Что такое дырки и электроны
Электроны и дырки
Полупроводники занимают промежуточное положение между проводниками и диэлектриками. Полупроводниковые материалы имеют кристаллическую структуру. При низкой температуре большинство внешних электронов в полупроводнике находятся в атомах на своих местах и полупроводник плохо проводит ток. Но связаны электроны с атомами слабее, чем в диэлектрике. При росте температуры, сопротивление полупроводников падает, то есть проводимость полупроводника в отличии от металлов при нагревании увеличивается. Иначе говоря, при нагревании в полупроводнике увеличивается количество свободных электронов, тем самым увеличивая способность проводить электрический ток. Этот эффект называют электронной проводимостью полупроводника.
В чистом полупроводнике, проводимость которого обусловлена тепловым возбуждением, при приложении потенциала, одинаковое число электронов и дырок движется в разных направлениях. При добавлении в полупроводник атомов легко отдающих электроны, в полупроводнике превалирует электронная проводимость и сопротивление электрическому току резко падает. Такой полупроводник называют полупроводником n-типа.
Аналогично, при легировании материалами, способными захватывать лишние электроны, получают полупроводник p-типа.
Поскольку энергия рекомбинации равна величине энергетического барьера, излучение происходит в узкой области спектра. Поэтому все светодиоды излучают монохроматическое излучение. Белые (полихромные) светодиоды в своей основе имеют также монохроматические светодиодные чипы.
Сначала полупроводниковые приборы делали «гомопереходными», в них p-n- переход возникал в полупроводнике одного базового вещества. Но вскоре появилась устройства, в которых такой переход создавался на границе двух различных полупроводников. В результате, появилась возможность создать полупроводниковые приборы меньшего размера и с большей эффективностью. Так, первые «гомопереходные» полупроводниковые светодиоды могли работать только при температуре жидкого азота, а «гетеропереходные» работают и при комнатной температуре.
При выборе материалов для изготовления светодиодов, существенными становятся оптические свойства полупроводников. Материал одного из компонентов должен быть прозрачным или чрезвычайно тонким, а граница или второй материал должен хорошо отражать свет в области излучаемого спектра. Наряду с квантовым выходом, это наиболее важные условия увеличения эффективности светодиодов.
Электроны и «дырки»
Чистые полупроводники являются относительно хорошими диэлектриками по сравнению с металлами, хотя и не настолько хорошими, как настоящий диэлектрик, например, стекло. Чтобы быть полезным в полупроводниковых применениях, собственный полупроводник (чистый нелегированный полупроводник) должен иметь не более одного атома примеси на 10 миллиардов атомов полупроводника. Это аналогично крупинке соли в железнодорожном вагоне сахара. Нечистые, или грязные полупроводники являются значительно более проводящими, хотя и такими хорошими, как металлы. Почему так происходит? Чтобы ответить на этот вопрос, мы должны рассмотреть электронную структуру этих материалов на рисунке ниже.
Рисунок ниже (a) показывает 4 электрона в валентной оболочке полупроводника, образующих ковалентные связи с четырьмя другими атомами. Это плоская, более простая для рисования, версия рисунка, приведенного ранее. Все электроны атома связаны в четырех ковалентных связях, в парах общих электронов. Электроны не могут свободно перемещаться по кристаллической решетке. Таким образом, собственные, чистые, полупроводники являются относительно хорошими диэлектриками по сравнению с металлами.
(a) Собственный полупроводник является диэлектриком, имеющим полную электронную оболочку.
(b) Тем не менее, тепловая энергия может создать несколько пар электрон-дырка, что в результате даст слабую проводимость.
Тепловая энергия иногда может освобождать электрон из кристаллической решетки, как показано на рисунке выше (b). Этому электрону становится доступно передвижение по кристаллической решетке. Когда электрон освобождается, он оставляет в кристаллической решетке пустое место с положительным зарядом, известное как дырка. Эта дырка не прикреплена к решетке и может свободно по ней перемещаться. Свободные электрон и дырка вносят свой вклад в движение электронов по кристаллической решетке. То есть, электрон свободен, пока он не попадает в дырку. Это явление называется рекомбинацией. При воздействии на полупроводник внешним электрическим полем электроны и дырки разводятся в противоположных направлениях. Увеличение температуры увеличит и количество электронов и дырок, что в свою очередь уменьшит сопротивление. Это противоположно поведению металлов, у которых сопротивление увеличивается с ростом температуры за счет увеличения столкновений электронов с кристаллической решеткой. Количество электронов и дырок в собственном полупроводнике одинаково. Тем не менее, оба носителя при воздействии внешнего поля необязательно будут двигаться с одинаковой скоростью. Другими словами, подвижность у электронов и дырок неодинакова.
Чистые полупроводники, сами по себе, не особенно полезны. Хотя полупроводники и должны быть в большой степени очищены от примесей для создания отправной точки перед добавлением определенных примесей.
В материал полупроводника, с долей содержания примесей 1 к 10 миллиардам, для увеличения количества носителей могут добавляться определенные примеси в соотношении примерно 1 часть на 10 миллионов. Добавление в полупроводник необходимой примеси известно, как легирование. Легирование увеличивает проводимость полупроводника, и, таким образом, он становится более сопоставим с металлом, а не с диэлектриком.
Можно увеличить количество отрицательно заряженных носителей в кристаллической решетке полупроводника путем легирования таким электронным донором, как фосфор. Электронные доноры, также известные, как примеси N-типа, включают в себя элементы группы VA (группы 15 по IUPAC) периодической таблицы: азот, фосфор, мышьяк и сурьма. Азот и фосфор являются примесью N-типа для алмаза. Фосфор, мышьяк и сурьма используются совместно с кремнием.
Кристаллическая решетка на рисунке ниже (b) содержит атомы, содержащие четыре электрона во внешней оболочке, формирующих ковалентные связи с соседними атомами. Эта кристаллическая решетка ожидаема. Добавление атома фосфора с пятью электронами во внешней оболочке вводит в решетку дополнительный электрон по сравнению с атомом кремния. Пятивалентная примесь образует четыре ковалентные связи с четырьмя атомами кремния с помощью четырех из пяти электронов, встраиваясь в решетку с одним электроном в запасе. Обратите внимание, что этот лишний электрон не сильно привязан к решетке, как электроны обычных атомов Si. Будучи не привязанным к узлу фосфора в кристаллической решетке, он свободен для перемещения по ней. Так как мы легировали одну часть фосфора на 10 миллионов атомов кремния, то по сравнению с многочисленными атомами кремния было создано лишь несколько свободных электронов. Тем не менее, по сравнению с немногочисленными парами электрон-дырка в собственном полупроводнике, в этом случае было создано достаточно много электронов.
(a) Конфигурация электронов внешней оболочки донора N-типа фосфора, кремния (для сравнения) и акцептора P-типа бора.
(b) Примесь донора N-типа создает свободный электрон.
(c) Примесь акцептора P-типа создает дырку, положительно заряженный носитель.
Кроме того, можно вводить примеси, у которых, по сравнению с кремнием, не хватает электрона, то есть, которые имеют три электрона в валентной оболочке, по сравнению с кремнием с четырьмя валентными электронами. На рисунке выше (c) они оставляют пустое место, известное как дырка, положительно заряженный носитель. Атом бора пытается связаться с четырьмя атомами кремния, но в валентной зоне имеет только три электрона. В попытке сформировать четыре ковалентные связи три его электрона двигаются вокруг, пытаясь образовать четыре связи. Это заставляет двигаться появляющуюся дырку. Кроме того, трехвалентный атом может занимать электрон от соседнего (или более отдаленного) атома кремния, чтобы сформировать четыре ковалентные связи. Однако это оставляет атом кремния с нехваткой одного электрона. Другими словами, дырка перемещается к соседнему (или более отдаленному) атому кремния. Дырки располагаются в валентной зоне, уровнем ниже зоны проводимости. Легирование электронным акцептором, атомом, который может принять электрон, создает дефицит электронов и избыток дырок. Так как дырки являются носителями положительного заряда, примесь электронного акцептора также известна, как примесь P-типа. Легирующая примесь P-типа оставляет полупроводник с избытком дырок, носителей положительного заряда. Элементы P-типа из группы IIIA (группы 13 по IUPAC) периодической таблицы включают в себя: бор, алюминий, галлий и индий. Бор используется в качестве легирующей примеси P-типа для полупроводников кремний и алмаз, в то время как индий используется с германием.
Подобно «шарику в трубе» передвижение электронов (рисунок ниже) зависит от движения дырок и движения электронов. Шарик представляет собой электроны в проводнике, в трубе. Движение электронов слева направо в проводнике или полупроводнике N-типа объясняется входом электрона в трубу слева, заставляя выйти электрон справа. Передвижение электронов в полупроводнике N-типа происходит в зоне проводимости. Сравните это с движением дырок в валентной зоне.
Аналогия с шариком в трубе:
(a) Электроны двигаются вправо в зоне проводимости.
(b) Дырки двигаются вправо в валентной зоне, в то время как электроны двигаются влево.
Чтобы дырка вошла в левой части рисунка выше (b), электрон должен быть удален. При перемещении дырки слева направо электрон должен двигаться справа налево. Первый электрон выбрасывается из левого конца трубы, чтобы дырка могла двигаться вправо в трубу. Электрон двигается в направлении, противоположном движению положительных дырок. Чтобы дырка двигалась дальше вправо, электроны должны перемещаться влево, заполняя дырку. Дырка – это отсутствие электрона в валентной зоне за счет легирования P-типа. Она имеет локальный положительный заряд. Чтобы переместить дырку в заданном направлении, валентные электроны двигаются в противоположном направлении.
Поток электронов в полупроводнике N-типа аналогичен движению электронов в металлическом проводе. Атомы примеси N-типа дадут электроны, доступные для передвижения. Эти электроны из-за легирующей примеси известны, как основные носители, так как они находятся в большинстве, по сравнению с немногочисленными тепловыми дырками. Если к пластине полупроводника N-типа приложить электрическое поле (рисунок ниже (a)), электроны перейдут в отрицательный (левый) конец пластины, пройдут кристаллическую решетку и выйдут справа к клемме (+) батареи.
(a) Полупроводник N-типа с электронами, перемещающимися через кристаллическую решетку слева направо.
(b) Полупроводник P-типа с дырками, перемещающимися слева направо, что соответствует движению электронов в противоположном направлении.
Объяснить протекание тока в полупроводнике P-типа немного сложнее. Примесь P-типа, акцептор электронов, придает локальным областям положительный заряд, известный как дырки. Эти дырки и являются основными носителями в полупроводнике P-типа. Хотя дырки и образуются в местах трехвалентных атомов примеси, они могут перемещаться по пластине полупроводника. Обратите внимание, что включение батареи на рисунке выше (b) противоположно включению на рисунке (a). Положительный вывод батареи подключен к левому концу пластины P-типа. Поток электронов выходит из отрицательного вывода батареи и через пластину P-типа возвращается к положительному выводу батареи. Электрон покидает положительный (левый) конец пластины полупроводника, чтобы положительный вывод батареи оставил дырку в полупроводнике, которая может двигаться вправо. Дырки проходят через кристаллическую решетку слева направо. В отрицательном конце пластины электрон из батареи соединяется с дыркой, нейтрализуя её. Это дает возможность другой дырке в положительном конце пластины двигаться вправо. Имейте в виду, что когда дырки перемещаются слева направо, это на самом деле электроны двигаются в противоположном направлении, что и делает видимым движение дырок.
Элементы, используемые для производства полупроводников, приведены на рисунке ниже. Полупроводниковый материал германий из группы IVA (14 по IUPAC) сейчас используется довольно ограничено. Полупроводники на основе кремния составляют около 90% всего промышленного производства полупроводников. Полупроводники на основе алмаза сейчас широко исследуются и обладают значительным потенциалом. Составные полупроводники включают в себя кремний-германий (тонкие слои на пластинах Si), карбид кремния и соединения групп III-V, например, арсенид галлия. Полупроводниковые соединения групп III-VI включают в себя AlN, GaN, InN, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs и InxGa1-xAs. Столбцы II и VI периодической таблицы, не показанные на рисунке, также формируют составные полупроводники.
Группа IIIA – примеси P-типа, группа IV – основные полупроводниковые материалы, и группа VA – примеси N-типа.
Основной причиной включения групп IIIA и VA на рисунок выше является возможность показать примеси, используемые с группой полупроводников IVA. Элементы группы IIIA являются акцепторами, примесями P-типа, которые принимают электроны, оставляя дырки (положительные носители) в кристаллической решетке. Бор является примесью P-типа для алмаза и самой распространенной примесью для кремниевых полупроводников. Индий является примесью P-типа для германия.
Элементы группы VA являются донорами, примесями N-типа, дающими свободный электрон. Азот и фосфор подходят в качестве примеси N-типа для алмаза. Фосфор и мышьяк являются наиболее используемыми примесями N-типа для кремния, хотя может использоваться и сурьма.
Итоги
Собственные полупроводники, максимальная доля примеси в которых составляет 1 на 10 миллиардов, являются плохими проводниками.
Полупроводник N-типа легируется пятивалентной примесью, чтобы создать свободные электроны. Такой материал является проводящим. Электрон в нем является основным носителем.
Полупроводник P-типа, легированный трехвалентной примесью, имеет множество свободных дырок. Это носители положительного заряда. Материал P-типа является проводящим. Дырки в нем являются основными носителями.
Большинство полупроводников основаны на элементах из группы IVA периодической таблицы. Причем кремний является наиболее распространенным, германий устарел, а углерод (алмаз) в настоящее время исследуется.
Широко используются и составные полупроводники, такие как карбид кремния (группа IVA) и арсенид галлия (группа III-V).
Что такое дырки и электроны
Одним из самых замечательных и волнующих открытий последних лет явилось применение физики твердого тела к технической разработке ряда электрических устройств, таких, как транзисторы. Изучение полупроводников привело к открытию их полезных свойств и ко множеству практических применений. В этой области все меняется так быстро, что рассказанное вам сегодня может через год оказаться уже неверным или, во всяком случае, неполным. И совершенно ясно, что, подробнее изучив такие вещества, мы со временем сумеем осуществить куда более удивительные вещи. Материал этой главы вам не понадобится для понимания следующих глав, но вам, вероятно, будет интересно убедиться, что по крайней мере кое-что из того, что вы изучили, как-то все же связано с практическим делом.
Если каким-то образом в кристалл кремния или германия при низкой температуре мы введем добавочный электрон, то возникнет то, что описано в предыдущей главе. Такой электрон начнет блуждать по кристаллу, перепрыгивая с места, где стоит один атом, на место, где стоит другой. Мы рассмотрели только поведение атома в прямоугольной решетке, а для реальной решетки кремния или германия уравнения были бы другими. Но все существенное может стать ясным уже из результатов для прямоугольной решетки.
Как мы видели в гл. 11, у этих электронов энергии могут находиться только в определенной полосе значений, называемой зоной проводимости. В этой зоне энергия связана с волновым числом амплитуды вероятности
[см. (11.24)] формулой
. (12.1)
Разные — это амплитуды прыжков в направлениях
,
и
, а
,
,
— это постоянные решетки (интервалы между узлами) в этих направлениях.
Для энергий возле дна зоны формулу (12.1) можно приблизительно записать так:
(12.2)
Если нас интересует движение электрона в некотором определенном направлении, так что отношение компонент все время одно и то же, то энергия есть квадратичная функция волнового числа и, значит, импульса электрона. Можно написать
, (12.3)
где — некоторая постоянная, и начертить график зависимости
от
(фиг. 12.1). Такой график мы будем называть «энергетической диаграммой». Электрон в определенном состоянии энергии и импульса можно на таком графике изобразить точкой (
на рисунке).
Фиг. 12.1. Энергетическая диаграмма для электрона в кристалле изолятора.
Мы уже упоминали в гл. 11, что такое же положение вещей возникнет, если мы уберем электрон из нейтрального изолятора. Тогда на это место сможет перепрыгнуть электрон от соседнего атома. Он заполнит «дырку», а сам оставит на том месте, где стоял, новую «дырку». Такое поведение мы можем описать, задав амплитуду того, что дырка окажется возле данного определенного атома, и говоря, что дырка может прыгать от атома к атому. (Причем ясно, что амплитуда того, что дырка перепрыгивает от атома
к атому
, в точности равна амплитуде того, что электрон от атома
прыгает в дырку от атома
.) Математика для дырки такая же, как для добавочного электрона, и мы опять обнаруживаем, что энергия дырки связана с ее волновым числом уравнением, в точности совпадающим с (12.1) и (12.2), но, конечно, с другими численными значениями амплитуд
,
и
. У дырки тоже есть энергия, связанная с волновым числом ее амплитуд вероятности. Энергия ее лежит в некоторой ограниченной зоне и близ дна зоны квадратично меняется с ростом волнового числа (или импульса) так же, как на фиг. 12.1. Повторяя наши рассуждения гл. 11, § 3, мы обнаружим, что дырка тоже ведет себя как классическая частица с какой-то определенной эффективной массой, с той только разницей, что в некубических кристаллах масса зависит от направления движения. Итак, дырка напоминает частицу с положительным зарядом, движущуюся сквозь кристалл. Заряд частицы-дырки положителен, потому что она сосредоточена в том месте, где нет электрона; и когда она движется в какую-то сторону, то на самом деле это в обратную сторону движутся электроны.
Если в нейтральный кристалл поместить несколько электронов, то их движение будет очень похоже на движение атомов в газе, находящемся под низким давлением. Если их не слишком много, их взаимодействием можно будет пренебречь. Если затем приложить к кристаллу электрическое поле, то электроны начнут двигаться и потечет электрический ток. В принципе они должны очутиться на краю кристалла и, если там имеется металлический электрод, перейти на него, оставив кристалл нейтральным.
Точно так же в кристалл можно было бы ввести множество дырок. Они бы начали повсюду бродить как попало. Если приложить электрическое поле, то они потекут к отрицательному электроду и затем их можно было бы «снять» с него, что и происходит, когда их нейтрализуют электроны с металлического электрода.
До сих пор мы считали, что электроны внесены в кристалл извне или (для образования дырки) удалены из него. Но можно также «создать» пару электрон-дырка, удалив из нейтрального атома связанный электрон и поместив его в том же кристалле на некотором расстоянии. Тогда у нас получатся свободный электрон и свободная дырка, и движение их будет таким, как мы описали.
Фиг. 12.2. Энергия , требуемая для «рождения» свободного электрона.
Фиг. 12.3. Энергия , требуемая для «рождения» дырки в состоянии
.
Фиг. 12.4. Энергетические диаграммы для электрона и дырки.
Иногда вам может встретиться и диаграмма попроще. Ее рисуют те, кому не интересна переменная , называя ее диаграммой энергетических уровней. Эта диаграмма (она показана на фиг. 12.5) просто указывает допустимые энергии у электронов и дырок.
Фиг. 12.5. Диаграмма энергетических уровней для электронов и дырок.
Как создается пара электрон-дырка? Есть несколько способов. Например, световые фотоны (или рентгеновские лучи) могут поглотиться и образовать пару, если только энергия фотона больше энергетической ширины. Быстрота образования пар пропорциональна интенсивности света. Если прижать к торцам кристалла два электрода и приложить «смещающее» напряжение, то электроны и дырки притянутся к электродам. Ток в цепи будет пропорционален силе света. Этот механизм ответствен за явление фотопроводимости и за работу фотоэлементов.
До сих пор мы касались только свойств полупроводниковых кристаллов при температурах около абсолютного нуля. При любой ненулевой температуре имеется еще другой механизм создания пар электрон-дырка. Энергией пару может снабдить тепловая энергия кристалла. Тепловые колебания кристалла могут передавать паре свою энергию, вызывая «самопроизвольное» рождение пар.
Вероятность (в единицу времени) того, что энергия, достигающая величины энергетической щели , сосредоточится в месте расположения одного из атомов, пропорциональна
, где
— температура, а
— постоянная Больцмана [см. гл. 40 (вып. 4)]. Вблизи абсолютного нуля вероятность эта мало заметна, но по мере роста температуры вероятность образования таких пар возрастает. Образование пар при любой конечной температуре должно продолжаться без конца, давая все время с постоянной скоростью все новые и новые положительные и отрицательные носители. Конечно, на самом деле этого не будет, потому что через мгновение электроны случайно снова повстречаются с дырками, электрон скатится в дырку, а освобожденная энергия перейдет к решетке. Мы скажем, что электрон с дыркой «аннигилировали». Имеется определенная вероятность того, что дырка встретится с электроном и оба они друг друга уничтожат.
Если количество электронов в единице объема есть (
означает негативных, или отрицательных, носителей), а плотность положительных (позитивных) носителей
, то вероятность того, что за единицу времени электрон с дыркой встретятся и проаннигилируют, пропорциональна произведению
. При равновесии эта скорость должна равняться скорости, с какой образуются пары. Стало быть, при равновесии произведение
должно равняться произведению некоторой постоянной на больцмановский множитель
. (12.4)
Говоря о постоянной, мы имеем в виду ее примерное постоянство. Более полная теория, учитывающая различные детали того, как электроны с дырками «находят» друг друга, свидетельствует, что «постоянная» слегка зависит и от температуры; но главная зависимость от температуры лежит все же в экспоненте.
Возьмем, например, чистое вещество, первоначально бывшее нейтральным. При конечной температуре можно ожидать, что число положительных и отрицательных носителей будет одно и то же, . Значит, каждое из этих чисел должно с температурой меняться как
. Изменение многих свойств полупроводника (например, его проводимости) определяется главным образом экспоненциальным множителем, потому что все другие факторы намного слабее зависят от температуры. Ширина щели для германия примерно равна 0,72 эв, а для кремния 1,1 эв.