий явления наследственности и изменчивости у человека. Материальной основой наследственности у человека, как и у др. организмов, являются гены, расположенные в хромосомах и передающиеся в поколениях… … Демографический энциклопедический словарь

Источник

Генетика растений и животных

Вы будете перенаправлены на Автор24

Генетика растений и животных – это научная дисциплина, которая изучает наследственность и изменчивость преимущественно культурных растений и одомашненных животных, но также рассматривает вопросы наследования дикорастущих и обитающих в природе форм.

Генетика растений и животных основана на общих базовых принципах и положениях генетической науки. Она использует такие методы как:

Сущность генетики животных и ее методы

Для животных чаще всего характерно независимое наследование признаков, которое обусловлено наличием у них большого количества хромосом. Например, у уток диплоидный набор хромосом равен 80, у собак и кур он составляет 78 хромосом, лошади имеют диплоидный набор хромосом равный 66.

Наследственность – это свойство живых организмов, которое заключается в их способности передавать собственные признаки потомкам.

Доминирующим методом генетики животных является гибридологический метод. Такой метод существенно расширил возможности изучения наследственных заболеваний, а именно выявления их морфологического, физиологического, биохимического аспектов. Часто такие проявления зависят от одной или нескольких пар генов.

Генетика животных сегодня имеет также и прикладное значение, которое заключается в исследовании биохимических свойств молока, крови животных, их иммуногенетики. Все результаты используются для отслеживания родословных животных, что дает возможность в спорных вопросах выяснить происхождение одного и того же вида.

Генетика животных делится на два раздела:

Генетика животных также дает возможность изучить структуры пород, судить о степени их однотипности. Кроме того, генетическое объяснение было получено для вопроса выявления причин морфологических недостатков и недоразвития некоторых органов животных организмов. Появление животных с такими недостатками объясняется тем, что в стадах встречаются особи, внешне нормальные вполне жизнеспособные, но гетерозиготные по генам, определяющим эти недостатки.

Готовые работы на аналогичную тему

Перспективным направлением в генетике животных является анализ принципов формирования устойчивости к инфекционным, инвазионным, грибковым заболеваниям. Благодаря генетике животных сформировано полноценное представление о развитии устойчивости животных к таким болезням, как мастит, ящур и туберкулез.

Малоизученными все еще остаются наследственные болезни обмена веществ, которые характерны для животных организмов. Также генетика животных установила, что количественные признаки определяются совокупным действием генов. Они различаются по степени доминирования и могут быть даже сверхдоминантными. Такие гены могут вызвать гетерозис в первом поколении помесей.

Изучение количественных признаков проводится с помощью математико-статистических методов. Популяционный метод генетики животных позволяет выявить расщепление генов по многим признакам. Популяционный метод позволяет изучить распространение отдельных генов в популяциях животных.

В самых простых случаях расщепление в популяции происходит по одному или нескольким генам. Если анализировать признаки, которые зависят от многих генов, то их частоты не могут устанавливаться. При этом используется коэффициент наследуемости. Он выражается в отношении генотипической изменчивости к общей фенотипической изменчивости.

Значение этого коэффициента наследуемости признака от 0 до 1, оно зависит от тех признаков, которые наследуются, а также от равнозначности условий кормления и методов содержания и разведения животных. Это значение также позволяет разработать прогрессивные методы селекции и спрогнозировать их результаты на практике.

Генетика растений

Что касается генетики растений, то она изучает законы и особенности наследственности растительных организмов. Ее первооткрывателем называют Г. Менделя, который изучал закономерности наследования признаков на растениях гороха. Он отметил тот факт, что организмы наследуют те или иные признаки посредством дискретных единиц наследования.

Большая часть результатов, полученных Менделем, используется в современной генетике. Генетика растений установила, что растительный организм, как и любой другой, использует ДНК для хранения наследственной информации. Исследование растений при использовании родословных затрудняется, поскольку они часто становятся само опыляемыми.

Видообразование у растений несколько проще, поскольку эти организмы также приспосабливаются к полиплоидии. Помимо того, растения могут производить органическое вещество на свету и этот процесс называется фотосинтезом. Этот процесс осуществляется благодаря наличию митохондрии и хлоропластов, тех органоидов, которые являются дополнительными резервуарами для генов. Такая ситуация существенно увеличивает процент генетического разнообразия.

Такого дополнительного генетического усложнения у животных обнаружено не было. Таким образом, исследование генетики открывает весьма широкие возможности для организации жизни людей. Сведения генетики используются для выведения основных зерновых культур, повышения их урожайности. Генетика растений позволяет выработать способы борьбы с возбудителями болезней, обеспечить гербицидную устойчивость и существенно повысить их питательную ценность.

Генетика животных, в свою очередь также имеет колоссальное значение, которое заключается в выведении новых пород, предотвращении генетических мутаций у уже существующих видов, выявления способов отслеживания наследования тех или иных признаков, характерных для различных видов.

Источник

Цисгеномика: новое слово в селекции растений

Автор
Редактор

Статья на конкурс «био/мол/текст»: Испокон веков люди пытаются улучшить урожаи сельскохозяйственных культур. Статья повествует о том, какими средствами пользовались селекционеры на протяжении развития растениеводства, а особое внимание уделяется одному из самых современных и многообещающих методов молекулярной генетики растений — цисгеномике. Пора узнать, чем отличаются трансгенные организмы от цисгенных!

Обратите внимание!

Эта работа опубликована в номинации «лучшая обзорная статья» конкурса «био/мол/текст»-2015.

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни». Спонсором приза зрительских симпатий выступила фирма Helicon.

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

От неосознанного отбора к направленной селекции и генетической модификации растений

С незапамятных времен люди стремились улучшить качество и свойства используемых растений. Для этого они выбирали лучшие плоды и самые крупные зерна, бессознательно изменяя растения в нужном направлении. С развитием генетики, открывшей законы наследственности и изменчивости, появилась возможность осознанно управлять передачей необходимых признаков. Экспериментаторы поняли, что методом простого отбора человек не может получить принципиально новых свойств у разводимых организмов, так как при отборе можно выделить только те генотипы, которые уже существуют в популяции. Поэтому для получения новых сортов растений стали применять гибридизацию — скрещивание организмов с желаемыми признаками. Несмотря на то, что этот метод используется уже более века, процесс создания новых сортов остается очень трудоемким и требует многих лет напряженной работы. Современное сельское хозяйство испытывает острую необходимость в новых сортах, отличающихся устойчивостью к воздействию биотических и абиотических факторов окружающей среды, высокой продуктивностью и продолжительными сроками хранения урожая. На сегодняшний день показано, что такими качествами обладают дикие предки культивируемых растений. Чтобы передать их «полезные» гены современным сортам, необходимо проведение межвидового скрещивания, которое технологически сложнее и возможно далеко не для всех культур в силу генетической несовместимости.

Выход из этой ситуации появился с развитием генетической инженерии, которая сделала возможным перенос генов из одного организма в другой.

Различные виды генетически модифицированных растений

Генетически модифицированный организм (ГМО) — организм, генотип которого был целенаправленно изменен при помощи методов генной инженерии *. Основными способами биотехнологического изменения генома растений являются: искусственный мутагенез (физический и химический), трансгенез — введение гена неродственного организма, интрагенез — введение гена самогό организма или его «выключение», а также цисгенез — введение гена близкородственного вида, с которым возможно природное скрещивание.

* — На биомолекуле можно найти и размышления о пользе/вреде ГМ-растений, и «рецептуру приготовления» ГМ-риса и даже стратегии создания растительных фабрик: «Трансгенные растения — спасители планеты или бомбы замедленного действия?» [1], «Готовим ГМ-рис вместе» [2], «Растения-биофабрики» [3]. — Ред.

В 1994 году появилось первое коммерческое генно-инженерное растение — томат Flavr Savr [1, 4]. Вслед за этим стали активно создаваться трансгенные растения, устойчивые к биотическим и абиотическим факторам среды. (Отметим, что трансгенным считают такой организм, в геном которого искусственно введен ген, который не может быть приобретен при естественном скрещивании.) Ученые нашли необходимые гены устойчивости в геномах бактерий и насекомых и перенесли их в растительные организмы [5]. Обывателю покажется, что это достаточно рискованно, потому что, на первый взгляд, в природе такого быть не может (хотя есть и исключения — например, почвенная бактерия Agrobacterium tumefaciens переносит свои гены в растительные клетки для получения необходимых метаболитов).

Другая проблема, с которой связано получение трансгенных растений, — это использование антибиотиков. Для того чтобы узнать, попал ли интересующий ученых ген в геном растительной клетки, необходим некий маркер (репортер), который отделит клетки с внедрившимся чужеродным геном от неудачных образцов. Такими репортерами и являются гены, кодирующие устойчивость к антибиотикам. Клетки, подвергшиеся изменениям, высаживают на среду с антибиотиком, и, если они остались живы, значит, ген устойчивости проник в их геном, а с ним — и наш целевой ген. Несмотря на то, что трансгенные растения являются мощным фактором развития сельского хозяйства и экономики, возможность их использования провоцирует широкое общественное обсуждение.

Принимая во внимание всеобщую обеспокоенность биологической безопасностью трансгенных продуктов питания, в настоящее время активно разрабатывается новый подход для модификации сортов растений — цисгенез [5–7].

