Что такое дуга тока
Что такое электрическая дуга, как она возникает и где применяется?
Наблюдать искровые разряды приходилось каждому, в том числе и людям, далёким от познаний в электротехнике. Гигантскими искровыми разрядами сопровождаются грозы. Высвобождение огромной энергии, сконцентрированной в электрическом разряде молнии (см. рис. 1), сопровождается ослепительной вспышкой раскалённого ствола. Одним из видов искровых разрядов, созданных человечеством, является дуговой разряд, или попросту, электрическая дуга.
На сегодняшний день причины возникновение и свойства электрической дуги детально изучено наукой. Физики установили, что в области её горения возникает огромная концентрация зарядов, которые образуют плазму ствола. Температуры столба достигает нескольких тысяч градусов.
Что такое электрическая дуга?
Это загадочное явление впервые описал русский учёный В. Петров. Он создавал электрическую дугу, используя батарею, состоящую из тысяч медных и цинковых пластин. Изучая процесс зажигания дуги постоянным током, учёный пришёл к выводу, что воздушный промежуток между электродами при определённых условиях приобретает электропроводимость.
Одним из условий возникновения электрического пробоя является достаточно высокая разность потенциалов на концах электродов. Чем выше напряжение, тем больший газовый промежуток может преодолеть разряд. При этом образуется электропроводный газовый столб, который сильно разогревается во время горения дуги.
Возникает резонный вопрос: «Почему воздух, являющийся отличным изолятором в обычном состоянии, вдруг становится проводником?».
Объяснение может быть только одно – в стволе дуги образуются носители зарядов, способные перемещаться под действием электрического поля. Поскольку в воздухе, в отличие от металлов, нет свободных электронов, то вывод напрашивается только один – ионизация газов (см. рис. 3). То есть, запуск процесса насыщения газа ионами, являющимися носителями электрического заряда.
Рис. 3. Физика электрической дуги
Ионизация воздуха происходит под действием различного вида излучений, включая рентгеновское и космическое облучение. Поэтому в воздухе всегда находятся небольшое количество ионов. Но поскольку ионы почти сразу рекомбинируются (превращаются в нейтральные атомы и молекулы), то концентрация заряженных частиц всегда мизерная. Получить вспышку дуги при такой концентрации невозможно.
Для возникновения дугового разряда нужен лавинообразный процесс ионизации. Его можно вызвать путём сильного нагревания газа, которое происходит при зажигании.
При размыкании контактов происходит эмиссия электронов, скапливающихся на очень маленьком пространстве. Под действием напряжённости электрического поля отрицательные заряды устремляются к электроду с положительным знаком.
При достижении напряжения пробоя, между электродами возникает искровой разряд, разогревающий область между электродами. Если ток достаточно большой, то количество тепла будет достаточно для запуска лавинообразного процесса ионизации воздуха.
Насыщение плазменного ствола ионами разных знаков приводит к значительному увеличению плотности тока, а также к рекомбинации части ионов. Разогревание плазмы приводит также к увеличению давления в стволе. Поэтому часть ионов улетучивает в окружающее пространство.
Если не поддерживать образование новых зарядов, то произойдёт гашение дуги. Как мы уже выяснили, устойчивому горению сопутствуют 2 фактора: наличие напряжения между электродами и поддержание высокой температуры плазмы. Исключение одного из них, приведёт к гашению дуги.
Таким образом, можем сформулировать определение электрической дуги. А именно электрическая дуга — это вид искрового разряда, сопровождающегося большой плотностью тока, длительностью горения, малым падением напряжения на промежутке ствола, характеризующегося повышенным давлением газа, в котором поддерживается высокая температура.
Электрическая дуга отличается от обычного разряда большей длительностью горения.
Строение
Электрическая дуга состоит из трёх основных зон:
В сварочных дугах размеры катодной и анодной зоны незначительные, по сравнению с длиной столба. Толщина этих зон составляет тысячные доли миллиметра. В зоне катодного падения напряжения (на конце отрицательного электрода) наблюдается наличие катодных пятен, которые образуются в результате сильного нагревания.
На рисунке 4 изображена схема строения дуги, создаваемой сварочным аппаратом.
Рис. 4. Строение сварочной дуги
Обратите внимание: с целью достижения наглядности, на картинке сильно преувеличены электродные зоны. В действительности их толщина измеряется в микронах.
Свойства
Высокая плотность тока в стволе электрической дуги определяет её главные свойства:
Эти свойства необходимо учитывать при борьбе с возникновением электрической дуги, так и при её применении в некоторых сферах.
Полезное применение
Как это ни странно, но физики нашли применение этому электрическому явлению ещё на этапе развития науки об электричестве. Пример тому – лампочка Яблочкова. Она состояла из двух угольных электродов, между которыми зажигалась электрическая дуга.
У этой лампы были два недостатка. Электроды быстро изнашивались (выгорали), а спектр света смещался в ультрафиолетовую зону, что негативно влияло на зрение. По этим причинам дуговые лампы не нашли широкого применения и их быстро вытеснили лампы накаливания, существующие до сегодняшнего дня.
Исключение составляют дугоразрядные лампы, а также мощные прожектора, используемые преимущественно в военных целях.
Дуговой разряд стал массово применяться на практике с момента изобретения сварочного аппарата. Дуговую сварку применяют для сварки металлов. (см. рис. 5)
Рис. 5. Дуговая сварка
Используя проводимость плазмы, включая в сварочную цепь специальные сварочные электроды, достигают высокой температуры в сосредоточенном пятне. Регулируя сварочный ток, сварщик имеет возможность настроить аппарат на нужную температуру дугового разряда. Для защиты ствола от тепловых потерь, металлические электроды покрыты специальной смесью, обеспечивающей стабильность горения.
Электрическую дугу применяют в доменных печах для плавки металлов. Дуговая плавка удобна тем, что можно регулировать её температуру путём изменения параметров тока.
Наряду с полезным применением, в электротехнике часто приходится бороться с дуговыми разрядами. Не контролированный дуговой разряд может нанести существенный вред на линиях электропередач, в промышленных и бытовых сетях.
Рис. 6. Дуговой разряд на ЛЭП
Причины возникновения
Исходя из определения, можем назвать условия возникновения электрической дуги:
При сохранении оптимальной длины дуги температура плазмы поддерживается самостоятельно. Однако, с увеличением промежутка между электродами, происходит интенсивный теплообмен ствола с окружающим воздухом. В конце концов, в стволе, вследствие падения температуры, образование ионов лавинообразно прекратится, в результате чего произойдёт гашение пламени.
Пробои часто случаются на высоковольтных ЛЭП. Они могут привести к разрушению изоляторов и к другим негативным последствиям. Длинная электрическая дуга довольно быстро гаснет, но даже за короткое время горения её разрушительная сила огромна.
Дуга имеет склонность к образованию при размыкании контактов. При этом контакты выключателя быстро выгорают, электрическая цепь остаётся замкнутой до момента исчезновения ствола. Это опасно не только для сетей, но и для человека.
Способы гашения
Следует отметить, что гашение дуги происходит и по разным причинам. Например, в результате остывания столба, падения напряжения или когда воздух между электродами вытесняется сторонними испарениями, препятствующими ионизации.
Для охлаждения ствола его иногда разбивают на несколько составляющих. Данный принцип часто используют в конструкциях воздушных выключателей, рассчитанных на напряжения до 1кВ.
Некоторые модели выключателей состоят из множества дугогасительных камер, способствующих быстрому охлаждению.
Быстрой ионизации можно достигнуть путём испарения некоторых материалов, окружающих пространство подвижных ножей. Испарение под высоким давлением сдувает плазму ствола, что приводит к гашению.
Существуют и другие способы: помещение контактов в масло, автодутьё, применение электромагнитного гашения и др.
Воздействие на человека и электрооборудование
Электрическая дуга представляет опасность для человека своим термическим воздействием, а также ультрафиолетовым действием излучающего света. Огромную опасность таит в себе высокое напряжение переменных токов. Если незащищённый человек окажется на критически близком расстоянии от токоведущих частей приборов, может произойти пробой электричества с образованием дуги. Тогда на тело, кроме воздействия тока, окажет действие термической составляющей.
Распространение дугового разряда по конструктивным частям оборудования грозит выжиганием электронных элементов, плат и соединений.
Явление электрической дуги
Электрическая дуга представляет собой электрический разряд в среде (воздух, вакуум, элегаз, трансформаторное масло) с большим током, низким напряжением, высокой температурой. Это явление как электрическое, так и тепловое.
Может возникать между двумя контактами при их размыкании.
Обратимся к ВАХ-диаграмме:
На данном графике у нас зависимость тока от напряжения, немного не в масштабе, но так нагляднее. Значит, есть три области:
Явления ионизации и деионизации
Бывают ситуации, когда при размыкании контактов дуга не загорается, тогда говорят о безыскровом разрыве. Такое возможно при малых значениях тока и напряжения, или при отключении в момент, когда значение тока проходит через ноль.
Свойства дуги постоянного тока
Дуга может возникать как при постоянном токе-напряжении, так и при переменном. Начнем рассмотрение с постоянки:
ВАХ дугового разряда постоянного тока
Эта кривая соответствует кривой 3 на самом верхнем рисунке. Тут есть:
Если ток уменьшить от Io до 0 мгновенно, то получится прямая, которая лежит снизу. Эти кривые характеризуют дуговой промежуток как проводник, показывают какое напряжение нужно приложить, чтобы создать в промежутке дугу.
Чтобы погасить дугу постоянного тока, необходимо, чтобы процессы деионизации преобладали над процессами ионизации.
Если разорвать цепь амперметра под нагрузкой, то тоже можно увидеть дугу.
Свойства дуги переменного тока
Особенностью дуги переменного тока является её поведение во времени. Если посмотреть на график ниже, то видно, что дуга каждый полупериод проходит через ноль.
Видно, что ток отстает от напряжения примерно на 90 градусов. Вначале появляется ток и резко повышается напряжение до величины зажигания (Uз). Далее ток продолжает расти, а падение напряжения снижается. В точке максимального амплитудного значения тока, значение напряжения дуги минимальное. Далее ток стремится к нулю, а падение напряжения опять возрастает до значения гашения (Uг), которое соответствует моменту, когда ток переходит через ноль. Далее всё повторяется опять. Слева от временной характеристики приведена вольт-амперная характеристика.
Особенностью переменной дуги, кроме её зажигания и гашения на протяжении полупериода, является то, как ток пересекает ноль. Это происходит не по форме синусоиды, а более резко. Образуется бестоковая пауза, во время которой происходят знакомые нам процессы деионизации. То есть возрастает сопротивление дугового промежутка. И чем больше возрастет сопротивление, тем сложнее будет дуге обратно зажечься.
Если дуге дать гореть достаточно долго, то уничтожению подлежат не только контакты, но и само электрооборудование. Условия для гашения дуги заложены на стадии проектирования, постоянно внедряются новые методы борьбы с этим вредным явлением в коммутационных аппаратах.
Само по себе явление дуги не является полезным для электрооборудования, так как ведет к ухудшению эксплуатационных свойств контактов: выгорание, коррозия, механическое повреждение.
Процесс образования электрической дуги и способы ее гашения
При напряжениях 110 кВ и выше длина дуги может достигать нескольких метров. Поэтому электрическая дуга, особенно в мощных силовых цепях, на напряжение выше 1 кВ представляет собой большую опасность, хотя серьезные последствия могут быть и в установках на напряжение ниже 1 кВ. Вследствие этого электрическую дугу необходимо максимально ограничить и быстро погасить в цепях на напряжение как выше, так и ниже 1 кВ.
Причины возникновения электрический дуги
Процесс образования электрической дуги может быть упрощенно представлен следующим образом. При расхождении контактов вначале уменьшается контактное давление и соответственно контактная поверхность, увеличиваются переходное сопротивление ( плотность тока и температура — начинаются местные (на отдельных участках площади контактов) перегревы, которые в дальнейшем способствуют термоэлектронной эмиссии, когда под воздействием высокой температуры увеличивается скорость движения электронов и они вырываются с поверхности электрода.
В момент расхождения контактов, то есть разрыва цепи, на контактном промежутке быстро восстанавливается напряжение. Поскольку при этом расстояние между контактами мало, возникает электрическое поле высокой напряженности, под воздействием которого с поверхности электрода вырываются электроны. Они разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать хотя бы один электрон с оболочки нейтрального атома, то происходит процесс ионизации.
Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги, то есть ионизированного канала, в котором горит дуга и обеспечивается непрерывное движение частиц. При этом отрицательно заряженные частицы, в первую очередь электроны, движутся в одном направлении (к аноду), а атомы и молекулы газов, лишенные одного или нескольких электронов, — положительно заряженные частицы — в противоположном направлении (к катоду). Проводимость плазмы близка к проводимости металлов.
В стволе дуги проходит большой ток и создается высокая температура. Такая температура ствола дуги приводит к термоионизации — процессу образования ионов вследствие соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения (молекулы и атомы среды, где горит дуга, распадаются на электроны и положительно заряженные ионы). Интенсивная термоионизация поддерживает высокую проводимость плазмы. Поэтому падение напряжения по длине дуги невелико.
В электрической дуге непрерывно протекают два процесса: кроме ионизации, также деионизация атомов и молекул. Последняя происходит в основном путем диффузии, то есть переноса заряженных частиц в окружающую среду, и рекомбинации электронов и положительно заряженных ионов, которые воссоединяются в нейтральные частицы с отдачей энергии, затраченной на их распад. При этом происходит теплоотвод в окружающую среду.
Таким образом, можно различить три стадии рассматриваемого процесса: зажигание дуги, когда вследствие ударной ионизации и эмиссии электронов с катода начинается дуговой разряд и интенсивность ионизации выше, чем деионизации, устойчивое горение дуги, поддерживаемое термоионизацией в стволе дуги, когда интенсивность ионизации и деионизации одинакова, погасание дуги, когда интенсивность деионизации выше, чем ионизации.
Способы гашения дуги в коммутационных электрических аппаратах
Для того чтобы отключить элементы электрической цепи и исключить при этом повреждение коммутационного аппарата, необходимо не только разомкнуть его контакты, но и погасить появляющуюся между ними дугу. Процессы гашения дуги, так же как и горения, при переменном и постоянном токе различны. Это определяется тем, что в первом случае ток в дуге каждый полупериод проходит через нуль. В эти моменты выделение энергии в дуге прекращается и дуга каждый раз самопроизвольно гаснет, а затем снова загорается.
Практически ток в дуге становится близким нулю несколько раньше перехода через нуль, так как при снижении тока энергия, подводимая к дуге, уменьшается, соответственно снижается температура дуги и прекращается термоионизация. При этом в дуговом промежутке интенсивно идет процесс деионизации. Если в данный момент разомкнуть и быстро развести контакты, то последующий электрический пробой может не произойти и цепь будет отключена без возникновения дуги. Однако практически это сделать крайне сложно, и поэтому принимают специальные меры ускоренного гашения дуги, обеспечивающие охлаждение дугового пространства и уменьшение числа заряженных частиц.
В результате деионизации постепенно увеличивается электрическая прочность промежутка и одновременно растет восстанавливающееся напряжение на нем. От соотношения этих величин и зависит, загорится ли на очередную половину периода дуга или нет. Если электрическая прочность промежутка возрастает быстрее и оказывается больше восстанавливающего напряжения, дуга больше не загорится, в противном же случае будет обеспечено устойчивое горение дуги. Первое условие и определяет задачу гашения дуги.
В коммутационных аппаратах используют различные способы гашения дуги.
При расхождении контактов в процессе отключения электрической цепи возникшая дуга растягивается. При этом улучшаются условия охлаждения дуги, так как увеличивается ее поверхность и для горения требуется большее напряжение.
Деление длинной дуги на ряд коротких дуг
Если дугу, образовавшуюся при размыкании контактов, разделить на К коротких дуг, например затянув ее в металлическую решетку, то она погаснет. Дуга обычно затягивается в металлическую решетку под воздействием электромагнитного поля, наводимого в пластинах решетки вихревыми токами. Этот способ гашения дуги широко используется в коммутационных аппаратах на напряжение ниже 1 кВ, в частности в автоматических воздушных выключателях.
Охлаждение дуги в узких щелях
Гашение дуги в малом объеме облегчается. Поэтому в коммутационных аппаратах широко используют дугогасительные камеры с продольными щелями (ось такой щели совпадает по направлению с осью ствола дуги). Такая щель обычно образуется в камерах из изоляционных дугостойких материалов. Благодаря соприкосновению дуги с холодными поверхностями происходят ее интенсивное охлаждение, диффузия заряженных частиц в окружающую среду и соответственно быстрая деионизация.
Кроме щелей с плоскопараллельными стенками, применяют также щели с ребрами, выступами, расширениями (карманами). Все это приводит к деформации ствола дуги и способствует увеличению площади соприкосновения ее с холодными стенками камеры.
Втягивание дуги в узкие щели обычно происходит под действием магнитного поля, взаимодействующего с дугой, которая может рассматриваться как проводник с током.
Внешнее магнитное поле для перемещения дуги наиболее часто обеспечивают за счет катушки, включаемой последовательно с контактами, между которыми возникает дуга. Гашение дуги в узких щелях используют в аппаратах на все напряжения.
Гашение дуги высоким давлением
При неизменной температуре степень ионизации газа падает с ростом давления, при этом возрастает теплопроводность газа. При прочих равных условиях это приводит к усиленному охлаждению дуги. Гашение дуги при помощи высокого давления, создаваемого самой же дугой в плотно закрытых камерах, широко используется в плавких предохранителях и ряде других аппаратов.
Гашение дуги в масле
Если контакты выключателя помещены в масло, то возникающая при их размыкании дуга приводит к интенсивному испарению масла. В результате вокруг дуги образуется газовый пузырь (оболочка), состоящий в основном из водорода (70. 80 %), а также паров масла. Выделяемые газы с большой скоростью проникают непосредственно в зону ствола дуги, вызывают перемешивание холодного и горячего газа в пузыре, обеспечивают интенсивное охлаждение и соответственно деионизацию дугового промежутка. Кроме того, деионизирующую способность газов повышает создаваемое при быстром разложении масла давление внутри пузыря.
Дугогасительные камеры по принципу действия разделяют на три основные группы: с автодутьем, когда высокие давление и скорость движения газа в зоне дуги создаются за счет выделяющейся в дуге энергии, с принудительным масляным дутьем при помощи специальных нагнетающих гидравлических механизмов, с магнитным гашением в масле, когда дуга под действием магнитного поля перемещается в узкие щели.
Другие способы гашения дуги в аппаратах на напряжение выше 1 кВ
ЭЛЕКТР О ТЕХНОЛОГИЯ
электронный учебно-методический комплекс
Лекция 4
Столб дуги, представляющий собой ярко светящуюся смесь электронов, положительных ионов и возбужденных нейтральных атомов, называемую плазмой, имеет температуру до нескольких тысяч градусов. Он непрерывно теряет заряженные частицы вследствие их рекомбинации, приводящей к образованию нейтральных атомов, и диффузии в окружающую среду. При стационарном процессе убыль заряженных частиц компенсируется ионизацией в столбе дуги.
Напряжение на дуге и проводимость столба дуги зависят от значения тока. Эту зависимость при медленном изменении тока называют статической вольт-амперной характеристикой (ВАХ) дуги. ВАХ дуги при постоянных ее длине и диаметре электродов показана на рисунке 4.2.
Характеристика состоит из трех участков токов: малых I, средних II и больших III. На первом участке увеличение тока приводит к снижению напряжения дуги, так как при этом возрастают площадь поперечного сечения столба дуги и интенсификация процессов ионизации. Это способствует росту электропроводности канала дугового разряда.
На втором участке наступает равновесие процессов ионизации и деионизации в разрядном промежутке, площадь поперечного сечения столба дуги увеличивается и напряжение ее стабилизируется, т.е. становится независящим от значения тока. На третьем участке увеличение тока приводит к росту напряжения на дуге, так как катодное пятно занимает всю площадь торцов электродов, а сопротивление канала разряда стабилизируется.
Рис. 4.2 Статическая вольт-амперная характеристика дуги постоянного тока |
Связь общего падения напряжения UД на дуге с падением напряжения на отдельных ее элементах в области малых токов устанавливает формула Г. Айртон:
(4.1) |
В формуле (4.1) падение напряжения зависит от силы тока, что соответствует падающему характеру ВАХ. Для средних токов это слагаемое мало:
(4.2) |
Среда, в которой дуга горит, влияет на форму статической ВАХ. Так, в среде инертных газов даже при небольших токах характеристика дуги возрастающая. Ее применяют при сварке в среде защитных газов, плазменно-дуговых процессах.
Для маломощных дуг напряжение UП погасания несколько меньше напряжения Uз зажигания. При силе тока дуги более 100 А напряжение UП мало отличается от Uз и напряжение Uд горения практически не зависит от тока дуги, т.е. Uз
При включении индуктивности последовательно с дугой сдвигается ток относительно напряжения на угол φ (рис. 4.3, в). Изменяя значение индуктивности, можно получить такой угол сдвига фаз, что при уменьшении напряжения источника ниже напряжения горения дуги ЭДС самоиндукции, складывающаяся с напряжением источника, обеспечит напряжение, достаточное для поддержания горения дуги до тех пор, пока ток не перейдет через нулевое значение. В этот момент напряжение источника будет иметь другой знак и увеличится до значения, достаточного для зажигания дуги, т.е. ток в дуге возникает без всякого перерыва. При малом значении индуктивности появляются перерывы в горении дуги и кривая тока существенно искажается.
Рис. 4.3. Изменение тока i д и напряжения U д в контуре с активным сопротивлением маломощных (а) и мощных (б) дуг, в контуре дуги с индуктивным (в) сопротивлением |
Источник питания сварочной дуги должен обеспечивать надежное зажигание дуги, ее устойчивое горение и регулирование тока.
Первоначально дуга зажигается при соприкосновении электродов, одним из которых является изделие, и при последующем их разведении. При соприкосновении электродов замыкается цепь источника питания, ток которого расплавляет и испаряет металл в месте контакта. При последующем отрыве электрода от изделия в пространстве, заполненном ионизированными газами и парами металла, под действием Напряжения источника возникает электрическая дуга. Она зажигается легче при высоком напряжении источника. Чтобы обеспечить надежное зажигание, напряжение холостого хода источника питания должно быть больше напряжения зажигания дуги. В то же время напряжение холостого хода должно быть безопасным для сварщика.
1,25 Iк/ Iк 2 дуги источник питания должен иметь еще более крутопадающую внешнюю характеристику 1. Равенство токов и напряжений дуги и источника в этом случае будет в точках А и В. Из них только точка А соответствует устойчивому горению дуги. В статическом состоянии баланс напряжений в сварочной цепи имеет вид
При изменении тока в сварочной цепи баланс мгновенных напряжений выглядит следующим образом:
ЭДС самоиндукции контура с дугой
В точке В при увеличении тока I1 на Δ IYL(di/dt)>0. Так как L>0, то di/dt >0, то в результате ток в цепи будет продолжать расти до значения Iа. При уменьшении тока и Δ IYL(di/dt) di/dt В неустойчивый. Иначе обстоит дело в точке А. Если ток I2 возрастет на ΔI то в соответствии с уравнением (4.6) L(di/dt) 0 и di/dt I2. При снижении тока I2 на Δ IYL(di/dt)>0 и di/dt>0, вследствие чего ток возрастает до прежнего значения I2, т.е. дуга горит устойчиво. При жесткой статической ВАХ устойчивое горение дуги обеспечивается при использовании источников питания с круто- и пологопадающей внешней характеристикой. При возрастающей статической ВАХ дуги применяют источники с жесткими внешними характеристиками. Сварочный ток при питании дуги от источника с падающей ВАХ можно регулировать, изменяя полное сопротивление цепи дуги, ее длину, напряжение холостого хода источника питания. При изменении полного сопротивления цепи дуги (рис. 4.6) можно уменьшать сварочный ток от номинального значения до значения, соответствующего пересечению статической ВАХ дуги и внешней характеристики источника. При большом полном сопротивлении цепи дуга вообще гореть не будет, так как для любого значения тока напряжение питания будет меньше напряжения, необходимого для горения дуги.
При уменьшении напряжения холостого хода источника его внешние характеристики смещаются влево (рис. 4.6, б) и пересекаются со статической ВАХ дуги при меньших значениях тока. Очевидно, что снижать напряжение холостого хода источника можно до значений, при которых обеспечивается зажигание дуги. При увеличении ее длины статические ВАХ смещаются вверх, а точки их пересечения с внешней характеристикой источника будут соответствовать меньшим значениям тока (рис. 4.6, в). При черезмерном увеличении длины дуга погаснет. Кроме основных требований по обеспечению надежного зажигания, устойчивости горения и регулирования сварочного тока, которые являются общими для всех источников питания сварочной дуги, к источникам переменного тока предъявляются дополнительные требования. Они связаны с их динамическими свойствами, т. е. способностью восстанавливать напряжение в соответствии с изменившимся током. Так, при погасании дуги напряжение должно быстро восстанавливаться до значения зажигания, так как в противном случае повторного зажигания может не произойти и в горении дуги наступят значительные перерывы. Для надежного повторного зажигания дуги переменного тока необходимо увеличивать сварочный ток и напряжение холостого хода источника, а также использовать источники с большой индуктивностью. От динамических свойств источников переменного тока зависит качество сварочного шва. Быстрое нарастание тока короткого замыкания при касании каплей электродного металла шва приводит к ее разбрызгиванию и ухудшению качества сварочных работ. Для устранения этого в сварочную цепь последовательно с дугой включают дроссель или применяют источники с крутопадающими характеристиками. Швы сварных соединений в зависимости от взаимного расположения деталей подразделяют на стыковые, угловые, тавровые и нахлесточные форма и размеры шва зависят от режима сварки. При ручной дуговой сварке основными параметрами режима являются диаметр электрода, значения тока и напряжения, род и полярность тока скорость сварки. При выборе значения сварочного тока необходимо помнить, что с его увеличением возрастает количество выделенной теплоты и повышается давление дуги. При этом глубина провара возрастает. Большой ток повышает скорость плавления электрода и приводит к образованию швов с повышенной напряженностью металла. Значение сварочного тока определяется также видом соединения: тавровые и нахлесточные соединения выполняют большим током по сравнению со стыковым. Если для работ используют электроды диаметром 1,5. 6 мм, что соответствует толщине свариваемого металла 0,5. 10 мм, значение рабочего тока ориентировочно можно определить по формуле
С уменьшением диаметра электрода при неизменной силе тока возрастает плотность тока. стабилизируется перемещение. — способствует улучшению устойчивости горения дуги из-за меньшего катодного падения напряжения, чем в воздухе; — из-за меньшей теплопроводности аргона уменьшаются тепловые потери столба дуги, что также приводит к увеличению устойчивости горения дуги; — при разряде в аргоне происходит катодное распыление металла, что приводит к его очистке, в частности от оксидов, например от оксида алюминия и улучшению качества шва. Технические данные аппаратов для аргонодуговой сварки приведены в таблице 4.2. При горении дуги возникает термоэмиссия с катода.
Это явление нежелательное, поэтому для увеличения тепловой мощности дуги применяют обратную полярность. Кроме того, при прямой полярности расплавленная ванна металла покрывается пленкой окиси, что препятствует сплавлению деталей. Поэтому аргонодуговую сварку ведут на переменном токе или на постоянном токе обратной полярности. При сварке на переменном токе в схему включается осциллятор для облегчения зажигания дуги и для повышения устойчивости ее горения. Аргонодуговая сварка производится с плавящимся и неплавящимся вольфрамовым электродом. Чаще используется неплавящийся вольфрамовый электрод. При работе на постоянном токе применяются обычные сварочные генераторы с баластными реостатами РБ-200, РБ-300, включаемыми последовательно в сварочную цепь для регулирования сварочного тока при малых значениях и для обеспечения устойчивости горения дуги. Максимальный сварочный ток некоторых горелок составляет А) ГРАД-200-250, ГРАД-400-400, ЭЗР-3-58-100, АР-10 малая-120, АР-10 большая-400. Напряжение холостого хода 130-200В. Сущность этого метода заключается в том, что в зону сварки с постоянной скоростью подается электродная проволока диаметром 0,5-2 мм в струе углекислого газа (рис. 4.7). Роль углекислого газа состоит в защите расплавленного металла от окружающей среды. С целью уменьшения окисляющего действия углекислого газа электродная проволока имеет повышенное содержание раскисляющих элементов (марганца, кремния). Данный способ сварки особенно эффективен для сварки металлов небольших толщин порядка 1-2 мм и особенно для швов сложной конфигурации, так как их сварка другими способами, например под флюсом, затруднена или вообще невозможна закрытия шва слоем флюса. Сварка в углекислом газе выполняется в полуавтоматическом ил» автоматическом режиме. Для этого используются источники постоянного тока: — генераторы типа ГРС. Горелки для полуавтоматической сварки бывают двух типов: — для сварки на малых токах без водяного охлаждения (до 300 А). — для сварки на больших токах с водяным охлаждением. Для сварки используется углекислый газ, получаемый из углекислоты, транспортируемой в черных баллонах с желтой надписью «СО 2 сварочный» емкостью 40 л, в который заливается 12,7 м 3 углекислоты, дающей при испарении 25 кг углекислого газа. Если использовать пищевую углекислоту, то ее необходимо осушать, для этого между баллоном и редуктором устанавливается осушитель газа. Наилучшие результаты получаются при сварке различных видов сталей и особенно при работе на постоянном токе обратной полярности. В этом случае уменьшается разбрызгивание металла, уменьшается устойчивость горения дуги. Принцип данного вида сварки заключается в том, что расплавление электродного металла и свариваемых деталей осуществляется за счет протекания электрического тока через расплавленный флюс (шлак), обладающий электропроводностью. Этот вид обеспечивает сварку деталей большой толщины, доходящей до 2.5м, что невозможно осуществить другими способами сварки. Свариваемые детали заключаются в медные водоохлаждаемые ползуны и нижнюю (начальную)и верхнюю(конечную) планки, служащие одновременно для начала и окончания шва. Шлаковая ванна формируется внизу, в колодце, образованном свариваемыми деталями, держателями и нижней планкой. По мере сваривания деталей медные держатели поднимаются вверх со скоростью, равной скорости образования шва. Электроды могут быть проволочными, пластинчатыми или ленточными. Может быть один или несколько электродов. Наиболее распространенные аппараты с одним и тремя электродами, хотя могут быть (и имеются) аппараты с 9 и 18 электродами. Данные некоторых аппаратов электрошлаковой сварки приведены в таблице 10-3. Принцип электронно-лучевой сварки заключается в концентрированном нагреве соединяемых деталей за счет использования кинетической энергии ускоренных электронов в высоком вакууме. В результате бомбардировки электронным пучком кинетическая энергия превращается в теплоту, используемую для осуществления сварки плавлением. Для осуществления этого вида сварки необходимо получить свободные электроны, сфокусировать их в тонкий пучок и ускорить до необходимой энергии. Все это осуществляется в устройстве, называемом электронной пушкой. Свободные электроны получаются из накаленного катода, а ускорение осуществляется при прохождении электронами электрического поля высокой напряженности между катодом и анодом. Фокусировка пучка осуществляется специальной магнитной линзой, а его отклонение в заданном направлении или сканирование по определенной программе осуществляется отклоняющими катушками. Технические характеристики аппаратов электрошлаковой сварки Этот способ сварки имеет ряд существенных достоинств перед другими, главными из которых являются следующие: 1. Плотность поступающей в зону энергии можно очень точно регулировать, что позволяет широко варьировать глубину провара толщину свариваемых изделий. 2. Возможна сварка деталей любой конфигурации, поскольку электронный луч легко управляется с помощью электрических и магнитных полей, то возможна сварка деталей любой конфигурации. 3. Околошовная зона имеет очень незначительную толщ] поэтому при сварке практически не происходит нагрев свариваемых деталей. 4. Возможность фокусировки пучка электронов до микрон) размеров позволяет использовать этот вид сварки для целей микроэлектроники, радиотехники. 5. Сварка в вакууме исключает любое окисление свариваемых. деталей. Это позволяет соединять детали из весьма тугоплавких материалов, таких как молибден, вольфрам, что недоступно для других способов сварки. Недостатком данного способа является наличие вакуумных насосов и вакуумных систем, а также сложность устройства и технологии, ] требует высококвалифицированного обслуживающего персонала. Параметры некоторых типов установок для электронно-лучевой сварки приведены в таблице 44.
Конструкционной основой электронно-лучевой сварки являете вакуумная камера на которой сверху монтируется электронная пушка. Ток пучка, а значит и мощность нагрева можно регулировать как изменением тока накала катода и плотности тока ускоренных электронов, а также ускоряющим напряжением. Катоды пушек могут быть прямонакаленные вольфрамовые в виде спиралей или нитей или подогревные, состоящие из подогревного катода и подогревной таблетки. Подогревные катоды обычно изготавливаются из гексаборида лантана, дают значительно большую плотность тока, чем прямонакальные. Но они более сложны в изготовлении. Для создания потока ионизированных частиц используется дуговой разряд между двумя электродами в продуваемом инертными газами канале, стенки которого охлаждаются водой. За счет охлаждения внешней части плазменного столба, он концентрируется в центре канала, что приводит к высокой степени ионизации газа и концентрации в нем большой энергии. Эта энергия и используется для сварки или резки металлов. Источниками питания плазменного сварочного аппарата являются сварочные генераторы постоянного тока или сварочные выпрямители. Возбуждение дугового разряда осуществляется осциллятором, включаемым параллельно источнику тока, а регулирование сварочного тока осуществляется балластным сопротивлением, включаемым последовательно источнику тока. Плазменная струя нашла наиболее широкое применение для резки металлов, не поддающихся обычным способам резки, например, для резки нержавеющей стали, меди, алюминия, керамики. Обычно используется смесь аргона с водородом, концентрация которого может достигать 30%. Плазменной струей можно сваривать металлы и неметаллы, а также их сочетания. В таблице 4.5 приведены параметры установок плазменной сварки. Контактная сварка или сварка сопротивлением. Этот вид сварки относится к одной из разновидностей сварки давлением, при которой детали механически сжимаются для получения соединения и в месте стыка каким-то образом подводится энергия, используемая для разогрева свариваемых деталей. При контактной сварке или сварке сопротивлением энергия выделяется за счет пропускания тока через свариваемые детали и выделения тепловой энергии на большом сопротивлении контакта. Если сами детали не являются практически сопротивлением электрическому току, то место стыка представляет большое сопротивление и вся выделяемая на нем тепловая энергия идет на разогрев деталей. Контактная сварка бывает трех разновидностей, определяемых геометрией шва и электродов: стыковая, точечная, роликовая. На рис. 10-6 показаны эти типы сварки. Во всех случаях переходное сопротивление контакта может быть определено выражением
При Т близкой к комнатной К т можно принять равным единице. АL-АL-0,006; Сu-Сu-0,0004; АL-Сu-0,001 сталь-сталь-0,0076; Аg-Аg-0,0006; латунь-латунь-0,00067
1. Как формируются падающие характеристики в сварочном трансформаторе? 2. Перечислите способы регулирования сварочного тока. 3. Какие величины определяют из опытов холостого хода и короткого замыкания? 4. Назовите способы сварки сварочными трансформаторами. 5. Как осуществляется плавное регулирование сварочного тока? 6. Каким должно быть безопасное напряжение для работы сварщика? 7. Для каких целей при сварке необходимо регулирование сварочного тока? | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||