Что такое дырчатая проводимость
Электронно-дырочная проводимость полупроводников
Электронно-дырочная проводимость полупроводников и влияние примесей на их проводимость
Полупроводники – это большая группа веществ с электронной проводимостью, удельное сопротивление которых при нормальной температуре изменяется в пределах от 10 –6 до 10 +8 Ом·м.
Электропроводность полупроводников в большой степени зависит от внешних энергетических воздействий, а также от различных примесей, иногда в ничтожных количествах присутствующих в теле собственного полупроводника.
Использующиеся в практике полупроводники могут быть подразделены на простые полупроводники (их основной состав образован атомами одного химического элемента) и сложные полупроводниковые композиции, основной состав которых образован атомами двух или большего числа химических элементов.
В зависимости от влияния примесей на проводимость различают собственные и примесные полупроводники.
Собственный полупроводник – полупроводник не содержащий примесей, влияющих на его электропроводность.
Для большинства полупроводниковых приборов используются примесные полупроводники. Примесями в простых полупроводниках служат чужеродные атомы.
Если примесные атомы находятся в узлах кристаллической решетки, то они называются примесями замещения, если в междоузлиях – примесями внедрения.
Обычно в качестве полупроводниковых материалов в электронике используют германий (Ge) и кремний (Si) — элементы четвертой группы периодической системы элементов. Они имеют кристаллическую структуру в виде объемно-центрированного тетраэдра, в котором каждый атом связан с четырьмя соседними атомами парноэлектронными (ковалентными) связями.
Рис. 1 Плоские модели кристаллических решеток полупроводников: идеального (а), с донорной примесью (б), с акцепторной примесью (в)
На рис. 1, а показана плоская модель кристаллической решетки идеального германия и кремния. Ковалентные связи изображаются двойными линиями, символизирующими два валентных электрона, вращающихся вокруг соответствующей пары атомов и образующих ковалентную связь.
Если в такую структуру ввести пятивалентную примесь, например мышьяк (As), то, внедрившись в узел кристаллической решетки (рис. 1, б), примесный атом становится донором. Четыре валентных электрона примеси образуют ковалентные связи с соседними атомами, а пятый, получив добавочную энергию, переходит с донорного уровня в зону проводимости и, таким образом, легко теряет связь со своим атомом, в результате чего может перемещаться под действием внешнего электрического поля. Примесный атом при этом становится положительным ионом.
Атом примеси имеет больше валентных электронов, чем атом кристаллической решетки. Полупроводник с такой примесью имеет концентрацию электронов большую, чем концентрация дырок, появившихся за счет перехода электронов из валентной зоны в зону проводимости, и его называют полупроводником n-типа, а примеси, поставляющие электроны в зону проводимости, – донорами.
Если в четырехвалентный собственный полупроводник ввести трехвалентную примесь, например индий (In), то примесный атом становится акцептором (рис. 1, в). Для образования ковалентной связи примесному атому не хватает одного электрона, т. е. имеется свободный акцепторный уровень, который может быть заполнен электроном валентной зоны, в которой после этого образуется дырка. В свою очередь эта новая дырка может быть заполнена следующим электроном и т. д. Таким образом, происходит как бы движение дырки в полупроводнике. Примесный атом при этом превращается в отрицательный ион.
Атом примеси имеет меньше валентных электронов, чем атом кристаллической решетки. Полупроводник с такой примесью имеет концентрацию дырок большую, чем концентрация электронов, перешедших из валентной зоны в зону проводимости, и его называют полупроводником p-типа, а примеси, захватывающие электроны из валентной зоны полупроводника, – акцепторами.
Электрический ток в полупроводниках
Главное яркое отличие полупроводников от металлов заключается в отрицательном температурном коэффициенте сопротивления: чем выше температура полупроводника — тем ниже его электрическое сопротивление. У металлов наоборот: чем выше температура — тем выше сопротивление. Если полупроводник охладить до абсолютного нуля — он станет диэлектриком.
Температура выше — сопротивление ниже
Такая зависимость проводимости полупроводников от температуры свидетельствует о том, что концентрация свободных носителей заряда у полупроводников не постоянна, и увеличивается вместе с температурой. Механизм прохождения электрического тока через полупроводник нельзя свести к модели газа свободных электронов как в металлах. Чтобы понять этот механизм, можно для примера рассмотреть его на кристалле германия.
В обычном состоянии атомы германия содержат на своей внешней оболочке четыре валентных электрона — четыре электрона, которые слабо связаны с ядром. При этом каждый атом в кристаллической решетке германия окружен четырьмя соседними атомами. И связь здесь ковалентная, это значит что она образуется парами валентных электронов.
Получается, что каждый из валентных электронов принадлежит одновременно двум атомам, и связи валентных электронов внутри германия с его атомами сильнее нежели в металлах. Вот почему при комнатной температуре полупроводники на несколько порядков хуже проводят ток по сравнению с металлами. А при абсолютном нуле все валентные электроны германия были бы заняты в связях и свободных электронов для обеспечения тока не осталось бы.
Эту дырку может легко занять валентный электрон из соседней пары, тогда дырка как-бы сместится на место у соседнего атома. При определенной температуре в кристалле образуется некоторое количество так называемых электронно-дырочных пар.
Одновременно идет процесс рекомбинации электронов с дырками — дырка, встречаясь со свободным электроном, восстанавливает ковалентную связь между атомами в кристалле германия. Такие пары, состоящие из электрона и дырки, могут возникать в полупроводнике не только от температурного действия, но и при освещении полупроводника, то есть за счет энергии падающего на него электромагнитного излучения.
Если внешнее электрическое поле к полупроводнику не приложено, то свободные электроны и дырки участвуют в хаотичном тепловом движении. Но когда полупроводник помещается во внешнее электрическое поле, электроны и дырки начинают двигаться упорядоченно. Так рождается ток в полупроводнике.
Он состоит из электронного тока и дырочного тока. В полупроводнике концентрация дырок и электронов проводимости равны. И только в чистых полупроводниках проявляется электронно-дырочный механизм проводимости. Это собственная электрическая проводимость полупроводника.
Примесная проводимость (электронная и дырочная)
Если в полупроводнике наличествуют примеси, то его электрическая проводимость очень изменяется по сравнению с чистым полупроводником. Добавление примеси в виде фосфора в кристалл кремния, в количестве 0,001 атомного процента, увеличит проводимость более чем в 100000 раз! Столь существенное влияние примесей на проводимость объяснимо.
Главное условие роста проводимости от примесей — отличие валентности примеси от валентности основного элемента. Такая проводимость с примесями называется примесной проводимостью, и может быть электронной и дырочной.
Кристалл германия начинает обладать электронной проводимостью если в него введены пятивалентные атомы, допустим, мышьяка, тогда как валентность атомов самого германия — четыре. Когда пятивалентный атом мышьяка оказывается в узле кристаллической решетки германия, четыре внешних электрона атома мышьяка включаются в ковалентные связи с четырьмя соседними атомами германия. Пятый же электрон атома мышьяка становится свободным, он легко покидает свой атом.
А покинутый электроном атом становится положительным ионом в узле кристаллической решетки полупроводника. Это так называемая донорная примесь, когда валентность примеси больше валентности основных атомов. Здесь появляется много свободных электронов, вот почему с введением примеси в тысячи и в миллионы раз падает электрическое сопротивление полупроводника. Полупроводник с большим количеством добавленных примесей по удельной проводимости приближается к металлам.
Хотя за собственную проводимость в кристалле германия с примесью мышьяка отвечают электроны и дырки, основными носителями свободного заряда являются все же электроны, покинувшие атомы мышьяка. В такой ситуации концентрация свободных электронов сильно превосходит концентрацию дырок, и данный вид проводимости называется электронной проводимостью полупроводника, а сам полупроводник — полупроводником n-типа.
Если же вместо пятивалентного мышьяка в кристалл германия добавить трехвалентный индий, то он создаст ковалентные связи лишь с тремя атомами германия. Четвертый атом германия останется без связи с атомом индия. Но ковалентный электрон может быть захвачен из соседних атомов германия. Индий будет тогда отрицательным ионом, а соседний атом германия приобретет вакантное место на месте где существовала ковалентная связь.
Примесь такого рода, когда атом примеси захватывает электроны, называется акцепторной примесью. При введении акцепторной примеси, в кристалле нарушаются многочисленные ковалентные связи, и образуется много дырок, в которые электроны могут перепрыгивать с ковалентных связей. В отсутствие электрического тока дырки хаотически движутся по кристаллу.
Акцепторная примесь приводит к резкому росту проводимости полупроводника благодаря рождению обилия дырок, и концентрация этих дырок сильно превышает концентрацию электронов собственной электропроводности полупроводника. Это дырочная проводимость, а полупроводник называется полупроводником p-типа. Основными носителями заряда в нем выступают дырки.
Вопрос. Полупроводники. Электронная и дырочная проводимость полупроводников. Собственная и примесная проводимость.
Полупроводник — это кристаллический материал, который проводит электричество не столь хорошо, как металлы, но и не столь плохо, как большинство изоляторов. В общем случае электроны полупроводников крепко привязаны к своим ядрам. Однако, если в полупроводник, например, в кремний, ввести несколько атомов сурьмы, имеющей «избыток» электронов, то в этом случае свободные электроны сурьмы помогут кремнию переносить отрицательный заряд. При замене нескольких атомов полупроводника индием, который легко присоединяет к себе дополнительные электроны, в полупроводнике образуются не занятые электронами «свободные места», или, как говорят физики, «дырки»; которые переносят положительный заряд. Такие свойства полупроводников привели к их широкому использованию в транзисторах — устройствах для усиления тока, его блокирования или пропускания только в одном направлении. В типичном NPN транзисторе, слой полупроводника с положительной (Р) проводимостью (основание), расположен между двумя слоями полупроводника с отрицательной (N) проводимостью (эмиттером и коллектором). Когда слабый сигнал, например, от интеркома (аппарата селекторной связи), проходит через основание NPN транзистора, эмиссия электронов этот сигнал усиливает.1 Строение полупроводников Полупроводники N-типа содержат избыточное количество электронов, переносящих отрицательный заряд. Полупроводники Р-типа испытывают нехватку электронов, но зато имеют избыток дырок (вакантных мест для электронов), которые переносят положительный заряд. Отличительные признаки полупроводников В отличие от проводников, имеющих много свободных электронов, и изоляторов, практически их не имеющих, полупроводники содержат небольшое количество свободных электронов и так называемые дырки (белый кружочек) — вакантные места, оставленные свободными электронами. И дырки и электроны проводят электрический ток. NPN транзистор
Электронная проводимость
При нагревании кремния ему будет сообщаться дополнительная энергия. Кинетическая энергия частиц увеличивается и некоторые ковалентные связи разрываются. Тем самым образуются свободные электроны.
В электрическом поле эти электроны перемещаются между узлами кристаллической решетки. При этом в кремнии будет создаваться электрический ток.
Так как основными носителями заряда являются свободные электроны, такой тип проводимости называют – электронной проводимостью. Количество свободных электронов зависит от температуры. Чем сильнее мы будем нагревать кремний, тем больше ковалентных связей будет разрываться, а следовательно, будет появляться больше свободных электронов. Это приводит к уменьшению сопротивления. И кремний становится проводником.
Дырочная проводимость
Когда происходит разрыв ковалентной связи, на месте вырвавшегося электрона, образуется вакантное место, которое может занять другой электрон. Это место называется дыркой. В дырке имеется избыточный положительный заряд.
Положение дырки в кристалле постоянно меняется, любой электрон может занять это положение, а дырка при этом переместится туда, откуда перескочил электрон. Если электрического поля нет, то движение дырок беспорядочное, и поэтому тока не возникает.
При его наличии, возникает упорядоченность перемещения дырок, и помимо тока, который создается свободными электронами, появляется еще ток, который создается дырками. Дырки будут двигаться в противоположном движению электронов направлении.
Таким образом, в полупроводниках проводимость является электронно-дырочной. Ток создается как с помощью электронов, так и с помощью дырок. Такой тип проводимости еще называется собственной проводимостью, так как участвуют элементы только одного атома.
онцентрация электронов проводимости в полупроводнике равна концентрации дырок: nn = np. Электронно-дырочный механизм проводимости проявляется только у чистых (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Собственной электрической проводимостью полупроводников называется электронно-дырочный механизм проводимости, который проявляется только у чистых (то есть без примесей) полупроводников.
При наличии примесей электропроводимость полупроводников сильно изменяется.
Примесной проводимостью называется проводимость полупроводников при наличии примесей.
Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Учебник. Электрический ток в полупроводниках
По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.
Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает (см. рис. 1.12.4). У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами (рис. 1.13.1).
Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T
Такой ход зависимости ρ (T) показывает, что у полупроводников концентрация носителей свободного заряда не остается постоянной, а увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Рассмотрим качественно этот механизм на примере германия (Ge). В кристалле кремния (Si) механизм аналогичен.
Атомы германия на внешней оболочке имеют четыре слабо связанных электрона. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам (рис. 1.13.2). Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.
Парно-электронные связи в кристалле германия и образование электронно-дырочной пары
При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.
Если полупроводник поместить в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного In и дырочного Ip токов: I = In + Ip.
Концентрация электронов проводимости в полупроводнике равна концентрации дырок: nn = np. Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков. Такое сильное влияние примесей может быть объяснено на основе изложенных выше представлений о строении полупроводников.
Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.
Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную.
Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).
Атом мышьяка в решетке германия. Полупроводник n-типа
На рис. 1.13.3 показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.
В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле nn >> np. Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.
Атом индия в решетке германия. Полупроводник p-типа
Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In). На рис. 1.13.4 показан атом индия, который с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия. Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.
Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: np >> nn. Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями свободного заряда в полупроводниках p-типа являются дырки.
Следует подчеркнуть, что дырочная проводимость в действительности обусловлена эстафетным перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.
Для полупроводников n— и p-типов закон Ома выполняется в определенных интервалах сил тока и напряжений при условии постоянства концентраций свободных носителей.
Что такое дырчатая проводимость
К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.
Качественное отличие полупроводников от металлов проявляется в зависимости удельного сопротивления от температуры (рис.9.3)
Зонная модель электронно-дырочной проводимости полупроводников
При образовании твердых тел возможна ситуация, когда энергетическая зона, возникшая из энергетических уровней валентных электронов исходных атомов, оказывается полностью заполненной электронами, а ближайшие, доступные для заполнения электронами энергетические уровни отделены от валентной зоны ЕV промежутком неразрешенных энергетических состояний – так называемой запрещенной зоной Еg 5 раз.
Небольшое добавление примеси к полупроводнику называется легированием.
Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла. Проводимость полупроводников при наличии примесей называется примесной проводимостью.
Различают два типа примесной проводимости – электронную и дырочную проводимости. Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As) (рис. 9.5).
Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним. Он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки.
Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорской примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз.
Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника. Такая проводимость, обусловленная свободными электронами, называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.
Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы, например, атомы индия (рис. 9.5)
На рисунке 6 показан атом индия, который создал с помощью своих валентных электронов ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.
Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.
Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: np>> nn. Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями свободного заряда в полупроводниках p-типа являются дырки.
Электронно-дырочный переход. Диоды и транзисторы
В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти полностью вытеснили электровакуумные приборы.
В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или n–p-переход) – это область контакта двух полупроводников с разными типами проводимости.
На границе полупроводников (рис. 9.7) образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу.
Способность n–p-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами. Полупроводниковые диоды изготавливаются из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.
Полупроводниковые приборы не с одним, а с двумя n–p-переходами называются транзисторами. Транзисторы бывают двух типов: p–n–p-транзисторы и n–p–n-транзисторы. В транзисторе n–p–n-типа основная германиевая пластинка обладает проводимостью p-типа, а созданные на ней две области – проводимостью n-типа (рис.9.9).
В транзисторе p–n–p – типа всё наоборот. Пластинку транзистора называют базой (Б), одну из областей с противоположным типом проводимости – коллектором (К), а вторую – эмиттером (Э).