Применение геномного секвенирования сельскохозяйственно-значимых культур, таких как кукуруза, картофель, рис, и разработка эффективных технологий выделения новых генов расширили границы возможностей улучшения сельскохозяйственных культур. В последние десятилетия описан широкий круг генов, кодирующих важные качественные и количественные признаки как самих сельскохозяйственных культур, так и их дикорастущих родственников. Эти гены выделены и перенесены в геномы элитных сортов. Полученные в результате таких манипуляций растения называют цисгенными, чтобы отделить их от понятия трансгенов [5].

Цисгенез — такая технология генетической модификации рекомбинантной ДНК, при которой манипуляция происходит с использованием ДНК того же или близкородственного вида растения, с которым возможен половой процесс [8]. В отличие от трансгенных, такие растения не содержат гены неродственных организмов и гены устойчивости к антибиотикам (рис. 1). Это дает возможность ожидать, что общество с большей легкостью воспримет цисгенные растения, нежели трансгенные. Так, опрос в штате Миссисипи показал, что 81% респондентов готов употреблять в пищу цисгенные растения, в то время как лишь 14-23% согласны на трансгенные [5].

Что такое генетика растений. Смотреть фото Что такое генетика растений. Смотреть картинку Что такое генетика растений. Картинка про Что такое генетика растений. Фото Что такое генетика растений

Рисунок 1. Изменение генома при классической селекции, трансгенезе и цисгенезе.

Цисгенез = классическая селекция?

Современное состояние вопроса о повышении качества и урожайности сельскохозяйственных растений можно объяснить на примере такой стратегически важной культуры, как картофель.

Представим себе, что у нас есть элитный сорт картофеля, который дает прекрасный — качественный и обильный — урожай, но подвержен инфекционным заболеваниям. А еще нам известно, что есть вид дикого картофеля, который не дает никакого съедобного урожая, но при этом устойчив к болезням. Первым делом мы пытаемся выяснить, что в геноме дикого вида определяет его устойчивость (см. врезку). Возможности современной молекулярной генетики и геномики растений позволяют нам найти тот ген, который отвечает за устойчивость, выделить его открытую рамку считывания и участок ДНК, контролирующий его экспрессию, вырезать их, клонировать и внедрить в геном нашего элитного сорта, не внося никаких кардинальных изменений ни в геном сорта, ни в нуклеотидную последовательность гена, которой мы оперируем. Таким образом, если наши манипуляции прошли успешно, мы получаем исходный элитный сорт картофеля, который так же дает прекрасные клубни, но при этом не подвержен заражению паразитами, и мы не теряем урожай.

Гены устойчивости растений

Согласно одной из основных гипотез, растение имеет ген устойчивости, а патоген несет комплементарный ген авирулентности [10]. Когда продукт гена авирулентности взаимодействует с клетками растения, продукт гена устойчивости растения запускает каскад защитных реакций [11]. Фитопатогенные организмы и их механизмы заражения растений чрезвычайно разнообразны, поэтому удивительно, что все известные гены резистентности кодируют небольшое количество белков, которые имеют общее эволюционное происхождение и содержат общие консервативные участки (домены) [12]. Таким образом, гены устойчивости растений можно искать в геноме резистентных видов по наличию определенных нуклеотидных последовательностей. Для поиска и выделения генов используются специальные молекулярные маркеры и техники (PCR, AFLP, RFLP, RAPD и другие) [13].

На сегодняшний день цисгеномика является альтернативным подходом, а основным инструментом создания новых сортов растений остаются классические методы селекции. Для этого мы скрещиваем наш элитный сорт с диким видом картофеля, получаем гибрид, у которого половина генетического материала происходит от исходного элитного сорта, а половина — от дикого предка. Таким образом мы приобретаем устойчивый к паразитам гибрид. Заметим, что мы при этом теряем половину полезных генов, которые были у элитного сорта, и наш новый гибрид не дает такого обильного и вкусного урожая, который долго хранится и не боится холодов. Более того, помимо желаемого гена устойчивости от дикого предка наш гибрид получает еще тысячи ненужных (а возможно, и опасных) сцепленных с ним генов, продукты которых могут оказаться токсичными. Подобная ситуация нас не устраивает, и мы проводим так называемое «обратное насыщающее скрещивание»: пытаемся вернуть нашему гибриду «утерянные» гены элитной родительской формы. Для этого мы опять скрещиваем наш гибрид с элитным сортом, тем самым «разбавляя» его генόм. И так множество раз. Заметим, что после каждого скрещивания должно пройти достаточно времени, чтобы новый гибрид вырос и дал урожай. В результате процесс классической селекции обычно затягивается на десятки лет.

Если вы всё еще против генетически модифицированных растений, представим следующую ситуацию: у нас есть элитный сорт картофеля, единственным слабым местом которого является подверженность заболеваниям. Классическая селекция отнимает слишком много сил и времени и не дает надежного результата, а генетически модифицированные растения не внушают доверия. Даже в этой ситуации есть альтернатива! Химическая промышленность изобрела огромное количество разнообразных пестицидов, которые защитят наш картофель от болезней. Этот путь самый простой и самый опасный: загрязнение окружающей среды химическими реагентами может привести к катастрофическим последствиям (см. врезку).

Химические средства для повышения урожайности растений

Еще неприятнее тот факт, что химические соединения могут перераспределяться в природе не только c помощью дождя и ветра, но и внутри живых организмов, а именно — по пищевым цепям. Организмы получают токсичные вещества из воды, почвы, воздуха. Этот процесс называется биоаккумуляцией. В результате наносится вред как самому организму, так и тому, кто его съест.

В США для борьбы с переносчиком голландской болезни, поражающей вязы, — вязовым заболонником Scolytes multistriatus — деревья обрабатывали ДДТ. Часть пестицида попадала в почву, где его поглощали дождевые черви и накапливали в тканях. У поедающих преимущественно дождевых червей перелетных дроздов развивалось отравление ДДТ. Часть из них погибала, у других нарушалась репродуктивная функция — они откладывали стерильные яйца. В результате борьба с заболеванием деревьев привела к почти полному исчезновению перелетных дроздов в ряде регионов США [15].

Еще более интересным процессом является биомагнификация — это увеличение концентрации токсичного реагента в пищевой цепи. Так, для уничтожения комаров на одном из калифорнийских озер применили ДДТ. После обработки содержание пестицида в воде составило 0,02 части на миллион (ppm). Через некоторое время в планктоне ДДТ определялся в концентрации 10 ppm, в тканях планктоноядных рыб — 900 ppm, хищных рыб — 2700 ppm, птиц, питающихся рыбой — 21 000 ppm. То есть содержание ДДТ в тканях птиц, не подвергшихся непосредственному воздействию пестицида, было в миллион раз выше, чем в воде, и в 20 раз выше, чем в организме рыб — первом звене пищевой цепи.

Приведенные примеры касались различных животных, но не стоит забывать, что человек — это тоже биологический вид, который подчиняется общим природным законам. Вся наша пища имеет растительное или животное происхождение, и нужно понимать, что чем больше химических реагентов используется в сельском хозяйстве, тем больше нежелательных соединений попадает в наш организм. Конечно, их концентрации не столь высоки, однако ежедневно они пополняются, и мы подвергаемся их хроническому воздействию.

Но, пожалуй, самая страшная опасность химической промышленности заключается в самих заводах. Помимо постоянных выбросов отходов производства в окружающую среду, которые отражаются на здоровье работников и местных жителей, такие заводы могут стать причиной техногенных катастроф. Самая страшная из них произошла в 1984 году в индийском городе Бхопал на химическом заводе, принадлежащем американской компании «Юнион карбайд». Авария привела к смерти по крайней мере 18 тысяч человек, из которых 3 тысячи погибли непосредственно в день аварии, а 15 тысяч — в последующие годы [16].

Другой известный случай произошел в 1971 году в Ираке. Правительством этого государства была закуплена большая партия зерна в качестве посевного материала. Посевное зерно с целью борьбы с грибками подвергалось обработке метилртутью. Однако эта партия зерна случайно попала в продажу и была использована для выпечки хлеба. В результате отравление получили более 6,5 тысяч человек, из которых около 500 погибли [15].

Итак, цисгенные растения, главной целью создания которых является перенесение генов устойчивости в коммерчески успешные сорта, экономят время селекционеров, не требуют применения пестицидов, не нарушают экосистему, затраты на их выращивание минимальны, а урожай максимальный. В 2012 году Европейское агентство по безопасности продуктов питания (EFSA) опубликовало доклад, в котором сравнивался потенциальный вред растительных продуктов, полученных различными способами. В результате был сделан вывод о том, что риски, связанные с употреблением цисгенных растений и сортов, полученных методами классической селекции, сопоставимы [17].

Однако формально цисгенные растения подходят под определение генетически модифицированных организмов. В России правовое регулирование данной области базируется на Федеральном законе от 05.07.1996 № 86-ФЗ «О государственном регулировании в области генно-инженерной деятельности». В 2015 году правительство приняло законопроект об отказе от применения технологий генетической модификации при производстве продуктов питания. Если ситуация изменится, использование этой технологии приведет к бурному развитию сельского хозяйства.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *