Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π’Π΅ΠΊΡ‚ΠΎΡ€. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ основныС понятия

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

НаправлСниС Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊ ΠΊΠΎΠ½Ρ†Ρƒ) Π½Π° рисунках отмСчаСтся стрСлкой.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

НулСвой Π²Π΅ΠΊΡ‚ΠΎΡ€

Π”Π»ΠΈΠ½Π° Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

Π›ΡŽΠ±Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° пространства Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€. Π’Π°ΠΊΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ называСтся Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ. Начало ΠΈ ΠΊΠΎΠ½Π΅Ρ† Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, ΠΈ ΠΎΠ½ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π»ΠΈΠ±ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ направлСния.

НулСвым Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ называСтся Π²Π΅ΠΊΡ‚ΠΎΡ€, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΈ конСчная Ρ‚ΠΎΡ‡ΠΊΠ° ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚.

Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° плоскости

Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС

Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π² n-ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС

ΠšΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

Π’Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠ΄Π½ΠΎΠΉ прямой ΠΈΠ»ΠΈ Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ΠΌΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π‘ΠΎΠ½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

ΠšΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

Π’Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠ΄Π½ΠΎΠΉ плоскости ΠΈΠ»ΠΈ Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ плоскости Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹ΠΌΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π Π°Π²Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

Π’ΠΎ Π΅ΡΡ‚ΡŒ, Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ€Π°Π²Π½Ρ‹, Ссли ΠΎΠ½ΠΈ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Π΅, сонаправлСныС ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ Ρ€Π°Π²Π½Ρ‹Π΅ Π΄Π»ΠΈΠ½Ρ‹:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Если ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» понравился Π’Π°ΠΌ ΠΈ оказался для Вас ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ΠΌ, ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚Π΅ΡΡŒ ΠΈΠΌ со своими Π΄Ρ€ΡƒΠ·ΡŒΡΠΌΠΈ!

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

О сайтС

На нашСм сайтС Π²Ρ‹ Π½Π°ΠΉΠ΄Π΅Ρ‚Π΅ мноТСство ΠΏΠΎΠ»Π΅Π·Π½Ρ‹Ρ… ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠ², ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€ΠΎΠ², Ρ‚Π°Π±Π»ΠΈΡ†, Π° Ρ‚Π°ΠΊΠΆΠ΅ справочных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΏΠΎ основным дисциплинам.

Π‘Π°ΠΌΡ‹ΠΉ простой способ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ расчСты Π² сСти β€” это ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ подходящиС ΠΎΠ½Π»Π°ΠΉΠ½ инструмСнты. Π’ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ поиском, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ подходящий инструмСнт Π½Π° нашСм сайтС.

calcsbox.com

На сайтС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ тСхнология LaTeX.
ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΠ³ΠΎ отобраТСния Ρ„ΠΎΡ€ΠΌΡƒΠ» ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ
поТалуйста Π΄ΠΎΠΆΠ΄ΠΈΡ‚Π΅ΡΡŒ ΠΏΠΎΠ»Π½ΠΎΠΉ Π·Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ страницы.

Β© 2021 ВсС ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹ online

ΠšΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π·Π°ΠΏΡ€Π΅Ρ‰Π΅Π½ΠΎ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° β€” основныС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

ВрСмя чтСния: 16 ΠΌΠΈΠ½ΡƒΡ‚

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ понятия Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈΡΡ‚ΡƒΠΏΠΈΡ‚ΡŒ ΠΊ Ρ€Π°Π·Π±ΠΎΡ€Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ» нахоТдСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ Π² основных понятиях ΠΈ опрСдСлСниях Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ распространСниС Π² 19 Π²Π΅ΠΊΠ΅, Π² матСматичСских Π½Π°ΡƒΠΊΠ°Ρ…, особСнно Π² Ρ‚Π°ΠΊΠΎΠΌ Π΅Ρ‘ Ρ€Π°Π·Π΄Π΅Π»Π΅, ΠΊΠ°ΠΊ Β«ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Ρ‹Π΅ числа».

Π’Π΅ΠΊΡ‚ΠΎΡ€ β€” это ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΉ Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ.

Π’Π΅ΠΊΡ‚ΠΎΡ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Π₯ ΠΈ ΠΊΠΎΠ½Π΅Ρ† Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ А, ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ Π₯А, с Π²Π΅Ρ€Ρ…Π½ΠΈΠΌ ΠΏΠΎΠ΄Ρ‡Ρ‘Ρ€ΠΊΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈΠ»ΠΈ стрСлочкой, Π° Ρ‚Π°ΠΊΠΆΠ΅ допустимо ΠΏΡ€ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ ΠΎΠ΄Π½ΠΎΠΉ прописной Π±ΡƒΠΊΠ²ΠΎΠΉ.

Π”Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (ΠΌΠΎΠ΄ΡƒΠ»ΡŒ), опрСдСляСт числовоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π³ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ΡΡ Π΄Π»ΠΈΠ½Π½Π° двумя Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°ΠΌΠΈ |Π₯А|.

Π’Π°ΠΊ ΠΊΠ°ΠΊ, всСгда ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ‚Ρ‹ΡΠΊΠ°Ρ‚ΡŒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, которая Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄Π²ΡƒΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ, Ρ‚ΠΎ Π»ΡŽΠ±Ρ‹Π΅ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° всСгда ΠΊΠΎΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Π΅.

Π’Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΌΠΎΠ³ΡƒΡ‚ находится Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° плоскости, Π½ΠΎ ΠΈ Π² пространствС, ΠΎΡ‚ этого располоТСния Π±ΡƒΠ΄Π΅Ρ‚ Π·Π°Π²ΠΈΡΠ΅Ρ‚ΡŒ ΠΊΠ°ΠΊΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для нахоТдСния ΠΈΡ… Π΄Π»ΠΈΠ½Ρ‹ ΠΈΠ»ΠΈ модуля. Π‘Ρ‚ΠΎΠΈΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ, ΠΏΡ€ΠΈ этом ΠΎΠ½ΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΈΠΌΠ΅Ρ‚ΡŒ ΠΎΠ΄Π½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅, ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ Π΄Π»ΠΈΠ½Ρ‹ ΠΈ Π±Ρ‹Ρ‚ΡŒ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ΠΌΠΈ. БущСствуСт понятиС Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ½ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ Ссли Ρ€Π°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅ измСрСния.

Как Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π° Π±ΡƒΠ΄Π΅ΠΌ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€.

Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ»ΠΈ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρƒ, Π½Π° плоскости ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρƒ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Оxy. Допустим Π² Π΄Π°Π½Π½ΠΎΠΉ систСмС Π±ΡƒΠ΄Π΅Ρ‚ Π·Π°Π΄Π°Π½, Ρ‚Π°ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ (aβ‚“ ; aα΅§). ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, которая ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€, Ρ‡Π΅Ρ€Π΅Π· извСстныС Π½Π°ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ aβ‚“ ΠΈ aα΅§.

На взятой систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΎΡ‚ Π΅Ρ‘ Π½Π°Ρ‡Π°Π»Π° ΠΎΡ‚Π»ΠΎΠΆΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π’ соотвСтствии с ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ А Π²ΠΎΠ·ΡŒΠΌΡ‘ΠΌ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ Aβ‚“ ΠΈ Aα΅§ Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Рассмотрим ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ОAβ‚“ ΠΈ АAα΅§ с диагональю ОА.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π”Π°Π»Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ равСнство АО² = ОAβ‚“Β² ΠΈ OAα΅§Β², ΠΎΡ‚ΡΡŽΠ΄Π° слСдуСт

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Из Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ Π²Ρ‹Ρ…ΠΎΠ΄ΠΈΡ‚, Ρ‡Ρ‚ΠΎ для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° с Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ (aβ‚“ ; aα΅§), Π²Ρ‹Π²ΠΎΠ΄ΠΈΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Когда Π²Π΅ΠΊΡ‚ΠΎΡ€ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π΄Π°Π½ Π² Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅ разлоТСния ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€, Ρ‚ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎ Ρ‚ΠΎΠΉ ΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€, Π² Ρ‚Π°ΠΊΠΎΠΌ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ коэффициСнт aβ‚“ ΠΈ aα΅§ Π±ΡƒΠ΄ΡƒΡ‚ Π²Ρ‹Ρ€Π°ΠΆΠ°Ρ‚ΡŒ Π² Ρ€ΠΎΠ»ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€, Π² Π΄Π°Π½Π½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π§Ρ‚ΠΎΠ±Ρ‹ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€= (3, √x), располоТСнного Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Ρ€Π°Π½Π΅Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

ΠžΡ‚Π²Π΅Ρ‚: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ вычислСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π² пространствС, ΠΎΠ½ΠΈ выводятся Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° плоскости. Если Π²Π·ΡΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€=(aβ‚“ ; aα΅§ ; a Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€)

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

ΠΈΠ· опрСдСлСния ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ΡΡ равСнства ОAβ‚“=aβ‚“; OAα΅§=aα΅§; OAΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€=a Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€, Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ ОА совпадаСт с Π΄Π»ΠΈΠ½ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡ‚ΠΈ. Из этого слСдуСт:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

ΠžΡ‚Π²Π΅Ρ‚: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π°

Π Π°Π½Π΅Π΅ ΠΌΡ‹ рассмотрСли Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ позволят Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΏΡ€ΠΈ этом ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹. Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Π»ΠΈΡΡŒ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π² Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС Π½Π° плоскости. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Π°Π½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ссли извСстны ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ Π΅Π³ΠΎ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π°.

Π’ΠΎΠ·ΡŒΠΌΡ‘ΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ с ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Π½Π°Ρ‡Π°Π»Π° A(aβ‚“ ; aα΅§) ΠΈ ΠΊΠΎΠ½Ρ†Π° Π’(bβ‚“ ; bα΅§), ΠΈΠ· Ρ‡Π΅Π³ΠΎ слСдуСт, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ (bβ‚“-aβ‚“ ; bα΅§-aα΅§), поэтому Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρƒ ΠΌΡ‹ Π²Ρ‹Ρ€Π°Π·ΠΈΠΌ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

ΠŸΡ€ΠΈ этом Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° вычислСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° вСктордля Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства, с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€), Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

РСшСниС
ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΈΠ² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, для нахоТдСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, с извСстными ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π°, Π² плоской систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π²Ρ‹Ρ…ΠΎΠ΄ΠΈΡ‚:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€
БущСствуСт Π²Ρ‚ΠΎΡ€ΠΎΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, Π³Π΄Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΏΠΎ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

ΠžΡ‚Π²Π΅Ρ‚: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Найти, Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, ΠΏΡ€ΠΈ подстановкС ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ…, Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° ΠΊΠΎΡ€Π½ΡŽ ΠΈΠ· Ρ‚Ρ€ΠΈΠ΄Ρ†Π°Ρ‚ΠΈ, ΠΏΡ€ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ А (0,1,2) ΠΈ Π’ (5,2,\(Ξ»^2\))

Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ косинусов

Π’Π°ΠΊ ΠΊΠ°ΠΊ Π±Ρ‹Π²Π°ΡŽΡ‚ случаи, ΠΊΠΎΠ³Π΄Π° Π½Π΅ извСстны ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΊΠ°Ρ‚ΡŒ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹, ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Π’Π°ΠΊΠΈΠΌ способов ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ косинусов.

Π’ нашСм ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π΄Π»ΠΈΠ½Ρ‹ сторон Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° АМК ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚. Π”Π²Π΅ ΠΈΠ· сторон Π½Π°ΠΌ извСстны это АК ΠΈ АМ, Π° Ρ‚Π°ΠΊΠΆΠ΅ извСстСн ΡƒΠ³ΠΎΠ» Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, находящийся ΠΌΠ΅ΠΆΠ΄Ρƒ этими сторонами. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ косинусов ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:
\( KM^2=AK^2+AM^2-2\cdot AK\cdot AM\cdot\cos\frac<\pi><3>\)
\(=2^2+4^2-2\cdot2\cdot4\cdot\cos\frac<\pi><3>\)
\(=4+16-16\cos\frac<\pi><3>\)
\(=20-8=12 \)
ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ΡΡ \(KM=\sqrt <12>\)
ΠžΡ‚Π²Π΅Ρ‚: \( \left|\overrightarrow\right|=\sqrt <12>\)

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ для нахоТдСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° сущСствуСт нСсколько Ρ„ΠΎΡ€ΠΌΡƒΠ», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π² зависимости ΠΎΡ‚ извСстных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ².

Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства;

Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠΎ извСстным ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° находящСгося пространствС; \( \left|\vec\right|=\sqrt<\left ( b_z-a_z \right )^2+ \left ( b_y-a_y \right )^2>\) Ссли извСстны ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° плоскости.

БущСствуСт Ρ‚Π°ΠΊΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния: \( \left|\vec\right|=\sqrt< s_x^2+s_y^2>\) Ρ‡Π°Ρ‰Π΅ такая Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠ° Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅, для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ·Π½Π°Ρ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ ΠΏΡƒΡ‚ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π’ случаС Ссли извСстСн ΡƒΠ³ΠΎΠ», ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°.

ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… сфСрах

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΈ вычислСниС Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π²Π°ΠΆΠ½ΠΎ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Π½ΠΎ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π½Π°ΡƒΠΊΠ°Ρ…:

Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π½Π°ΡƒΠΊΠ°Ρ…, Π½ΠΎ ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… отраслях ΠΈ профСссиях. Π’ судоходствС ΠΈ аэрофлотС, Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π΅ ΠΈ конструировании, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… областях. Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ΄Π½Ρƒ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ», Π² зависимости ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π°ΠΌ ΠΎ Π½Ρ‘ΠΌ извСстно, ΠΈ Π² ΠΊΠ°ΠΊΠΎΠΌ пространствС ΠΈΠ»ΠΈ плоскости находится нСизвСстный Π²Π΅ΠΊΡ‚ΠΎΡ€.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

Для обозначСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π΄Π²Π΅ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ слСва ΠΈ справа | AB |.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° для плоских Π·Π°Π΄Π°Ρ‡

Π’ случаС плоской Π·Π°Π΄Π°Ρ‡ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a = < ax ; ay > ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ воспользовавшись ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° для пространствСнных Π·Π°Π΄Π°Ρ‡

Π’ случаС пространствСнной Π·Π°Π΄Π°Ρ‡ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a = < ax ; ay ; az > ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ воспользовавшись ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π·Π°Π΄Π°Ρ‡ Π½Π° вычислСниС Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ вычислСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° для плоских Π·Π°Π΄Π°Ρ‡ΠΈ

РСшСниС: | a | = √ 3 2 + (-4) 2 = √ 9 + 16 = √ 25 = 5.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ вычислСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° для пространствСнных Π·Π°Π΄Π°Ρ‡ΠΈ

РСшСниС: | a | = √ 2 2 + 4 2 + 4 2 = √ 4 + 16 + 16 = √ 36 = 6.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ вычислСния Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° для пространств с Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ большСй 3

РСшСниС: | a | = √ 1 2 + (-3) 2 + 3 2 + (-1) 2 = √ 1 + 9 + 9 + 1 = √ 20 = 2√ 5

Π›ΡŽΠ±Ρ‹Π΅ Π½Π΅Ρ†Π΅Π½Π·ΡƒΡ€Π½Ρ‹Π΅ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΈ Π±ΡƒΠ΄ΡƒΡ‚ ΡƒΠ΄Π°Π»Π΅Π½Ρ‹, Π° ΠΈΡ… Π°Π²Ρ‚ΠΎΡ€Ρ‹ занСсСны Π² Ρ‡Π΅Ρ€Π½Ρ‹ΠΉ список!

Π”ΠΎΠ±Ρ€ΠΎ ΠΏΠΎΠΆΠ°Π»ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° OnlineMSchool.
МСня Π·ΠΎΠ²ΡƒΡ‚ Π”ΠΎΠ²ΠΆΠΈΠΊ ΠœΠΈΡ…Π°ΠΈΠ» Π’ΠΈΠΊΡ‚ΠΎΡ€ΠΎΠ²ΠΈΡ‡. Π― Π²Π»Π°Π΄Π΅Π»Π΅Ρ† ΠΈ Π°Π²Ρ‚ΠΎΡ€ этого сайта, мною написан вСсь тСорСтичСский ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π», Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ ΠΎΠ½Π»Π°ΠΉΠ½ упраТнСния ΠΈ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ Π’Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ для изучСния ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΠΎΠΉΠ΄Π΅Ρ‚ Ρ€Π΅Ρ‡ΡŒ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€, Ρ‡Ρ‚ΠΎ ΠΎΠ½ ΠΈΠ· сСбя прСдставляСт Π² гСомСтричСском смыслС, Π²Π²Π΅Π΄Π΅ΠΌ Π²Ρ‹Ρ‚Π΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ понятия.

Для Π½Π°Ρ‡Π°Π»Π° Π΄Π°Π΄ΠΈΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅:

Π’Π΅ΠΊΡ‚ΠΎΡ€ – это Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ прямой.

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· опрСдСлСния, ΠΏΠΎΠ΄ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ Π½Π° плоскости ΠΈΠ»ΠΈ Π² пространствС, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅, ΠΈ это Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ задаСтся Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΈ ΠΊΠΎΠ½Ρ†ΠΎΠΌ.

НулСвой Π²Π΅ΠΊΡ‚ΠΎΡ€

Под Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ 0 β†’ Π±ΡƒΠ΄Π΅ΠΌ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ Π»ΡŽΠ±ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ плоскости ΠΈΠ»ΠΈ пространства.

Из опрСдСлСния становится ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Ρ‹ΠΌ, Ρ‡Ρ‚ΠΎ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ любоС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π½Π° плоскости ΠΈ Π² пространствС.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

Под Π΄Π»ΠΈΠ½ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° A B β†’ понимаСтся число, большСС Π»ΠΈΠ±ΠΎ Ρ€Π°Π²Π½ΠΎΠ΅ 0, ΠΈ Ρ€Π°Π²Π½ΠΎΠ΅ Π΄Π»ΠΈΠ½Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° АВ.

ΠŸΠΎΠ½ΡΡ‚ΠΈΡ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Ρ‹, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Π΅Π³ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ совпадаСт со Π·Π½Π°ΠΊΠΎΠΌ модуля. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π΅Π³ΠΎ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ. Однако Π³Ρ€Π°ΠΌΠΎΡ‚Π½Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Π΅Ρ€ΠΌΠΈΠ½ «Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°». ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π΄Π»ΠΈΠ½Π° Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ноль.

ΠšΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½ΠΎΡΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

Π”Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой ΠΈΠ»ΠΈ Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ΠΌΠΈ.

Π”Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой ΠΈΠ»ΠΈ Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π½Π΅ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ΠΌΠΈ.

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ НулСвой Π²Π΅ΠΊΡ‚ΠΎΡ€ всСгда ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π΅Π½ Π»ΡŽΠ±ΠΎΠΌΡƒ Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ любоС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅.

ΠšΠΎΠ»Π»ΠΈΠ½ΠΈΠ°Ρ€Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ Ρ‚ΠΎΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° Π΄Π²Π° класса: сонаправлСнныС ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Π΅.

НаправлСниС Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

БчитаСтся, Ρ‡Ρ‚ΠΎ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ являСтся сонаправлСным ΠΊ Π»ΡŽΠ±Ρ‹ΠΌ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π Π°Π²Π½Ρ‹Π΅ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹

Π Π°Π²Π½Ρ‹ΠΌΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ сонаправлСнныС Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΄Π»ΠΈΠ½Ρ‹ Ρ€Π°Π²Π½Ρ‹.

ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠΆΠ½Ρ‹ΠΌΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΡ… Π΄Π»ΠΈΠ½Ρ‹ Ρ€Π°Π²Π½Ρ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π’Π²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Π²Ρ‹ΡˆΠ΅ понятия ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π½Π°ΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π±Π΅Π· привязки ΠΊ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹ΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ. Π˜Π½Π°Ρ‡Π΅ говоря, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€ Ρ€Π°Π²Π½Ρ‹ΠΌ Π΅ΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ, ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΌ ΠΎΡ‚ любой Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π£Π³Π»Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ

Π£Π³ΠΎΠ» Ο† = ∠ A O B называСтся ΡƒΠ³Π»ΠΎΠΌ ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ a β†’ = O A β†’ ΠΈ b β†’ = O B β†’ .

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ сонаправлСнными Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ градусам (ΠΈΠ»ΠΈ Π½ΡƒΠ»ΡŽ Ρ€Π°Π΄ΠΈΠ°Π½), Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ сонаправлСнныС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅, Π° ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ Ρ€Π°Π²Π΅Π½ 180 градусам (ΠΈΠ»ΠΈ Ο€ Ρ€Π°Π΄ΠΈΠ°Π½), Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых, Π½ΠΎ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ направлСния.

ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΌΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ Ρ€Π°Π²Π΅Π½ 90 градусам (ΠΈΠ»ΠΈ Ο€ 2 Ρ€Π°Π΄ΠΈΠ°Π½).

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ с Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ

Как ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒ ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ (ΠΈ Π·Π°Ρ‡Π΅ΠΌ).

ΠœΡ‹ постСпСнно ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌ Π²Π°ΠΌ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ школьной ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹. Начинали со знакомства с Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ сдСлаСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ шаг.

Напомним основныС мысли:

Π‘ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Ρ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ матСматичСскиС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Π’ΠΎΡ‚ ΠΎ Π½ΠΈΡ… ΠΈ ΠΏΠΎΠ³ΠΎΠ²ΠΎΡ€ΠΈΠΌ.

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ β€” Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ часто говорят Π²ΠΎ мноТСствСнном числС Β«Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Β», Π½ΠΎ ΠΏΠΎ ΡΠ»ΠΎΠ²Π°Ρ€ΡŽ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Β«Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹Β». Π­Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠΉ ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΆΠ°Ρ€Π³ΠΎΠ½, ΠΊΠ°ΠΊ Β«Π΄ΠΎΠ³ΠΎΠ²ΠΎΡ€Π°Β», Β«Π±ΡƒΡ…Π³Π°Π»Ρ‚Π΅Ρ€Π°Β» ΠΈ «сСрвСра». ΠœΡ‹ Π±ΡƒΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Β«Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹Β», Π½ΠΎ Ссли Π²Ρ‹ ΠΎΠΊΠ°ΠΆΠ΅Ρ‚Π΅ΡΡŒ Π² постковидном матСматичСском Π±Π°Ρ€Π΅, Π»ΡƒΡ‡ΡˆΠ΅ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚Π΅ Β«Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Β».

Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π»Π΅ΠΆΠ°Ρ‚ Π² Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС ΠΈ ΠΏΠΎΠΊΠ° Ρ‡Ρ‚ΠΎ Π½Π΅ связаны ΠΌΠ΅ΠΆΠ΄Ρƒ собой. НарисуСм эти Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ ΠΈΡ… Π±ΡƒΠΊΠ²Π°ΠΌΠΈ X, Y, Z, K.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ находятся Π² ΠΎΠ΄Π½ΠΎΠΌ пространствС, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ состоят ΠΈΠ· ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ количСства чисСл. Π£ нас ΠΏΡ€ΠΈΠΌΠ΅Ρ€ с Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½Ρ‹ΠΌ пространством ΠΈ Π΄Π²Π° числа. Π’Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ это Π±ΡƒΠ΄Π΅Ρ‚ Ρ‚Π°ΠΊ: X = (6, 4); Y = (3, βˆ’2); Z = (βˆ’7, βˆ’5); K = (βˆ’10, 4).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ X, Y, Z, K Π² Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС

Если Ρƒ нас нСсколько Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌ количСством чисСл, Ρ‚ΠΎ эти числа ΠΌΠΎΠΆΠ½ΠΎ поэлСмСнтно ΡΠΊΠ»Π°Π΄Ρ‹Π²Π°Ρ‚ΡŒ. Для этого ΠΌΡ‹ Π±Π΅Ρ€Ρ‘ΠΌ ΠΏΠ΅Ρ€Π²ΠΎΠ΅ число ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, складываСм Π΅Π³ΠΎ с ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ числом Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅.

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ X ΠΈ Y.

X = (6, 4)
Y = (3, βˆ’2)
X + Y = (9, 2)

Π’Ρ€ΠΎΠ΄Π΅ просто: ΡΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΡˆΡŒ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ всС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ слоТСния ΡΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΡˆΡŒ Π² исходныС ΠΊΠΎΡ€ΠΎΠ±ΠΎΡ‡ΠΊΠΈ. Π’Π°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ с Π»ΡŽΠ±Ρ‹ΠΌ количСством ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΠΎΠΌΠ½ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€ β€” это Π½Π΅ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ стрСлка Π² Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС. Она ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈ Π² дСсятимСрном пространствС β€” с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ это Π½Π΅Π²Π°ΠΆΠ½ΠΎ.

НапримСр, Π²ΠΎΡ‚ слоТСниС Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² с ΠΏΡΡ‚ΡŒΡŽ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ:

Π˜Π½Ρ‚ΡƒΠΈΡ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ слоТСния

Для ΠΈΠ½Ρ‚ΡƒΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ восприятия ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ с двумя ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ. Π˜Ρ… ΡƒΠ΄ΠΎΠ±Π½ΠΎ Ρ€ΠΈΡΠΎΠ²Π°Ρ‚ΡŒ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости ΠΈ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π½Π° Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ.

НапримСр, ΠΌΠΎΠΆΠ½ΠΎ Π½Π° плоскости ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, ΠΊΠ°ΠΊ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ слоТСниС Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Для этого Π΅ΡΡ‚ΡŒ Π΄Π²Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°: ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°.

ΠœΠ΅Ρ‚ΠΎΠ΄ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°: ставим Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π₯ ΠΈ Y Π² ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ Π΄Ρ€ΡƒΠ³ Π·Π° Π΄Ρ€ΡƒΠ³ΠΎΠΌ. Для этого Π±Π΅Ρ€Ρ‘ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π₯, ставим Π·Π° Π½ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ Y ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π½ΠΎΠ²Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€. Новый Π²Π΅ΠΊΡ‚ΠΎΡ€ начинаСтся Π² хвостС Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π₯ ΠΈ заканчиваСтся Π½Π° стрСлкС Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Y. Π­Ρ‚ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€ β€” Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ слоТСния. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΡŒΡ‚Π΅, Ρ‡Ρ‚ΠΎ это Ρ€Π΅Π±Ρ‘Π½ΠΎΡ‡Π΅ΠΊ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°: X = (6, 4); Y = (3, βˆ’2); Π₯ + Y = (9, 2)

Π§Ρ‚ΠΎΠ±Ρ‹ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π₯ ΠΈ Y Π² ΠΎΠ΄Π½Ρƒ ΠΈΡΡ…ΠΎΠ΄Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ. Π”Π°Π»ΡŒΡˆΠ΅ ΠΌΡ‹ Π΄ΡƒΠ±Π»ΠΈΡ€ΡƒΠ΅ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π₯ ΠΈ Y, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅ΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π½ΠΎΠ²Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€. Π’ Π½ΠΎΠ²ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π΅ соСдиняСм ΠΈΡΡ…ΠΎΠ΄Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ с исходной Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Π΄ΡƒΠ±Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² β€” стрСлка ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ посСрСдинС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°. Π”Π»ΠΈΠ½Π° Π½ΠΎΠ²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° β€” это сумма Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π₯ ΠΈ Y.

Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π΄Π°Ρ‘Ρ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π²Ρ‹Π±ΠΈΡ€Π°ΠΉΡ‚Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ большС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ ΠΏΠΎΠ΄ Π·Π°Π΄Π°Ρ‡Ρƒ.

Π’Ρ‹Ρ‡ΠΈΡ‚Π°Π½ΠΈΠ΅

Π’Ρ‹Ρ‡ΠΈΡ‚Π°Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ слоТнСС. Π§Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ‡Π΅ΡΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹, Π½ΡƒΠΆΠ½ΠΎ Β«Ρ€Π°Π·Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒΒ» Π²Ρ‹Ρ‡ΠΈΡ‚Π°Π΅ΠΌΡ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΈ ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒ Π΅Π³ΠΎ с исходным. Β«Π Π°Π·Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒΒ» β€” Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ Π² ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ сторону, Β«ΠΏΠ΅Ρ€Π΅Π²Π΅Ρ€Π½ΡƒΠ²Β» Π·Π½Π°ΠΊΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡΡ конструкция Π²Ρ€ΠΎΠ΄Π΅ Ρ‚Π°ΠΊΠΎΠΉ: Π₯ + (βˆ’Y)

Π”Π°Π»ΡŒΡˆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΡ€Π°Π²ΠΈΠ»Π° слоТСния. Пошагово это выглядит Ρ‚Π°ΠΊ:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ посмотрим, ΠΊΠ°ΠΊ выглядит Π²Ρ‹Ρ‡ΠΈΡ‚Π°Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π’Ρ‹Ρ‡ΠΈΡ‚Π°Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°: X = (6, 4); βˆ’Y = (βˆ’3, 2); X + (βˆ’Y) = (3, 6) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π’Ρ‹Ρ‡ΠΈΡ‚Π°Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°: X = (6, 4); βˆ’Y = (βˆ’3, 2); X + (βˆ’Y) = (3, 6)

Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° β€” это ΠΎΠ΄Π½ΠΎ число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ измСряСтся расстояниСм ΠΎΡ‚ ΠΊΠΎΠ½Ρ‡ΠΈΠΊΠ° Π΄ΠΎ стрСлки Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Π”Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° нСльзя ΠΏΡƒΡ‚Π°Ρ‚ΡŒ с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ β€” это нСсколько чисСл, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° располоТСниС стрСлки Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. По ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. НапримСр, Ссли X = (6, 2), Ρ‚ΠΎ стрСлка Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ 6 ΠΏΠΎ оси Π₯. Или Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€: Ссли Y = (6, 5), Ρ‚ΠΎ стрСлка этого Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ 5 ΠΏΠΎ оси Y.

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Π½Π°ΠΌ извСстны Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² X ΠΈ Y. ΠŸΡƒΡΡ‚ΡŒ это Π±ΡƒΠ΄Π΅Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠ° 2 ΠΏΠΎ оси X ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ° 2 ΠΏΠΎ оси Y. Π’Π°ΠΊ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π»Π΅Π³ΠΊΠΎ ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ²:

X = 6 βˆ’ 2 = 4
Y = 5 βˆ’ 2 = 3

Иногда приходится Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ привязан ΠΊ Π΄Π²ΡƒΠΌ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ. Π­Ρ‚ΠΎ Π»Π΅Π³ΠΊΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° β€” это ΠΊΠΎΠ³Π΄Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹ Ρ€Π°Π²Π΅Π½ суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΊΠ°Ρ‚Π΅Ρ‚ΠΎΠ². Π’ нашСм случаС ΠΊΠ°Ρ‚Π΅Ρ‚Π°ΠΌΠΈ Π±ΡƒΠ΄ΡƒΡ‚ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² X ΠΈ Y. ВспоминаСм ΡˆΠΊΠΎΠ»ΡŒΠ½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈ считаСм:

|C|2 = 42 + 32 = 25
|C| = √25 = 5 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° считаСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π§Ρ‚ΠΎΠ±Ρ‹ Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΡ‰Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ β€” пСрСнСситС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½Π° систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

Π­Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства. Π’ Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° похоТая: Π½ΡƒΠΆΠ½ΠΎ ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ Ρ‚Ρ€Ρ‘Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· суммы.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π’ пространствС с большим числом ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° выглядит слоТнСС, Π½ΠΎ ΠΏΠΎ сути Ρ‚ΠΎ ΠΆΠ΅: складываСм всС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· этой суммы.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€

Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° число

Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Если ΠΌΡ‹ ΡƒΠΌΠ½ΠΎΠΆΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π₯ Π½Π° Ρ‚Ρ€ΠΈ, Ρ‚ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠΌ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρƒ Π² Ρ‚Ρ€ΠΈ Ρ€Π°Π·Π°. Если ΡƒΠΌΠ½ΠΎΠΆΠΈΠΌ Π½Π° минус Ρ‚Ρ€ΠΈ β€” ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠΌ Π΄Π»ΠΈΠ½Ρƒ ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΠΈΠΌ Π΅Π³ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° число

Для дСлСния ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‚ΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΡ€Π°Π²ΠΈΠ»Π°. Π”Π΅Π»ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π₯ Π½Π° Ρ‚Ρ€ΠΈ ΠΈ сокращаСм Π΄Π»ΠΈΠ½Ρƒ Π² Ρ‚Ρ€ΠΈ Ρ€Π°Π·Π°. Π”Π΅Π»ΠΈΠΌ Π½Π° минус Ρ‚Ρ€ΠΈ β€” сокращаСм ΠΈ Ρ€Π°Π·Π²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°Π΅ΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π”Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° число

Π”Π° Π²Ρ€ΠΎΠ΄Π΅ нСслоТно!

Пока Π½ΠΈΡ‡Π΅Π³ΠΎ слоТного. Но Ссли ΡƒΠ³Π»ΡƒΠ±Π»ΡΡ‚ΡŒΡΡ, Π²Ρ‹ ΡƒΠ·Π½Π°Π΅Ρ‚Π΅, Ρ‡Ρ‚ΠΎ:

Π§Ρ‚ΠΎ дальшС

Π’ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассмотрим Π»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π΅ ΡΠΊΡƒΡ‡Π°Ρ‚ΡŒ β€” посмотритС ΠΈΠ½Ρ‚Π΅Ρ€Π²ΡŒΡŽ с АнастасиСй Никулиной. Анастасия ΡΠ΅Π½ΡŒΠΎΡ€-Π΄Π°Ρ‚Π°-сайСнтист Π² РосбанкС ΠΈ ΠΏΠΎ ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ Π±Π»ΠΎΠ³Π΅Ρ€ с интСрСсной историСй.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *