Что такое доказать тождество
Тождество. Тождественные преобразования. Примеры.
Тождества в основном применяются для решения линейных уравнений.
Тождеством называется равенство, которое верно при всех значениях переменных.
Или другими словами, тождество — это равенство, которое выполняется на всём множестве значений переменных, входящих в него, например:
В этих выражениях при всех значениях a и b равенство верное.
2 выражения с равными значениями при всех значениях переменных являются тождественно равными.
Равенство x+2=5 может существовать не при всех значениях x, а лишь при x=3. Это равенство не будет тождеством, это будет уравнением. Кроме того, тождеством будет равенство, которое не содержит переменные, например 25 2 =625.
Тождественное равенство обозначают символом «≡» (тройное равенство).
Примеры тождеств.
— Тождество Эйлера (кватернионы);
— Тождество Эйлера (теория чисел);
— Тождество четырёх квадратов;
— Тождество восьми квадратов;
Тождественные преобразования.
Тождественное преобразование выражения (преобразование выражения) – это подмена одних выражений другими, тождественно равными друг другу.
Для тождественных преобразований используют формулы сокращенного умножения, законы арифметики и другие тождества.
Выполним тождественные преобразования с такой дробью: .
Полученное тождество, при х ≠ 0 и х ≠ 1 (недопустимые значения), т.к. знаменатель левой части не может быть равен нулю.
Доказательство тождеств.
Для того, чтоб доказать тождество нужно сделать тождественные преобразования обеих или одной части равенства, и получить слева и справа одинаковые алгебраические выражения.
Например, доказать тождество:
Вынесем х за скобки:
Это равенство есть тождество, при х≠0 и х≠1.
Чтоб доказать, что равенство не является тождеством, нужно найти 1-но значение переменной (которое допустимо) у которой числовые выражения (которые были получены) станут не равными друг другу.
5−1 ≠ 5+1 — подставим, к примеру, 5.
Это равенство не тождество.
Разница между тождеством и уравнением.
Тождество верно при всех значениях переменных, а уравнение – это равенство, которое верно только при одном либо нескольких значениях переменной.
Это выражение верно лишь при х = 10.
Тождеством будет равенство, которое не содержит переменных.
Основные законы логики
Логика — это раздел философии. Он представляет собой науку о формах и законах правильного мышления. Закон логики — необходимая связь между логическими формами в процессе построения последовательного рассуждения. Цель его состоит в формулировании правил и рекомендаций, с помощью которых можно найти путь к истине. Это не законы самого окружающего мира, а правила мышления о нём.
Аристотель, который создал классификацию свойств бытия, всесторонне определяющих субъект, впервые сформулировал три из четырёх логических законов и подразумевал под этим предпосылку для объективной связи мыслей в процессе размышления. Основными в формальной логике считаются законы:
Без этого закона невозможно установить, что такое логическое следование, и понять смысл доказательства.
Логический принцип тождественности
Тождество — это примерное равенство, сходство объектов по какому-либо показателю. Принцип (синоним слова закон) его — один из основных логических законов формальной логики как науки, в соответствии с которым в процессе размышления любое суждение должно оставаться тождественными самому себе.
Аристотель формулировал это положение так: «Иметь не одно значение — значит, не иметь ни одного значения». В виде формулы этот принцип записывается следующим образом: А есть А или А = А, где А — мысль, которая может быть любой. На этом законе основаны многие положения логики. Например, следующие:
Нарушение закона тождества — пример, который привёл к логической ошибке. Ученик на уроке спрашивает учителя: «Можно наказывать человека за то, чего он не сделал?». «Конечно, нельзя», — отвечает учитель. «В таком случае не наказывайте меня, — говорит ученик, — я не сделал домашнюю работу». В этом диалоге нарушен логический принцип тождества, так как понятие «не сделал» применяется в разных значениях:
Получилось, что в одно и то же понятие было вложено два различных смысла. Нарушение закона может выражаться в следующих формах:
Нарушение закона тождества ведёт к неясности мысли, что совершенно недопустимо во многих областях, например, в юриспруденции. Неточное определение или неправильно истолкованное понятие в сфере права способствует появлению беззакония и произвола, поэтому в процессе мышления принцип тождественности выступает в виде важного правила.
Этот закон вводит требование об отсутствии в ходе размышлений подмены или смешения мысли об объекте или замены предмета мысли. Нужно учитывать, что даже в законодательных актах часто попадаются двусмысленности, а это обязательно приводит к разночтениям в истолковании и неоднозначности в применении.
Виды преобразований
Тождеством в математике называется равенство, которое верно при всех значениях, входящих в него переменных для различных классов функций. Значение этого слова — полное сходство, подобие объектов, явлений друг другу или самим себе. К тождествам можно отнести:
Тождество Эйлера — e iπ + 1 = 0 — часто приводят как пример феноменального результата, который устанавливает неочевидную зависимость между геометрией (число пи) и математическим анализом (экспонента). Формула связывает пять фундаментальных математических констант:
Тождественным преобразованием называются операции, которые проводятся для замены исходного выражения на тождественно равное. Например, x 3 — xy 2 = x (x — y)(x + y) — это тождество, так как вынесение за скобки общего множителя и применение формул сокращённого умножения являются тождественными преобразованиями. Для демонстрации подставим вместо переменных x и y произвольные значения. Пусть x = 5; y = 4. Получим слева: 125 — 5 x 16 = 45, справа 5 (5 — 4)(5 + 4) = 45. Совпадение обеих частей равенства доказывает тождественность.
Способы доказательства
Равенство и тождество, которое относится к предельному случаю равенства, — это термины, используемые в математике при решении уравнений. Для доказательства тождества нужно сделать тождественные преобразования выражений в одной или обеих частях равенства и получить одинаковые результаты. При выполнении преобразований необходимо обращать внимание на область допустимых значений (ОДЗ) переменных. Эти операции могут суживать ОДЗ или оставлять её прежней.
При переходе от выражения x + (-y) к выражению (x — y) область допустимых значений переменных x и y будет прежняя. Переход от выражения (x — 5) к отношению (x — 5) 2 / (x — 5) приводит к сужению ОДЗ переменной x от (-ꚙ, +ꚙ) до (-ꚙ, 5) U (5, +ꚙ). Способы доказательства:
В теории множеств для доказательства тождественности часто используются круги или диаграммы Эйлера.
В них графическими методами наглядно можно представить различные операции над множествами: пересечение, объединение, разность, симметрическую разность. Существуют методы построения пересекающихся кругов Эйлера для любого выражения онлайн. Это тоже упрощает доказательство тождественности.
Чтобы доказать нетождественность двух частей выражения, требуется найти хотя бы одно значение переменной из области допустимых значений. При ее подстановке числовые выражения частей получатся неравными друг другу. Разница между уравнением и тождеством заключается в том, что первое может быть выполнено только при некоторых значениях переменных, которые будут его решением, а второе — при всех значениях.
Тождество — это многозначный термин, применяемый в философии, математике, физике. Понятие тождественности уникально по охвату им различной проблематики. С ним сталкиваются и школьники на уроках алгебры и геометрии, и крупные учёные при проведении многочисленных исследований в современной науке.
Как доказать тригонометрическое тождество?
Тождество – равенство, верное при любых значениях переменных, кроме тех при которых какая-либо часть тождества не имеет смысла.
А вот выражение \(\frac
Как доказывать тождество?
Рецепт до одури прост:
Чтобы доказать тождество нужно доказать, что его правая и левая части равны, т.е. свести его к виду «выражение» = «такое же выражение».
Для того, чтоб это сделать можно:
Пример. Доказать тригонометрическое тождество \(\sin2x=2\sinx\cdot \cos
Решение:
\(\sin2x=2 \sinx\cdot \cos
Будем преобразовывать левую часть.
Представим \(2x\) как \(x+x\)…
Левая часть равна правой – тождество доказано.
Будем преобразовывать только левую часть. Приведем слагаемые к общему знаменателю.
Применим в числителе вездесущие основное тригонометрическое тождество: \(\sin^2
Левая часть равна правой, тождество доказано.
Левая часть равна правой, тождество доказано.
Сократим дробь на \(\cos<t>+\sin<t>\).
Почленно разделим дробь, превратив ее в две отдельные дроби.
Левая часть равна правой, тождество доказано.
Как видите, все довольно несложно, но надо знать все формулы и свойства.
Как доказать основное тригонометрическое тождество
Два простых способа вывести формулу \(\sin^2x+\cos^2x=1\). Нужно знать только теорему Пифагора и определение синуса и косинуса.
Ответы на часто задаваемые вопросы:
Тождественно равные выражения. Тождества
Два выражения, значения которых равны при любых значениях переменных, называют тождественно равными. |
Рассмотрим две пары выражений:
1) и
Найдем их значения при
Мы получили один и тот же результат. Из распределительного свойства следует, что вообще при любых значениях переменных и
значения выражений
и
равны.
2)
Найдем их значения при
Мы получили один и тот же результат. Однако, можно указать такие значения и
, при которых значения этих выражений не будут иметь равные значения. Например, если
, то
Мы получили разные результаты.
Следовательно, выражения и
являются тождественно равными, а выражения
не являются тождественно равными.
Равенство, верное при любых значениях переменных, называется тождеством. |
Равенство — тождество, т.к. оно верно при любых значениях
и
.
Также к тождествам можно отнести равенства, выражающие свойства сложения и умножения чисел:
Можно привести и другие примеры тождеств:
Тождествами считают и верные числовые равенства.
Очень часто при вычислении значений выражений, легче сначала упростить имеющееся выражение, а затем выполнять вычисления.
Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. |
К тождественным преобразованиям можно отнести приведение подобных слагаемых и раскрытие скобок.
Примеры:
1) , мы преобразовали выражение
в выражение
.
2) , мы преобразовали выражение
в выражение
.
Для того, чтобы доказать, что данное равенство является тождеством (или доказать тождество), используют следующие методы:
1) тождественно преобразуют одну из частей данного равенства, получая другую часть;
2) тождественно преобразуют каждую из частей данного равенства, получая одно и то же выражение;
3) доказывают, что разность левой и правой частей данного равенства тождественно равна нулю.
Также, чтобы доказать, что равенство не является тождеством, достаточно привести контрпример, т.е. указать такое значение переменной (или переменных, если их несколько), при котором данное равенство не выполняется.
Пример: Докажите, что равенство не является тождеством.
Решение: Приведем контрпример. Если , то
, следовательно, равенство
не является тождеством.
Поделись с друзьями в социальных сетях:
Тождественные преобразования
Что такое тождественные преобразования
Тождество — это равенство, выполняемое на всем множестве значений переменных, которые в него включены.
К примеру, тождествами являются, в том числе, квадратные выражения:
a 2 − b 2 = ( a + b ) ( a − b )
( a + b ) 2 = a 2 + 2 a b + b 2
В рассмотренных выражениях любые значения a и b обращают их в верные равенства, что полезно знать при решении примеров.
Тождественно равными выражениями называют такие два выражения, которые обладают равными значениями при всех значениях переменных.
Данное равенство существует только в том случае, когда:
Разница между тождеством и уравнением заключается в том, что тождество является верным при любом из значений переменных. Уравнение же верно лишь в том случае, когда имеется одно или несколько значений переменных.
В этом случае тождество не включает в себя переменные.
Замена чисел и выражений тождественно равными им выражениями
Тождественное преобразование выражения (преобразование выражения) представляет собой замену одних выражений на другие, которые тождественно равны между собой.
Данное объяснение преобразований позволяет значительно упростить решение задач. К примеру, для этого используют законы сокращенного умножения, арифметические свойства и другие тождества.
Рассмотрим конкретный пример:
Выполним работу по тождественным преобразованиям этой дроби:
x 3 – x x 2 – x = x ( x 2 – 1 ) x – 1 = x ( x – 1 ) ( x + 1 ) x ( x – 1 ) = x + 1
x 3 – x x 2 – x = x + 1
Доказательство тождеств
В процессе доказательства тождества необходимо выполнить ряд действий:
В качестве самостоятельного примера для тренировки докажем следующее тождество:
x 3 – x x 2 – x = x 2 + x x
x ( x 2 – 1 ) x ( x – 1 ) = x ( x + 1 ) x
Заметим, что можно сократить х :
( x – 1 ) ( x + 1 ) x – 1 = x + 1
Заключим, что рассмотренное равенство является тождеством, если х ≠ 0 и х ≠ 1
Когда требуется доказать, что равенство не относится к тождеству, следует определить одно допустимое значение переменной, при котором полученные числовые выражения обращаются в неравные друг другу. К примеру:
x 2 – x x = x 2 + x x → x ≠ 0
Упростим вычисления с помощью сокращения х :
Данное равенство не является тождеством.
Примеры тождеств
Изучить тождества на практике можно с помощью решения задач на различные тождественные преобразования алгебраических выражений. Ключевой целью таких действий является замена начального выражения на выражение, которое ему тождественно равно.
От перестановки местами слагаемых сумма не меняется:
От перестановки местами сомножителей произведение не меняется:
Согласно данным правилам, можно записать примеры тождественных выражений:
При наличии в сумме более двух слагаемых допускается группировать их путем заключения в скобки. Также можно предварительно переставлять эти слагаемые местами:
a + b + c + d = ( a + c ) + ( b + d )
Аналогичным способом группируют сомножители в произведении:
a × b × c × d = ( a × d ) × ( b × c )
Приведем примеры таких тождественных преобразований:
15 + 6 + 5 + 4 = ( 15 + 5 ) + ( 6 + 4 )
6 × 8 × 11 × 4 = ( 6 × 4 × 8 ) × 11
При увеличении или уменьшении обеих частей тождества на одинаковое число, данное тождество остается верным:
( a + b ) ± e = ( c + d ) ± e
Равенство сохраняется также при умножении или делении обеих частей этого равенства на одно и то же число:
( a + b ) × e = ( c + d ) × e
( a + b ) ÷ e = ( c + d ) ÷ e
Запишем несколько примеров:
35 + 10 = 9 + 16 + 20 ⇒ ( 35 + 10 ) + 4 = ( 9 + 16 + 20 ) + 4
42 + 14 = 7 × 8 ⇒ ( 42 + 14 ) × 12 = ( 7 × 8 ) × 12
Какую-либо разность допускается записывать, как сумму слагаемых:
Аналогичным способом можно выполнить замену частного на произведение:
Рассмотрим примеры тождественных преобразований:
Заменить математическое выражение на более простое можно с помощью арифметических действий:
Преобразования следует выполнять с соблюдением алгоритма:
14 + 6 × ( 35 – 16 × 2 ) + 11 × 3 = 14 + 18 + 33 = 65
20 ÷ 4 + 2 × ( 25 × 3 – 15 ) – 9 + 2 × 8 = 5 + 120 – 9 + 16 = 132
В арифметических выражениях можно избавляться от скобок при необходимости. Исходя из знаков в выражении, определяются правила, согласно которым раскрывают скобки.
Рассмотрим несколько примеров преобразований с помощью раскрытия скобок:
117 + ( 90 – 74 – 38 ) = 117 + 90 – 74 – 38
22 × ( 8 + 14 ) = 22 × 8 + 22 × 14
18 ÷ ( 4 – 6 ) = 18 ÷ 4 – 18 ÷ 6
Другим распространенным действием при упрощении выражений, содержащих скобки, является вынесение за них общего множителя. В результате в скобках остаются слагаемые, поделенные на вынесенный множитель. Данный способ преобразования можно применять в выражениях, которые содержат буквенные переменные.
3 × 5 + 5 × 6 = 5 × ( 3 + 6 )
28 + 56 – 77 = 7 × ( 4 + 8 – 11 )
31 x + 50 x = x × ( 31 + 50 )
В процессе тождественных преобразований часто применяют формулы для сокращенного выражения.
Примеры тождественных преобразований:
( 31 + 4 ) 2 = 31 2 + 2 ⋅ 31 ⋅ 4 + 4 2 = 1225