Что такое допплеровское исследование сосудов

Допплерография и дуплексное сканирование сосудов

Допплерография и дуплексное сканирование — два родственных метода ультразвукового исследования сосудов.

Суть и отличия методов

Допплерография сосудов головного мозга, шеи, верхних и нижних конечностей, как и их дуплексное сканирование, относится в неинвазивным диагностическим процедурам. Их преимуществом являются доступная стоимость и отсутствие противопоказаний, высокая информативность.

Использование эффекта Допплера позволяет вычислить скорость кровотока, определить его нарушение в отдельных сосудах. Чаще всего этих данных достаточно, чтобы врач поставил точный диагноз. В свою очередь дуплексное сканирование сосудов шеи, головы и конечностей даёт информацию не только о качестве кровотока, но и о геометрии сосудистого просвета, извилистости русла, наличии анатомических или послеоперационных аномалий, толщине стенок, появлении тромбов и атеросклеротических бляшек.

ГНИЦПМ предлагает воспользоваться возможностями современной ультразвуковой диагностики в рамках комплексного или обычного обследования.

Показания к ультразвуковой диагностике сосудов

Допплерография сосудов мозга и других органов целесообразна в качестве диагностического инструмента при плановых профилактических обследованиях, когда вероятность серьёзных проблем мала. У больных остеохондрозом допплерография сосудов головы и шеи позволяет выявить влияние недуга на кровеносную систему. Своевременная допплерография сосудов нижних конечностей важна в постановке таких диагнозов, как:

Так как дуплексное сканирование более информативно, то оно эффективно для уточнения диагноза. Дуплексное сканирование сосудов мозга назначают в тех же случаях, что и обычную допплерографию, а также при необходимости локализации проблемного участка. Это исследование рекомендуется проходить регулярно всем, достигшим 40-летнего возраста, и посетители нашего медицинского центра всё чаще пользуются такой возможностью.

В предупреждении такого опасного нарушения, как инсульт, важную роль играет сканирование брахиоцефальных артерий. Его назначают при:

Дуплексное сканирование артерий нижних конечностей, как и сканирование вен, даёт специалисту развёрнутую картину состояния сосудов. Оно не только отображает наличие нарушений кровотока, но и объясняет их причину, будь то сосудистые аномалии, последствия травм, атеросклеротические изменения или другое. Чаще всего к нам обращаются по направлению флеболога, чтобы провести сканирование вен нижних конечностей.

Если вы когда-либо замечали у себя:

то сканирование сосудов нижних конечностей внесёт ясность в природу вашего состояния, а значит, поможет вовремя начать корректирующую терапию.

Страница носит информационный характер. Точный перечень оказываемых услуг и особенности проведения процедур узнавайте по телефонам.

Источник

Что такое УЗДГ?

УЗДГ или Ультразвуковая допплерография – это метод исследования при помощи ультразвука с использованием эффекта Допплера.

В 1842 году австрийский физик Кристиан Допплер открыл знаменитый физический эффект, названный впоследствии его именем. Эффект универсален для любых волн (звуковых, световых, радиоволн) и позволяет, путем регистрации изменений частотных характеристик волны, определить направление движения и измерить скорость движущегося объекта.

Эффект Допплера сегодня используется повсеместно, в астрономии при наблюдении движения звезд и планет, в радиолокации, сотрудниками ГАИ, нашлось ему место и в медицине.

Эффект Допплера в медицине используется для определения скорости и направления движения крови в кровеносных сосудах и полостях сердца, а также направления и скорости движения стенок сердца при его сокращениях. Эффект применяется при проведении ультразвуковых исследований с использованием ультразвуковых волн диагностического диапазона частот.

Использование эффекта допплера в медицинских ультразвуковых приборах называется УЛЬТРАЗВУКОВАЯ ДОППЛЕГРАФИЯ или УЗДГ.

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов

Существует несколько технологий применения эффекта, это такие способы, как цветовое картирование, когда просвет сосуда окрашивается в разные цвета, в зависимости от свойств потока, и спектральный анализ, когда вычисляются скорости потока крови в разные фазы сердечного цикла, с расчётом рядя диагностических коэффициентов (индексов).

В современных приборах эти технологии объединены, и часто можно слышать термины «дуплексная» или «триплексная» допплерография сосудов, «дуплексное» или «триплексное» сканирование.

Какие существуют методы УЗДГ?

1. УЗДГ стандартно входит в ультразвуковое исследование сердца (Эхокардиография, ЭХОКГ, ЭХО с допплером — синонимы). Позволяет оценить состояние клапанов сердца и кровоток в полостях и крупных сосудах.

2. УЗДГ ветвей дуги аорты (синонимы – УЗДГ сосудов шеи, УЗДГ брахиоцефальных сосудов) — исследование основных артериальных и венозных сосудов, участвующих в кровоснабжении шеи, головы и головного мозга. Это одно из наиболее часто проводимых исследований, позволяет выявлять нарушение проходимости сонных и позвоночных артерий при атеросклерозе, аномалиях сосудов и патологии позвоночника. В качестве дополнительного метода может проводиться так называемая ТКД (транскраниальная допплерография), позволяющая непосредственно оценить кровоснабжение головного мозга.

3. УЗДГ артерий верхних или нижних конечностей. Проводится при нарушениях проходимости периферического артериального русла (атеросклероз, облитерирующий эндартериит, сахарный диабет).

4. УЗДГ вен верхних или нижних конечностей. Проводится при образовании тромбов в периферических венах, а также при варикозной болезни для оценки состоятельности венозных клапанов и определения проходимости вен.

УЗДГ внутрибрюшных и забрюшинных сосудов.

Существует 5 объектов исследования:

1. УЗДГ брюшной аорты и подвздошных артерий – как продолжение УЗДГ артерий нижних конечностей – при атеросклеротических и иных стенозах.

2. УЗДГ нижней полой вены – для диагностики ее тромбозов.

3. УЗДГ висцеральных или непарных ветвей брюшной аорты – исследование сосудов, участвующих в кровоснабжении желудка, поджелудочной железы, 12-перстной кишки, печени и селезенки, а также толстого и тонкого кишечника. Является важным дополнением к УЗИ органов пищеварения для выявления возможного их ишемического поражения.

4. УЗДГ почек – исследование почечных артерий на всем протяжении, от аорты до мельчайших сосудов паренхимы, для диагностики как возможного нарушения проходимости основных сосудов, так и распознавания заболеваний почек. Современная аппаратура позволяет частично использовать технологию при рутинном исследовании почек, для оценки внутрипочечного кровотока.

5. УЗДГ печени – исследование всех систем кровоснабжения печени (артериального и венозного русла) при хронических заболеваниях печени – гепатитах, гепатозе, фиброзе, циррозе, для оценки тяжести поражения.

Помимо перечисленных областей, УЗДГ является либо стандартным, либо важным дополнительных компонентом при исследованиях:

Допплерография также широко применяется во всех стандартных исследованиях при выявлении опухолевых процессов в органах или лимфоузлах, для оценки качества кровотока (кровоток при злокачественных и доброкачественных образованиях различен).

Эффективность и качество полученной при УЗДГ информации в большой мере зависят от уровня подготовки специалиста УЗИ или функциональной диагностики, проводящего УЗДГ и от качества ультразвукового прибора (ряд методик требуют дополнительного оснащения аппарата).

Все перечисленные методики в полном объеме проводятся в Клинике профессора Кинзерского, высококвалифицированными врачами на аппаратуре экспертного и высокого класса. Приглашаем пройти обследование и получить необходимую помощь в нашей клинике.

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов

Статья проверена доктором медицинских наук, профессором Александром Юрьевичем Кинзерским

Источник

Допплерография, допплер сосудов

Допплерография (допплер сосудов) – это современная методика визуализации, которая применяется для выявления патологических изменений в крупных сосудах до начала клинических проявлений или на ранних стадиях заболеваний. Наиболее часто допплер используют для диагностики сосудистых заболеваний, которые проявляются нарушениями коронарного и мозгового кровотока.

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов

Показания к допплерографии сосудов:

атеросклеротических изменений в крупных сосудах сердца, головы и шеи, ног, а также в коронарных и позвоночных артериях;

васкулитов различной этиологии;

спазмов и параличей сосудов ног, почек и сердца;

тромбофлебитов и варикозного расширения вен;

травматических повреждений сосудов;

при подозрении на наличие аневризм, анастомозов или врожденных аномалий артерий и вен.

Исследования вен нижних конечностей

Допплер вен нижних конечностей является наиболее информативным методом диагностики тромбофлебитов и варикозного расширения сосудов и выявляет:

поражения глубоких и поверхностных вен ног на ранних стадиях;

состояние стенок вен и артерий;

кровоток в сосудах верхних и нижних конечностей.

К основным симптомам этой патологии относятся:

онемения и боли в мышцах конечностей;

посттромбофлефические нарушения с трофическими изменениями в тканях;

хроническая венозная недостаточность и наблюдение состояния вен при установленном диагнозе варикозной болезни.

Показания к допплерографии сосудов головы и шеи

Большую информативность имеет этот метод визуализации патологических процессов при обследовании нарушений кровообращения в сосудах шеи и головы при наличии следующих жалоб:

стойких и частых головных болях, мигренях;

при головокружениях и повторных обмороках;

при шуме в ушах или голове;

при различных видах нарушений координации;

при изменениях полей зрения, внезапной потере или снижении зрения;

после черепно-мозговых травм (для определения целостности сосудов непосредственно после травмы и состояния сосудов головного мозга при признаках нарушения мозгового кровообращения в разные периоды после ЗЧМТ);

при травмах шейного отдела позвоночника;

при злокачественной гипертонии и при выраженной гипотонии;

после перенесенных инсультов;

при наличии признаков начальных, преходящих или хронических нарушений мозгового кровообращения и дисциркуляторной энцефалопатии;

при подозрении на врожденные или приобретенные сосудистые аномалии головного мозга и крупных сосудов шеи;

при остеохондрозе шейного отдела позвоночника.

Основными преимуществами этого метода является возможность наблюдать измерения в динамике, а также проведение функциональных проб.

Показания для обследования брюшной аорты и ее ветвей

Допплер сосудов брюшной полости (аорты и ее ветвей, а также висцеральных сосудов) широко применяется для диагностики:

при подозрении на врожденную патологию аорты и ее ветвей;

при наличии признаков аневризм и атеросклеротических повреждений;

для диагностики и уточнения локализации объемных патологических образований.

Специалистами нашей клиники широко применяются методы диагностики заболеваний с использованием цветного картирования (допплерография сосудов).

Для того, чтобы записаться на прием, позвоните нам по телефону или запишитесь через онлайн запись.

Источник

Допплеровские методы, основы

Допплеровские методы, основы

Ультразвуковые допплеровские методы являются эффективным средством неинвазивного исследования характеристик движения тканей в организме человека и широко применяются в кардиологии и сосудистой диагностике. Рассматриваемые методы бурно развиваются, поэтому терминология в этой области еще не устоялась. Кроме того, конкуренция между фирмами-производителями приводит к тому, что близкие или по сути одинаковые технологии (методики) в разных фирменных руководствах, рекламных проспектах: и даже в научных публикациях имеют разные названия. Для русскоязычного читателя проблема усугубляется тем, что в этой области сформировался определенный англо-американский жаргон, который де-факто приобрел «права гражданства». Например, вместо термина «допплеровская эхография», или «допплерография», обычно употребляется просто «допплер» (‘Doppler’). К сожалению, такой жаргон получил настолько широкое распространение, что сейчас не представляется возможным кардинально улучшить ситуацию. Поэтому и в предыдущих томах данного руководства мы были вынуждены, например, согласиться с использованием термина «энергетический допплер»; по этой же причине мы в дальнейшем будем пользоваться терминами «спектральный допплер» и т.п. При этом читатель, разумеется, должен отдавать себе отчет в том, что «допплер» это не ошибочное написание фамилии Допплер, а сокращенное, точнее жаргонное, обозначение термина «допплеровская эхография».

Можно ввести следующую классификацию допплеровских методов в зависимости от способов получения и отображения информации.

В качестве разновидностей цветовой допплеровской эхографии используются следующие методы:

Приборы, оценивающие скорость кровотока, являются наиболее простыми из допплеровских приборов. В настоящее время они практически не применяются, а метод оценки скорости (средней или максимальной) используется как один из режимов в более совершенных приборах спектральной допплерографии.

Метод допплеровской оценки ЧСС в силу простоты и эффективности находит широкое применение при исследовании ЧСС плода в фетальных мониторах.

Чаще всего в настоящее время применяются методы спектрального допплера и цветового допплеровского картирования.

В ультразвуковых сканерах перечисленные методы, как правило, используются вместе с другими известными методами представления информации, такими как:

Ультразвуковые приборы, в которых используется только режим спектрального допплера и отсутствует В-режим, иногда называют приборами «слепого» допплера.

Ультразвуковые сканеры, в которых наряду с В-режимом применяется спектральный допплер (D-режим), называются дуплексными приборами. Режим отображения на экране сканера одновременно В- и D-эхограмм называется дуплексным режимом В+D.

Если в приборе одновременно применяются режимы В, CFM и D, то такой режим В+CFM+D называется триплексным.

Эффект Допплера

Основой допплеровских методов является эффект Допплера, который состоит в том, что частота колебаний звуковых волн, излучаемых источником (передатчиком) звука, и частота этих же звуковых волн, принимаемых некоторым приемником звука, отличаются если приемник и передатчик движутся друг относительно друга (сближаются или удаляются). Тот же эффект наблюдается, если в приемник поступают сигналы источника звука после отражения движущимся отражателем. Зтот последний случай имеет место при отражении ультразвуковых сигналов от движущихся биологических структур (например, клеточных элементов крови).

Поясним эффект Допплера на примерах, в которых для простоты будем считать, что источник звука излучает колебания одного тона (одной частоты).

Движущийся приемник звука

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов
Рис. 1. Эффект Допплера при движении приемника,

a — приемник 1 движется к источнику со скоростью vnp, приемник 2 движется от источника со скоростью vпр.
б — колебания, излучаемые источником с частотой f0.
в — колебания в приемнике 1— частота f0+F.
г — колебания в приемнике 2 — частота f0–F.

При движении приемника по направлению к источнику со скоростью vпр (приемник 1 на рис. 1.а) взаимная скорость сближения пиков волн и приемника увеличивается по сравнению со скоростью звука и становится равной С + vпр. Очевидно, что и частота колебаний на входе приемника увеличивается пропорционально росту скорости и становится равной: f = f0(C + vnp)/C=f0 + F

На рис. 1.в показан вид колебания с этой частотой, большей частоты источника на величину дополнительного сдвига частоты

При движении приемника по направлению от источника со скоростью (–vnp) (приемник 2 на рис. 1.а) скорость пиков волн относительно приемника уменьшается по сравнению со скоростью звука и становится равной С–vnp. Частота колебаний на входе приемника в этом случае равна

f = f0(C – vnp)/C = f0 – F

На рис. 1.г показан вид колебания с этой частотой, которая отличается от частоты источника на величину того же частотного сдвига, но с отрицательным знаком.

Движущийся источник звука

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов
Рис. 2. Эффект Допплера при движении источника,

На рис. 2.в показан вид колебания на входе приемника с частотой, большей, чем частота источника, на величину частотного сдвига

Если источник движется в противоположном направлении от приемника, тс частота на входе приемника уменьшается:

f = f0C/(C + vист) = f0 – F

где частота сдвига

Движущийся отражатель ультразвука

В медицинских ультразвуковых приборах источник и приемник сигналов объединены в датчике прибора, т.е. излучение и прием сигналов происходит в одном месте. При излучении ультразвука внутрь биологических структур ультразвук отражается и рассеивается на их неоднородностях. Эхо-сигналы, отражаемые в сторону датчика, принимаются находящимся в датчике ультразвуковым преобразователем, который является приемником эхо-сигналов. Если наблюдаемые биологические структуры неподвижны, эхо-сигналы от них не имеют частотного сдвига. В случае же движения биологических структур в эхо-сигналах появляется частотный сдвиг, изменяющий значение частоты эхо-сигнала по сравнению с частотой излучаемого ультразвукового сигнала.

На рис. 3 схематически изображены совмещенные источник и приемник ультразвука и отражатель, движущийся в сторону источника и приемника со скоростью v. Колебания, приходящие от источника на движущийся отражатель, имеют такой же вид, как и в первом рассмотренном нами случае «движущийся приемник звука». Частота колебаний на отражателе

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов
Рис. 3. Эффект Допплера при движении отражателя,

а — источник и приемник совмещены и неподвижны, отражатель движется к ним со скоростью v.
б — колебания источника с частотой f0.
в — колебания, приходящее на отражатель,
г — колебания в приемнике.

Отражая эти колебания в сторону приемника, отражатель выступает в роли источника, поэтому приходящие от него к приемнику колебания имеют частоту

аналогично тому, как это было во втором случае «движущийся источник звука».

В результате частота эхо-сигналов на входе приемника определяется выражением

Очевидно, если отражатель движется в сторону, противоположную от источника и приемника, выражение для частоты на входе приемника изменяется:

Допплеровский сдвиг частоты. Допплеровский угол

В ультразвуковых диагностических приборах определяется не сама частота колебания, поступающего в приемник, а разность этой частоты f и частоты f0 — колебания, излучаемого источником. Эта разность называется допплеровским сдвигом частоты Fд. Для случая движения отражателя в сторону датчика его можно вычислить следующим образом:

Кстати, это требование всегда выполняется в режиме В, где тоже в процессе сканирования периодически излучаются короткие импульсы, правда, в отличие от режима импульсноволнового допплера — в разных направлениях (лучах).

Стремление выполнить требование однозначного измерения глубины в системах импульсноволнового допплера приходит в противоречие с требованием однозначного определения допплеровского сдвига частоты. Об этом подробнее рассказывается ниже.

Сигналы и их спектры

Особенности допплеровских измерений спектра скоростей движения биологических структур довольно трудны для понимания. Вот почему в этом разделе даются некоторые начальные сведения о характеристиках сигналов, использующихся для допплеровских измерений. Эти сведения известны инженерам, участвующим в разработке, производстве и эксплуатации ультразвуковых приборов, но врачи — пользователи аппаратуры с этой информацией знакомы, как правило, недостаточно хорошо.

На рис. 23 (слева) представлены основные виды сигналов, используемых в ультразвуковых диагностических системах.

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов
Рис. 23. Вид сигналов, используемых в ультразвуковой диагностике (слева), и соответствующих им амплитудно-частотных спектров (справа).

Сигналы и их спектры связаны между собой преобразованием Фурье,
а — В-режим,
б — CW-режим,
в — PW-режим — одиночный импульс,
г — PW-режим — пачка из N импульсов.

Эти сигналы излучаются датчиками, а получаемые в результате отражения в тканях эхо-сигналы принимаются теми же датчиками и далее усиливаются и преобразуются в системе. Каждый из сигналов может быть представлен в виде суммы синусоидальных (гармонических) колебаний с различными частотами, амплитудами и фазами. Такое представление называется спектром сигнала. Спектр характеризует распределение интенсивности сигнала по частотам, т.е. определяет, какие частотные составляющие представлены больше или меньше в сигнале. Спектр — очень важная характеристика сигнала и связана с временным видом сигнала взаимно-однозначной зависимостью. Если известен вид сигнала, то спектр сигнала может быть вычислен с помощью так называемого преобразования Фурье. И наоборот — зная амплитудно-фазовый спектр, можно определить вид сигнала на оси времени путем вычисления обратного преобразования Фурье. Естественно, принимаемые эхо-сигналы также характеризуются спектром, который может быть вычислен с помощью преобразования Фурье. В допплеровских ультразвуковых системах, предназначенных для оценки спектра скоростей кровотока, принятые эхо-сигналы подвергаются обработке в специальных процессорах, вычисляющих преобразование Фурье, т.е. оценивающих спектр эхо-сигналов. Для ускорения вычислений применяется специальный алгоритм — быстрое преобразование Фурье (БПФ, или FFT — fast fourier transform).

Если длительность пачки равна длительности сигнала в режиме CW, то ширина каждого пика спектра пачечного сигнала в этом случае равна ширине единственного пика спектра сигнала CW. Расстояние F между отдельными пиками на оси частот равно частоте повторения импульсов (PRF).

Уровень отдельных пиков различен и определяется огибающей (пунктирная линия на рис. 23.г), которая в точности повторяет форму спектра одиночного импульса пачки (рис. 23.в).

Измерение спектра частот допплеровского сдвига. Однозначность измерения

Рассмотрев вид сигналов и их спектров, мы можем теперь пояснить, как влияет вид сигнала (или его спектра) на качество измерения спектра частот допплеровского сдвига.

Вычисленный таким образом спектр частот допплеровского сдвига назовем истинным спектром, так как предполагается, что он измерен без всяких ошибок, которые всегда имеются в реальных условиях измерения.

На рис. 24.а дан пример спектра Gист(f) для прямого кровотока.

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов
Рис. 24. Измерение спектра частот допплеровского сдвига в режиме CW.

а — истинный спектр,
б — спектр излучаемого непрерывного сигнала,
в — вид спектра частот, получаемого на выходе приемного тракта (измеряемый спектр) — форма спектра практически повторяет вид истинного спектра частот допплеровского сдвига.

В режиме CW спектр излучаемого сигнала, как уже говорилось, очень узкий (рис. 24.б), т.е. излучается практически одна частота f0. Поэтому спектр частот эхо-сигналов кровотока на выходе датчика очень близок к истинному спектру частот допплеровского сдвига Gист(f). Некоторые отличия могут быть связаны с тем, что приемно-передающий ультразвуковой луч датчика не бесконечно узкий, поэтому принимаются сигналы в некотором объеме сосуда, а не в одном сечении — что может приводить к расширению спектра по сравнению с истинным. Если это расширение незначительно и уровень эхо-сигналов достаточен, чтобы уверенно наблюдать их на фоне мешающих шумов и помех, то измеренный спектр частот допплеровского сдвига практически повторит по форме истинный спектр (рис. 24.в).

Попытка использовать для измерения спектра частот допплеровского сдвига одиночный короткий импульс обречена на неудачу, так как такому импульсу соответствует широкий спектр частот, существенно превышающий по ширине истинный спектр частот допплеровского сдвига (сравним рис. 25.а и 24.а). Спектр частот на выходе приемного тракта в основном повторяет форму спектра излучаемого сигнала (см. рис. 25.б).

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов
Рис. 25. Измерение спектра частот допплеровского сдвига с помощью одиночного короткого импульса (истинный спектр показан на рис. 24а).

а — спектр излучаемого сигнала,
б — спектр частот на выходе приемного тракта — форма спектра почти повторяет форму спектра сигнала и не имеет ничего общего с истинным спектром кровотока.

Физический смысл результата понятен: каждой из частотных составляющих сигнала, а не только частоте f0, соответствует спектр частот допплеровского сдвига, и если просуммировать все эти спектры, то и получим широкий спектр частот, не имеющий почти ничего общего с оцениваемым истинным спектром.

Можно пояснить полученный результат с помощью простой образной аналогии — полагая, что мы желаем нарисовать известный нам истинный спектр частот допплеровского сдвига на рис. 24.а с помощью фломастеров различной толщины.

В случае непрерывноволнового допплера мы для этого имеем тонкий фломастер с шириной линии, равной ширине спектра непрерывного сигнала на рис. 24.б. Поэтому рисунок спектра на рис. 24.б очень похож на истинный спектр.

В случае одиночного импульса фломастер слишком толст (ширина его линии равна ширине спектра сигнала на рис. 25.а) для того, чтобы изобразить тонкий рисунок истинного спектра.

В режиме PW, когда излучается пачечный сигнал, спектр излученного сигнала имеет многопиковый характер и ширина каждого пика очень узкая. Если истинный спектр частот допплеровского сдвига имеет относительно малую ширину (рис. 26.а), так что ширина его не превышает частоты повторения импульсов F (рис. 26.б) — то измерение спектра частот допплеровского сдвига возможно. Измеренный спектр при этом также получается многопиковым (рис. 26.в), хотя соответствует истинному спектру только та часть полученного в результате спектра, которая ограничена определенным интервалом измерения, в пределах от (f0 – F/2) до (f0 + F/2), где F — частота повторения импульсов. На рис. 26.в правильно измеренный спектр показан сплошной линией, а ложные измерения — пунктиром.

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов
Рис. 26. Измерение спектра частот допплеровского сдвига в режиме PW при малой ширине истинного спектра,

а — истинный спектр частот допплеровского сдвига с положительными и отрицательными составляющими,
б — спектр излучаемой пачки импульсов с малой частотой повторения F.
в — полученный спектр на выходе приемника — форма спектра оценивается однозначно в интервале измерения.

Опять поясним физический смысл полученного результата: в отличие от непрерывноволнового допплера, когда излучается практически одна частота f0, при импульсноволновом допплере излучаются, кроме нее, составляющие с частотами f0 + F, f0 – F, f0 + 2F, f0– 2F и т.д. Каждая из этих частот порождает свой спектр частот допплеровского сдвига в соответствии с вышеприведенными соотношениями.

Возвращаясь к аналогии с рисунком фломастером, можно сказать, что в режиме импульсно-волнового допплера мы имеем несколько тонких фломастеров, жестко связанных между собой (гребенку фломастеров). Рисуя центральным из них истинный спектр, мы вынужденно повторяем другими фломастерами ту же картину, но со сдвигом по оси частот вправо и влево.

Появление в этом случае ложных изображений спектра (aliasing-эффект), т.е. возможная неоднозначность измерения спектра частот допплеровского сдвига, является серьезным недостатком, присущим импульсноволновому допплеру.

Интервал однозначного измерения истинного спектра частот допплеровского сдвига ограничен диапазоном (–F/2, +F/2) относительно несущей частоты f0 излучаемого сигнала. Поэтому в режиме PW очень важен правильный выбор F — частоты повторения импульсов излучаемой пачки.

Действительно в примере, приведенном на рис. 26, при малой ширине измеряемого (истинного) спектра, в интервале измерения (–F/2, +F/2) спектр измеряется правильно. Если же ширина истинного спектра выходит за пределы интервала измерения, можно получить совершенно неправильную оценку истинного спектра. На рис. 27 изображен такой случай. Видно, что при ширине спектра, большей, чем частота повторения F, спектр на выходе приемника сильно искажен, так как на истинный спектр накладываются сдвинутые ложные картины того же спектра, т.е. опять имеет место aliasing-эффект. В результате определить истинный спектр невозможно. Это происходит вследствие малой частоты повторения F по сравнению с шириной оцениваемого спектра частот допплеровского сдвига.

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов
Рис. 27. Измерение спектра частот допплеровского сдвига в режиме PW.

a — истинный спектр с большой шириной полосы,
б — спектр излучаемой пачки импульсов с малой частотой повторения F.
в — спектр на выходе приемника — имеет место искажение формы истинного спектра и неопределенность направления кровотока.

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов
Рис. 28. Измерение спектра частот допплеровского сдвига в режиме FW (истинный спектр показан на рис. 27.а).

а — спектр излучаемой пачки импульсов со средней частотой повторения F.
б — спектр на выходе приемника — форма спектра не искажена, имеет место неопределенность направления кровотока.

Для того чтобы решить задачу однозначной оценки истинного спектра в этом случае, надо еще более увеличить частоту F, т.е. перейти к высокой частоте повторения импульсов (режим HPRF — high pulse repetition frequency). В этом случае возможно практически однозначное измерение истинного спектра частот допплеровского сдвига (рис. 29).

Что такое допплеровское исследование сосудов. Смотреть фото Что такое допплеровское исследование сосудов. Смотреть картинку Что такое допплеровское исследование сосудов. Картинка про Что такое допплеровское исследование сосудов. Фото Что такое допплеровское исследование сосудов
Рис. 29. Измерение спектра частот допплеровского сдвига в режиме PW (истинный спектр показан на рис. 24.а).

а — спектр излучаемой пачки импульсов с высокой частотой повторения F.
б — спектр на выходе приемника — форма спектра не искажена, в интервале измерения спектр и направление кровотока оцениваются однозначно.

Имея в виду, что Т = 1/F, можно переписать последнее неравенство F

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *