Что такое добротность резонансного контура
Что такое добротность контура
Электрическая цепь — предназначена не только для передачи тока и напряжения от источника к потребителю. В данной электроцепи возникают определенные физические процессы, которые связаны с влиянием ее элементов на протекание данного тока.
В этой статье будет описано, что такое добротность контура. Кроме того будет приведена формула для расчета этой величины, схемы последовательного и параллельного контуров.
Определение
Физика дает следующее определение добротности. Добротностью называют параметр колебательной системы, который определяет ширину резонанса и характеризует, насколько запасы энергии в системе больше возникающих ее потерь во время изменения фазы на один радиан. Дело в том, что данный показатель определяет разницу вынужденных колебаний при резонансе с определенной амплитудой колебаний на каком-то удалении от места резонанса. При этом амплитуда вынужденных колебаний не имеет никакой зависимости от их частоты. Параметр находит применение не только при расчетах электрических цепей. Его применяют так же в механике, акустике и химии.
Добротность колебательной системы в англоязычных ресурсах называют Quality factor и обозначают буквой «Q». Данная величина является основной характеристикой всех колебательных систем, но сделать измерения данной величины невозможно, ведь ее можно только вычислить, используя различные формулы. Степень идеальности имеет прямое влияние на коэффициент потерь энергии за время одного колебательного периода. Чем меньше величина, тем выше потери самой энергии. Данное значение обратно пропорционально скорости затухания собственных колебаний системы.
Получается, что колебательный контур является разницей между входящим реактивным сопротивлением и выходящим активным. Если в колебательном контуре имеется емкость C, индуктивность L и нагрузка R, то для расчета Q используется формула:
В данной формуле за резонансную частоту электроцепи ω0 отвечает показатель 1/R.
Параметр добротности измеряется при настройке генератора электросигналов на частоту резонансных колебаний. Сама частота резонанса равна максимальному выходному напряжению такой цепи.
Параллельный контур
Добротность любого параллельного колебательного контура предполагает наличие цепи, в которой имеется емкость, нагрузка и индуктивность, соединенные параллельно. Они образуют так называемую RLC-схему.
Определяющая величина для такой схемы — это проводимость конденсатора с катушкой. Именно она суммируется при расчетах и является реактивной проводимостью параллельного колебательного контура. На резонансной частоте проводимость катушки с конденсатором будут равны, а общая разница при этом равняется 0. Для расчета такой цепи используется формула:
При этом стоит учитывать следующее:
В параллельном колебательном контуре резонансная частота является той частотой, при которой реактивное сопротивление равняется 0, а величина входящего сопротивления является активным. Отсюда можно сделать вывод, что отсутствует фазовый сдвиг между током и напряжением.
Последовательный контур
Для последовательного колебательного контура характерно наличие последовательного соединения емкости с индуктивностью. При этом эти два элемента не влияют на потери энергии в цепи и являются идеальными элементами.
Потери в данной схеме вызваны только наличием активной нагрузки. Ниже представлен график амплитудно-частотной характеристики такой схемы.
Для такой цепи сопротивление катушки и конденсатора являются паразитными, приводят к появлению резонанса. Данный резонанс выравнивает или обнуляет сопротивления, оставляя только влияние активной нагрузки R от резистора. При этом добротность такой электроцепи определяется, как разницу напряжений на источнике тока и выходах катушки/конденсатора. В этом случае Q определяют с помощью следующего выражения:
Для примера попробуем решить следующую задачу. В цепи имеется катушка индуктивности L=100 мГн с сопротивлением R=100 Ом, которая соединена последовательно с конденсатором емкостью C=0.07 мкФ. Найдите резонансную частоту ω0, характеристическое сопротивление и добротность колебательного контура.
Вычисляем резонансную частоту контура:
Определяем характеристическое сопротивление:
Конечный шаг — вычисление добротности контура:
Заключение
В статье было дано краткое описание, что такое добротность контура и чему параметр равен для различных вариантов контура (параллельного, последовательного). Данная характеристика цепи и ее составных элементов играет ключевое значение при определении потерь от включения в нее различных конденсаторов, катушек и активных резисторов. С помощью добротности можно определить разницу между входным и выходным напряжениями электроцепи.
Видео по теме
Что такое добротность колебательного контура?
как измерить добротность в радиолюбительских условиях.
«Добротность обозначается символом Q (от английского quality factor) и является тем параметром колебательной системы, который определяет ширину резонанса и характеризует, во сколько раз запасы энергии в системе больше, чем потери энергии за время изменения фазы на 1 радиан.
При подключении к контуру внешних цепей, параллельно Rш добавляется дополнительное сопротивление Rн, вносимое этими внешними цепями.
По большому счёту, на Рис.1 не хватает ещё одной ёмкости, равной сумме паразитных ёмкостей катушки индуктивности, внешних цепей и паразитной ёмкости монтажа. На высоких частотах эти привнесённые ёмкости могут иметь существенные величины, соизмеримые с ёмкостью самого контурного конденсатора. На добротность эти ёмкости существенного влияния не оказывают, но при расчёте резонансной частоты их необходимо учитывать и суммировать со значением основной ёмкости С.
Теперь давайте разберёмся, что такое «скорость затухания собственных колебаний в системе» и, каким боком она связана с добротностью.
Для начала мысленно спаяем схему, нарисованную на Рис.1, и замкнём переключатель на батарейку (в левое по схеме положение).
Конденсатор С зарядится до уровня, равного напряжению питания.
Теперь перещёлкнем переключатель в правое по схеме положение.
Число периодов свободных колебаний в контуре можно подсчитать счётчиком импульсов и таким образом узнать добротность колебательного контура, генератор сигналов в этом случае не нужен.
Собственно говоря, на таком принципе и строится большинство промышленных измерителей добротности.
Вспоминаем дальше: «Добротность является тем параметром колебательной системы, который определяет ширину резонанса».
Рисуем резонансную кривую (амплитудно частотную характеристику) колебательного контура.
А как измерить добротность контура, не прибегая к изготовлению специальных устройств, в домашней лаборатории?
1. Если речь идёт о низких (звуковых) частотах, то тут всё просто.
В этом случае, Q равна отношению реактивного сопротивления индуктивного или ёмкостного характера (характеристического сопротивления) к полному последовательному сопротивлению потерь в резонансном контуре. В виду того, что конденсаторы на данных частотах практически не вносят потерь, то добротность контура равна добротности катушки индуктивности, величина которой напрямую зависит от активного сопротивления катушки.
А поскольку данное сопротивление можно легко измерить обычным омметром, то имеет полный смысл проделать эту не сильно замысловатую манипуляцию, после чего перейти на страницу ссылка на страницу и в первой таблице произвести расчёт добротности. Естественным образом, подразумевается, что катушка намотана на соответствующем для данных частот сердечнике, не вносящих существенных потерь в работу колебательного контура.
2. На высоких частотах (радиочастотах) значение активного сопротивления катушки может составлять доли ома, к тому же возможно проявление влияния добротности конденсатора на общую добротность цепи, поэтому такими же примитивными методами, как в случае НЧ обойтись не удастся.
Рискну сделать осторожное предположение, что в радиолюбительской лаборатории у нас затерялся высокочастотный генератор с 50-омным выходом и такой же высокочастотный осциллограф, или, на худой конец, измеритель ВЧ напряжений.
В этом случае мы воспользуемся ещё одним определением Q. Добротность резонансного контура равна фактору увеличения напряжения и может быть выражена отношением напряжения, развиваемого на реактивных элементах к входному напряжению, поданному последовательно с контуром.
Так как в случае высокодобротных элементов, сопротивление контура на резонансной частоте может превышать значение в сотню килоом, для корректного измерения добротности, входные импедансы измерителя ВЧ напряжений, либо осциллографа должны превышать это значение как минимум на порядок.
А на следующей странице порассуждаем на тему: что надо сделать, чтобы намотать катушку с максимально-возможной добротностью.
Колебательный LC контур: принцип действия, расчет, определение
Сегодня нас интересует простейший колебательный контур, его принцип работы и применение.
За полезной информацией по другим темам переходите на наш телеграм-канал.
Колебания – процесс, повторяющийся во времени, характеризуется изменением параметров системы около точки равновесия.
По определению колебательный контур (или LC-контур) – это электрическая цепь, в которой происходят свободные электромагнитные колебания.
Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.
Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.
Принцип действия колебательного контура
Давайте рассмотрим пример, когда сначала мы заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при протекании через нее тока возникает ЭДС самоиндукции, направленная в сторону, противоположную току конденсатора.
Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в обратной полярности.
Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.
Это обусловлено тем, что контур состоит из реальных материалов (конденсатор, катушка, провода), обладающих таким свойством, как электрическое сопротивление, и потери энергии в реальном колебательном контуре неизбежны. В противном случае это нехитрое устройство могло бы стать вечным двигателем, существование которого, как известно, невозможно.
Еще одна важная характеристика LC-контура – добротность Q. Добротность определяет амплитуду резонанса и показывает, во сколько раз запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.
Резонанс LC-контура
Электромагнитные колебания в LC-контуре происходят с определенной частотой, которая называется резонансной Подробнее про резонанс – в нашей отдельной статье. Частоту колебаний можно менять, варьируя такие параметры контура, как емкость конденсатора C, индуктивность катушки L, сопротивление резистора R (для LCR-контура).
Как рассчитать резонансную частоту колебательного контура? Очень просто! Приведем окончательную формулу:
Применение колебательного контура
Колебательный контур широко применяется на практике. На его основе строятся частотные фильтры, без него не обходится ни один радиоприемник или генератор сигналов определенной частоты.
Если вы не знаете, как подступиться к расчету LC-контура или на это совершенно нет времени, обратитесь в профессиональный студенческий сервис. Качественная и быстрая помощь в решении любых задач не заставит себя ждать!
Что такое добротность резонансного контура
Добротность и полоса пропускания резонансной цепи
Добротность (Q) резонансной цепи характеризует ее качество. Более высокое значение этого показателя соответствует более узкой полосе пропускания (что весьма желательно для многих схем). Если говорить проще, то добротность представляет собой отношение энергии, накопленной в реактивном сопротивлении цепи, к энергии, рассеиваемой активным сопротивлением этой цепи:
Данная формула применима к последовательным резонансным цепям, а также к параллельным резонансным цепям, если сопротивление в них включено последовательно с катушкой индуктивности. Действительно, в практических схемах нас часто беспокоит сопротивление катушки индуктивности, которое ограничивает добротность. Заметьте: Некоторые учебники в формуле «Q» для параллельных резонансных схем меняют местами X и R. Это верно для большого значения R, включенного параллельно с C и L. Наша формула верна для небольшого значения R, включенного последовательно с L.
Практическое применение добротности (Q) заключается в том, что напряжение на L или С в последовательной резонансной цепи в Q раз больше общего приложенного напряжения. В параллельной резонансной цепи ток через L или С в Q раз больше общего приложенного тока.
Последовательные резонансные цепи.
Резонанс последовательной LC цепи выражается в том, что полный импеданс этой цепи становится наименьшим и равным активному сопротивлению (которое имеет сравнительно небольшую величину), а ток становится максимальным. Условием резонанса является равенство индуктивного и емкостного сопротивлений XL = XC. Когда частота генератора больше частоты контура, индуктивное сопротивление преобладает над емкостным и контур представляет для генератора сопротивление индуктивного характера. Если частота генератора меньше частоты контура, то емкостное сопротивление больше индуктивного и контур для генератора является сопротивлением емкостного характера.
Пиковое значение тока при резонансе можно изменить путем подбора величины последовательного резистора, которая, в свою очередь, изменяет добротность. Все эти значения оказывают влияние на ширину полосы пропускания. Контур с низким сопротивлением и высокой добротностью имеет более узкую полосу пропускания, чем контур с высоким сопротивлением и низкой добротностью. Зависимость полосы пропускания контура от его резонансной частоты и добротности определяется следующей простой формулой:
Ширина полосы пропускания обычно определяется на уровне 0,707 от максимальной амплитуды тока. Уровню 0,707 соответствуют точки половинной мощности, равные P = I 2 R, (0,707) 2 = (0,5)
Параллельные резонансные цепи
Резонанс параллельной LC цепи выражается в том, что полный импеданс этой цепи (между точками разветвления) становится максимальным, а ток принимает минимальное значение. Условием резонанса, как и в последовательной LC цепи, является равенство индуктивного и емкостного сопротивлений XL = XC. Когда частота генератора больше частоты контура, емкостное сопротивление преобладает над индуктивным и контур представляет для генератора сопротивление емкостного характера. Если частота генератора меньше частоты контура, то индуктивное сопротивление больше емкостного и контур для генератора является сопротивлением индуктивного характера.
Импеданс при резонансе имеет максимальное значение, но на частотах, выше или ниже резонансной, он уменьшается. Поскольку напряжение пропорционально импедансу (U = IZ), при резонансе оно также имеет максимальное значение.
Низкая добротность (Q), обусловленная высоким сопротивлением (последовательно с катушкой индуктивности), производит низкий пик с широкой полосой пропускания. И наоборот, высокая добротность, обусловленная низким сопротивлением, производит высокий пик с узкой полосой пропускания. Высокая добротность достигается применением катушек индуктивности имеющих большой диаметр и малое сопротивление провода.
Ударный спектр и добротность колебательной системы
Ударный спектр — это график значений максимального отклика на внешнее воздействие системы резонаторов с одной степенью свободы, упорядоченный по собственным частотам резонаторов.
Определение краткое и достаточно точное, но почему-то у людей возникают дополнительные вопросы. Дополнительные вопросы возникают оттого, что людям трудно представить себе образ даже одного резонатора с одной степенью свободы, то что говорить о целой системе.
Если объяснять этот термин на пальцах, то надо подходить к этому вопросу аккуратно и последовательно, чтобы постепенно сложить в голове человека образ описываемого явления. С материальными объектами проще — их достаточно показать, чтобы человеку всё стало ясно. С информационными явлениями гораздо сложнее, но мы эту проблему решим.
Резонатор с одной степень свободы
Представим себе объект, который может совершать колебания в пространстве только в направлении одной оси. Это и будет резонатор с одной степенью свободы. Пружины и маятники — это всё примеры резонаторов с одной степенью свободы. Хотя природа их колебаний различна в теории они описываются аналогичными уравнениями. У них есть одна собственная частота и одна резонансная частота. Для удобства практического использования эти частоты объединяют в одну, но это две разные частоты. Резонансная частота — это частота действия внешней силы, на которой достигается максимальная амплитуда колебаний. Собственная частота — это частота затухающих колебаний, когда внешняя сила исчезла и система теряет энергию, возвращаясь в положение равновесия (останавливается).
Представим себе знакомый нам всем с детства маятник — качели.
Резонансная частота маятника не зависит от массы груза (то есть не разницы кто сидит на качелях хрупкая маленькая девочка или её большой тяжёлый папа), а зависит только от длины подвеса. Чем длиннее этот подвес, тем меньше резонансная частота. Чем выше качели, тем дольше период одного качания.
Ребёнок, впервые попавший на качели, поначалу прилагает много самых разных усилий с произвольной частотой, но качели почти не двигаются. Достаточно быстро он понимает темп, в котором надо делать усилия, чтобы раскачивать качели и понимает, что делать их надо в момент, когда качели замирают на одном из пиков.
Говоря сухим научным языком, когда частота действия внешней силы совпадает с частотой резонанса система начинает в этот самый резонанс входить, увеличивая амплитуду колебаний.
Сил у ребёнка немного и раскачать качели он сильно не может. В определённый момент все силы его начинают уходит не на увеличение амплитуды колебаний, а на поддержание колебаний на том же уровне. В этот момент вся энергия, которую прикладывает ребёнок, будет тратиться за один период колебаний на преодоление трения подвеса и сопротивление воздуха. Если предположить, что в каждый период колебаний качелей ребёнок прикладывает одинаковое усилие совершая работу A, то достигнув максимальных колебаний за n раз, он затратит количество энергии:
которая перейдёт в энергию качания качелей (часть этой энергии будет рассеяна, но пока это не существенно).
После этого вся его энергия будет полностью рассеиваться за один такт качения:
После понимания этого момента можно переходит к понятию добротности.
Добротность
Добротность — параметр колебательной системы, определяющий ширину резонанса и характеризующий, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний. В общем виде для любой колебательной системы добротность вычисляется по следующей формуле:
f0 — резонансная частота;
W — запасённая энергия системы;
Pd — рассеиваемая мощность;
Ed — рассеиваемая энергия за один период колебаний;
A — работа, совершаемая внешней силой за один период колебаний;
n — количество колебаний, которое сделал система, прежде чем достигла максимальной амплитуды колебаний.
Из этой формулы можно сделать один очень важный вывод, который нам пригодится:
Чем выше добротность колебательной системы, тем больше колебаний сделает система под действием внешний силы, прежде чем достигнет максимальной амплитуды.
То есть, чем выше качели (чем длиннее маятник — тем выше его добротность) тем больше нужно сделать колебаний, чтобы их раскачать. От величины внешней силы зависит только амплитуда колебаний, которые может совершать система. Если ребёнок не сам качается на качелях, а его качает папа (а у папы силы больше и энергии он даёт больше), качели будут подниматься гораздо выше, но максимальной амплитуды качели достигнут примерно за то же число колебаний, если папа будет качать с одинаковым усилием. В качании на качелях самое главное не переусердствовать иначе ребёнка может укачать или качели сломаются.
Собственная частота
Когда дети становятся старше, им надоедает просто качаться на качелях и они раскачавшись прыгают с них, стараясь подлететь повыше и подальше приземлиться (хорошо что детские площадки посыпают песком). После такого прыжка на качелях не остаётся источника внешней толкающей силы, да и отцу становится «не очень интересно » толкать пустые качели. Постепенно амплитуда качения уменьшается и качели останавливаются. Интервал времени между двумя ближайшими моментами отклонения качелей (маятника, резонатора, сигнала и т.д.) называется периодом собственных колебаний, а обратная ему величина — частотой собственных колебаний.
Одни колебательные системы останавливаются быстро, всего за пару тройку колебаний (большинство качелей во дворе останавливаются не более чем за 7 колебаний), а колебания других могут затухать очень долго (колокола — это тоже колебательные системы). Скорость, с которой колебания затухают, очень важный параметр. Он называется декремент затухания.
Декремент затухания
Декремент затухания или логарифмический декремент колебаний — это безразмерная физическая величина, описывающая уменьшение амплитуды колебательного процесса и равная натуральному логарифму отношения двух последовательных (или через некоторое целое количество периодов) амплитуд колеблющейся величины в одну и ту же сторону:
Декремент затухания равен показателю экспоненты в законе затухающих колебаний:
Из декремента затухания можно рассчитать другую величину — коэффициент демпфирования по следующей формуле:
Коэффициент демпфирования (затухания)
При коэффициенте демпфирования меньшем единицы колебательная система будет плавно затухать. Чем меньше будет коэффициент, тем дольше будут длиться колебания. При коэффициенте равном единице или большем никаких колебаний система испытывать не будет, а просто плавно будет стремиться к нулевому положению. Так, например, дверные доводчики настраивают на коэффициент демпфирования 1 и более, чтобы дверь автоматически закрылась через некоторое время без удара о створку. Демпферы для входных дверей в метро наоборот настроены на коэффициент демпфирования меньше 1. После того как человек толкнёт такую дверь она сделает два три колебания и остановится.
Коэффициент демпфирования связан с добротностью следующей формулой:
Из формулы следует, что чем больше добротность колебательной системы, тем меньше декремент затухания. Чем меньше декремент затухания, тем меньше теряется энергии с каждым колебанием и тем больше колебаний совершит система перед остановкой. Этот простой вывод нам пригодится для дальнейшей работы.
Если рассматривать качели, маятники и прочие системы с низкой собственной частотой (и большим периодом колебаний соответственно), то считать количество колебаний достаточно легко. Но когда мы рассматриваем колокола, балки и прочие системы с высокой собственной частотой, то «на глаз» подсчитать количество колебаний при затухании становится невозможно.
Система резонаторов
Если собрать несколько резонаторов с разными собственными частотами, но одинаковыми значениями декремента затухания, то получится та самая система резонаторов, о которой шла речь в самом начале статьи. Представьте себе площадку в парке отдыха, на которой установлены качели разных размеров, но похожие по конструкции. От размеров качелей будет зависеть собственная частота, а от конструкции и материалов декремент затухания. Таким образом, у них будут разные собственные частоты и одинаковый декремент затухания.
Если представить себе, что все качели одновременно испытывают воздействие внешней возбуждающей силы, от которой они начинают раскачиваться, то максимальная амплитуда колебаний, которую в какой-то момент достигнут качели, будет тем самым максимальным откликом. Подобным внешним воздействием может быть землетрясение. Если упорядочить значения максимальных ответов по возрастанию собственных частот соответствующих резонаторов, то полученный график называется ударным спектром. Если мы имеем дело с землетрясением, то в этом случае ударный спектр называют спектром ответа.
Как мы уже выяснили выше, максимальный отклик некоторых резонаторов может быть достигнут не тогда, когда мгновенное значение силы максимально, а в какой-нибудь другой момент. Этот момент зависит от гармоник, которые присутствуют в сигнале, и от их длительности. Даже если на систему действует гармонический сигнал с одной частотой, то раскачиваться под его воздействием будут все резонаторы. Максимального по амплитуде колебаний отклика достигнет резонатор с собственной частотой наиболее близкой к частоте колебаний, остальные будут колебаться меньше. Наглядно это демонстрирует график резонанса.
Если мы имеем дело, не с установившимися колебаниями, а с коротким воздействием, то картина будет иной. Будем на систему резонаторов действовать импульсом, состоящем из нескольких периодов синусоидального сигнала с частотой 1000 Гц от полу-периода до 10 периодов. Скажем заранее, что коэффициент демпфирования всех резонаторов равен 0,05, а добротность соответственно равна 10.
Как мы видим на графиках ударного спектра с ростом длительности воздействия увеличивается максимальный отклик системы резонаторов, причём частота, соответствующая максимальному отклику приближается к частоте сигнала генератора. На этом месте возникает уместный вопрос: «Почему от импульсов с малым числом периодов сильнее откликаются (то есть имеют большее значение) резонаторы с частотами большими частоты действующего импульса?». Для ответа на этот вопрос нужно внимательно рассмотреть график резонанса, приведённый выше.
На графике резонанса изображена зависимость ответной реакции резонатора на входное воздействие постоянной амплитуды при изменяющейся частоте входного сигнала. На графике хорошо видно, что у резонаторов с низкой добротностью резонанс наступает на частоте заметно меньшей чем собственная частота резонатора. По мере роста добротности резонатора пик резонанса становится острее и выше, а частота приближается к собственной частоте резонатора.
В ударном спектре всё наоборот. Частота входного сигнала остаётся неизменной, а варьируются собственные частоты резонаторов. Добротность каждого резонатора ограничена сверху, но длительность входного воздействия позволяет раскачать все резонаторы. Поэтому добротность каждого резонатора будет определяться количеством периодов в сигнале (но не более 10).
Если частота резонатора выше частоты входного сигнала, то соотношение wa/w0 1 и амплитуда отклика быстро падает с уменьшением частоты резонатора. То есть маятники с длинным подвесом от высокочастотных воздействия даже не трогаются с места. Соответственно, большие строения (точнее сказать, строения из крупных блоков) никак не реагируют на работу отбойного молотка на улице, будь их там даже тысячи работающих одновременно.
Если взять график резонанса соответствующий δ=0.5w0, то он будет примерно соответствовать спектру ударного отклика на полу-период синуса с той лишь разницей, что он будет отражён в другую сторону. Сигналам с большим числом периодов соответствуют графики с большей добротностью. Если совместить несколько графиков ударных спектров в одних осях, то мы увидим график напоминающий график резонанса, приведённый выше, но развёрнутый в обратном направлении.
Вывод
Подводя итог статьи необходимо сделать вывод, что ударный спектр это прекрасный показатель внутреннего состояния объекта. Так для небольших объектов при построение ударного спектра по выходному сигналу можно выяснить состояние «внутренней системы резонаторов». Усталость материи, внутренние трещины и прочие неприятности вносят изменения в эту «внутреннюю систему резонаторов». Обычно это выражается в том, что происходит изменение собственных и резонансных частот, реже происходит падение добротности колебательных контуров.
Так, например, церковные колокола со временем «понижают» свои голоса, то есть у них происходит уменьшение собственной частоты (унтертона) и высота их звука падает. Таким образом проявляется эффект «старения» бронзы [1]. Если же колокол треснет (например, в сильный мороз), то он резко потеряет чистоту звука, то есть упадёт его добротность.
Можно представить себе испытуемый объект как систему резонаторов в виде набора струн (можно представить себе рояль), определить и запомнить какие «струны» в нём звучат и как сильно. А после эксплуатации по изменению этого набора откликов можно судить об внутренних изменениях. Так, например, ГОСТы на механические испытания рекомендую измерять и сравнивать АЧХ до и после испытаний. Ещё пример, при изменении основного тона собственных колебаний здания более чем в два раза в меньшую либо в большую сторону (одна из методик контроля), МЧС делает заключение, что здание находится в аварийном состоянии.
При землетрясениях наоборот измеряют ударный спектр самого землетрясения. Таким образом учёные оценивают степень разрушения зданий и сооружений [2]. Для каждого типа сооружений вычисляется диапазон наиболее разрушительных частот. Чем выше рассчитанный спектр в определённой полосе, тем больше повреждений получит здание.
При проектировании зданий в сейсмоопасных районах в конструкцию здания закладывают системы демпфирования колебаний. Системы демпфирования рассчитывают на гашение наиболее опасных частот. Такие частоты определяются исходя из анализа сейсмограмм в данной области за всё время наблюдений. И в конце проектных работы модель здания подвергают испытаниям на модельные землетрясения [3].