Что такое длина радиоволны
Теория радиоволн: ликбез
Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков.
Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами.
Давайте ближе познакомимся с теорией радиоволн.
Радиоволна
Длина волны(λ) — это расстояние между соседними гребнями волны.
Амплитуда(а) — максимальное отклонения от среднего значения при колебательном движении.
Период(T) — время одного полного колебательного движения
Частота(v) — количество полных периодов в секунду
Существует формула, позволяющая определять длину волны по частоте:
Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)
«УКВ», «ДВ», «СВ»
Сверхдлинные волны — v = 3—30 кГц (λ = 10—100 км).
Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.
Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.
Длинные волны(ДВ) v = 150—450 кГц (λ = 2000—670 м).
Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.
Средние волны (СВ) v = 500—1600 кГц (λ = 600—190 м).
Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.
Короткие волны (КВ) v= 3—30 МГц (λ = 100—10 м).
Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.
Ультракороткие Волны(УКВ) v = 30 МГц — 300 МГц (λ = 10—1 м).
Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:
Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.
Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц — 3 ГГц (λ = 1—0,1 м).
Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.
Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц — 30 ГГц (λ = 0,1—0,01 м).
Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.
AM — FM
Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:
AM — амплитудная модуляция
Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
АМ — первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.
FM — частотная модуляция
Это изменение несущей частоты под воздействие кодирующего колебания.
Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.
На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.
Еще термины
Интерференция — в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.
Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.
Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».
Дифракция — явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.
Что такое длина радиоволны
Рекомендуем полезные ссылки по теме:
Что такое радиоволны
Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).
Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.
Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны (в метрах) рассчитывается по формуле: или примерно где ¦ – частота электромагнитного излучения в МГц.
Из формулы видно, что, например, частоте 1 МГц соответствует длина волны ок. 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – догадайтесь сами. В дальнейшем мы убедимся, что знание длины волны очень важно при выборе антенны для радиосистемы, так как от нее напрямую зависит длина антенны. Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. Кстати, на этом основано применение электромагнитных волн в радиолокации. Еще одним полезным свойством электромагнитных волн (впрочем, как и всяких других волн) является их способность огибать тела на своем пути. Но это возможно лишь в том случае, когда размеры тела меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить – вспомните американский самолет-невидимку «Stealth».
Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него. Например, поток энергии электромагнитного излучения Солнца на поверхность Земли достигает 1 киловатта на квадратный метр, а поток энергии средневолновой вещательной радиостанции – всего тысячные и даже миллионные доли ватта на квадратный метр.
Радиоволны (радиочастоты), используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой. Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются. Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:
Диапазон частот | Наименование диапазона (сокращенное наименование) | Наименование диапазона волн | Длина волны |
3–30 кГц | Очень низкие частоты (ОНЧ) | Мириаметровые | 100–10 км |
30–300 кГц | Низкие частоты (НЧ) | Километровые | 10–1 км |
300–3000 кГц | Средние частоты (СЧ) | Гектометровые | 1–0.1 км |
3–30 МГц | Высокие частоты (ВЧ) | Декаметровые | 100–10 м |
30–300 МГц | Очень высокие частоты (ОВЧ) | Метровые | 10–1 м |
300–3000 МГц | Ультра высокие частоты (УВЧ) | Дециметровые | 1–0.1 м |
3–30 ГГц | Сверхвысокие частоты (СВЧ) | Сантиметровые | 10–1 см |
30–300 ГГц | Крайне высокие частоты (КВЧ) | Миллиметровые | 10–1 мм |
300–3000 ГГц | Гипервысокие частоты (ГВЧ) | Децимиллиметровые | 1–0.1 мм |
Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.
Пример распределения спектра между различными службами [1].
Эта разбивка довольно запутана, поэтому многие службы используют свою «внутреннюю» терминологию. Обычно при обозначении диапазонов выделенных для наземной подвижной связи используются следующие названия:
Термин | Диапазон частот | Пояснения |
Коротковолновый диапазон (КВ) | 2–30 МГц | Из-за особенностей распространения в основном применяется для дальней связи. |
«Си-Би» | 25.6–30.1 МГц | Гражданский диапазон, в котором могут пользоваться связью частные лица. В разных странах на этом участке выделено от 40 до 80 фиксированных частот (каналов). |
«Low Band» | 33–50 МГц | Диапазон подвижной наземной связи. Непонятно почему, но в русском языке не нашлось термина, определяющего данный диапазон. |
УКВ | 136–174 МГц | Наиболее распространенный диапазон подвижной наземной связи. |
ДЦВ | 400–512 МГц | Диапазон подвижной наземной связи. Иногда не выделяют этот участок в отдельный диапазон, а говорят УКВ, подразумевая полосу частот от 136 до 512 МГц. |
«800 МГц» | 806–825 и 851–870 МГц | Традиционный «американский» диапазон; широко используется подвижной связью в США. У нас не получил особого распространения. |
Не надо путать официальные наименования диапазонов частот с названиями участков, выделенных для различных служб. Стоит отметить, что основные мировые производители оборудования для подвижной наземной связи выпускают модели, рассчитанные на работу в пределах именно этих участков.
В дальнейшем мы будем говорить о свойствах радиоволн применительно к их использованию в наземной подвижной радиосвязи.
Как распространяются радиоволны
Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.
Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота). Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.
Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.
Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.
Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой. Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.
Распространение длинных и коротких волн [2].
Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.
Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.
Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.
Отражательные слои ионосферы и распространение коротких волн
в зависимости от частоты и времени суток [1].
Распространение коротких и ультракоротких волн [2].
Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ
волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.
Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно
послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны). Возможность направленного излучения волн позволяет повысить эффективность системы связи.
Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных
направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящихся не в створе луча.
При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.
Параболические направленные антенны [1].
Необходимо отметить, что с уменьшением длины волны возрастает их затухание и поглощение в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, сильно ограничивающей дальность связи.
Мы выяснили, что волны радиодиапазона обладают различными свойствами распространения, и каждый участок этого диапазона применяется там, где лучше всего могут быть использованы его преимущества.
Распространение радиоволн в среде и передача данных
Радиоволна – это взаимосвязанные колебания электрического и магнитного полей, которые способны распространяться в пространстве со скоростью света. Они обладают такими свойствами как отражение, затухание, преломление. Радиодиапазон составляют волны с длинами от 0,1 мм до 100 км. Волны короче 0,1 мм относят к оптическим, длиннее 100 км используют исключительно в научных целях.
Радиоволна и ее особенности
Радиоволна создается при изменении электрического либо магнитного поля. Для ее создания используются специальные электромагнитные генераторы. Каждая волна изначально обладает запасом энергии, которую переносит через пространство. Она может терять энергию – такой процесс называется затуханием.
Электромагнитные волны характеризуются следующими параметрами:
В зависимости от скорости изменения направления электрического (либо магнитного) поля можно определить частоту волны, которая измеряется в Герцах (Гц). Чтобы определить длину волны, необходимо знать расстояние между точками, где поле находится в одной фазе. Частота и длина волны – взаимно обратные величины. Знание длины волны очень важно для правильного выбора размера передающей антенны.
Важным свойством электромагнитных волн является то, что они не встречая сопротивления проходят через воздух и могут свободно распространяться в пространстве. Однако, если волна встречает на пути металлические объекты, а также любой другой проводящий электричество материал, то она теряет часть своей энергии, ее мощность падает, а в проводнике генерирует переменный ток. Также часть энергии волны отражается от проводника – данный принцип лег в основу радиолокации.
Дальность связи зависит от мощности передатчика генерирующего электромагнитную волну. Именно это устройство передает волне запас энергии, которую та будет расходовать при распространении. Запас будет уменьшаться при контакте с поверхностью планеты, а также при взаимодействии с различными объектами. Однако, дальность распространения будет зависеть не только от запаса энергии, но и от других свойств – в первую очередь, от длины волны.
Распространение радиоволн, расстояние и длина волны
Радиоволны распространяются в пространстве различным образом. Способ их движения в первую очередь зависит от их длины. Так, например, волны от 10 км и выше (сверхдлинные – СДВ) без труда огибают наземные препятствия как искусственного, так и естественного происхождения. Они теряют мало энергии в процессе своего распространения и затухают гораздо медленнее, чем волны других длин. По этой причине они могут перемещаться в пространстве на тысячи километров. Также они обладают высокой степенью проникновения в среду, поэтому их широко используют для исследований земной коры для нужд археологии, геологии, инженерного дела. Их применяют для исследования атмосферы планеты. Также с их помощью осуществляют связь с подводными объектами.
Километровые волны также называют «длинные» (ДВ), они составляют 1-10 км и тратят больше энергии при распространении, способны покрывать расстояния до 2000 км. Близкий к ним тип – средние (СВ) от 100 м до 1 км. Они сильнее поглощаются земной поверхностью, поэтому имеют еще меньший диапазон распространения – порядка 1000 км.
Короткие волны (КВ – 10-100 м) распространяются не далее чем на 250 км, однако обладают интересным свойством. Часть их, уходящая под большим углом к горизонту, соприкасаясь с верхними слоями атмосферы (ионосферой) отражается и направляется обратно к поверхности. Затем они снова отражаются, теперь уже от земли и снова направляются вверх. Распространяясь таким образом короткие волны могут несколько раз обойти вокруг планеты. Ионосфера теряет свою отражательную способность в ночное время, поэтому связь на коротких волнах в это время суток будет хуже.
Длина ультракоротких волн (УКВ) составляет от 1 см до 10 м, к ним относятся метровые (МВ), дециметровые (ДМВ), сантиметровые (СМВ). Они успешно преодолевают ионосферу не отражаясь от нее. Они уходят выше и применяются для исследования свойств облаков, наблюдения за птицами, определения координат самолетов. Но так как отсутствует эффект отражения, они не могут огибать планету и радиосвязь с их помощью ограничена расстоянием в 200-300 км. С помощью специальных антенн УКВ собирают в «пучок», усиливают и отправляют в указанном направлении, что широко используется при обеспечении спутниковой связи, а также в радиолокации.
Миллиметровые волны (ММВ) во многом схожи с УКВ, однако для них серьезной помехой служат атмосферные явления, такие как дождь, снег, туман, облака. За счет ММВ обеспечивается работа высокоскоростной радиорелейной связи. Они нашли свое применение в быту, их используют в медицине, они пригодились в радиоастрономии.
Оборудование применяемое для передачи радиоволн, способы увеличения дальности
Радиосвязь – быстрый и относительно надежный способ передачи данных на большие расстояния. При этом нет необходимости в использовании физического носителя, например проводов.
Свойства волн разной длины напрямую влияют на их применение для обеспечения радиосвязи. Кроме того, на качество передачи информации с их помощью влияют следующие факторы:
Процесс приема-передачи информации с помощью радиоволн состоит из следующих основных этапов:
Чтобы реализовать обмен информации необходимо чтобы у принимающей и передающей стороны в наличии было следующее оборудование:
Две простейшие радиостанции, как правило, могут обмениваться информацией на очень небольших расстояниях. Чтобы значительно увеличить зону покрытия, необходимо использовать один из следующих методов:
Применяется несколько способов радиосвязи, для каждого из которых используется специфическое оборудование. Три наиболее распространенных вида:
Сотовая связь
При ее использовании сигнал идет от передатчика к приемникам, расположенным на одинаковом расстоянии друг от друга. Они образуют гексагональную фигуру, которую называют «сота». Такое построение сети позволяет обеспечить в области покрытия высокое качество сигнала, которое будет определяться количеством приемников расположенных рядом с местом приема или передачи. В настоящее время этот вид связи является наиболее популярным и чаще всего используемым. Роль приемника и передатчика здесь играет персональный телефонный аппарат. Основное преимущество сотовой связи – обеспечение высокой мобильности абонента.
Радиорелейная связь
Вид радиосвязи, осуществляемой с помощью цепочки передающих станций, находящихся в прямой видимости их антенн. Работают в дециметровом и сантиметровом диапазонах. Возможна одновременное функционирование большого количества передатчиков. Уровень индустриальных и атмосферных помех радиоприему в ДМ и СМ диапазонах низкий. Главный недостаток – ограниченное расстояние передачи и высокая степень зависимости от коммуникационной инфраструктуры – сети ретрансляторов.
Как правило на передающих станциях размещается большой комплекс передающих устройств, находящихся в едином техническом здании. Они применяют общие источники электроэнергии, антенны и их опоры. На каждом объекте создается несколько стволов связи, что позволяет значительно повысить пропускную способность станции, что позволяет реализовать многоканальную связь.
Спутниковая связь
Данный вид – это следующий этап развития радиорелейной связи. Вместо наземной коммуникационной сети используются спутники, расположенные на околоземных орбитах. Радиосигнал сигнал передается со специализированной станции, находящейся на поверхности планеты на космический аппарат. Здесь он обрабатывается, усиливается и отправляется либо на принимающую наземную станцию, либо на другой спутник, находящийся в радиусе действия. Главным достоинством данного вида связи является возможность передавать информацию в любую точку планеты – независимо от ее местоположения: на суше, в полярных льдах, посреди океана.
Сферы применения
Возможность практически мгновенной передачи информации на любые расстояния создает широкие возможности использования во всех сферах деятельности человека. Радиосвязь успешно применяется в следующих отраслях:
Также широкие возможности коммуникации являются неотъемлемым инструментом практически любого современного бизнеса. При помощи беспроводной связи можно успешно решать вопросы управления удаленными объектами.
Алгоритмы кодирования и декодирования, методики защиты информации
При передаче сообщений посредством радиоволн, необходимо преобразование обычной звуковой информации. Изначальный сигнал подвергается нескольким последовательным трансформациям, в том числе кодируется. Затем передается. А на принимающем устройстве осуществляется его декодирование и преобразование в аналоговую форму.
Кодирование сигнала при радиопередаче используется для нескольких целей. Одна из них – повышение помехоустойчивости. Это необходимо, так как на радиосигнал во время его перемещения воздействуют различные физические явления. Они могут изменять данные, вносить в них ошибки. Поэтому к каждому сообщению добавляют определенное количество битов, между значениями которых имеется заданная алгебраическая взаимосвязь. Анализ этих данных с помощью встроенного декодера дает возможность системе обнаружить и исправить ошибки, возникшие при передаче радиосигнала.
У силовых ведомств, частных служб охраны и безопасности, а также других организаций возникает необходимость защитить данные от несанкционированного доступа. Применяется два основных метода: дискретизация с шифрованием, а также аналоговое скремблирование.
Дискретизация с шифрованием объединяет наиболее прогрессивные методы закрытия речи связанные с переводом сигнала в цифровой вид. Используются различные криптографические алгоритмы. Чаще всего применяются вокодеры с линейным предсказанием речи (ЛПР). Кусочно линейная аппроксимация процесса является основой используемого алгоритма. Каждый кодируемый фрагмент представляет собой линейную функцию от фрагментов предыдущих. Речевая информация задается тремя параметрами: периодом основного тона, амплитудой, решением «тон/шум».
В целом же существует два основных подхода к шифрованию речи, передаваемой в цифровом виде:
В средствах аналогово связи защита данных достигается за счет использования аналоговых скремблеров. Они трансформируют первоначальный звуковой сигнал в неразборчивую смесь звуков, что не позволяет злоумышленникам понять смысл передаваемых данных. Применяются следующие виды преобразования:
Одним из критериев оценки эффективности работы скремблера является остаточная разборчивость – это параметр характеризует возможность дешифрации данных техническими средствами и оценивается в процентах восстановленной информации. При простых и недорогих методах защиты может составлять от 10 до 50%. Другой критерий – качество сигнала восстановленного в принимающем устройстве. Достаточным качеством является сигнал, который позволяет без труда выделить голос и понять смысл сообщения.
Частоты и каналы
Классификация радиоволн подразумевает разделение на 8 типов по длине и частоте:
Для переговоров в РФ разрешены следующие диапазоны частот:
Остальные диапазоны законодательно запрещены к использованию. Они выделяются для служебных нужд различных ведомств и их использование может повлечь за собой административное или уголовное наказание – в зависимости от тяжести последствий несанкционированного вмешательства.
Для удобства общения, чтобы максимально упростить использование радиосвязи, были выделены определенные частоты. Они были пронумерованы так, что их стало не сложно запомнить и настроить. Эти номера и называют – каналы радиосвязи. Во многих простейших моделях раций нет ни клавиатуры, ни ручек настройки для установки произвольной частоты – только кнопки позволяющие переключать каналы. Таким образом рацией может пользоваться любой человек и ему не нужно знать что такое частоты, LPD или PMR, достаточно перещелкнуть рацию на заданный канал и успешно ею пользоваться.
Субтоны являются дополнительным средством, позволяющим разделить разговоры различных абонентов в рамках одного канала. Настройка данного параметра позволит аппарату отфильтровывать сообщения и выдавать в эфир только те, которые совпадают с заданным субтоном. Существует два вида таких сигналов: QT/DQT и CTCSS.
Связь с помощью радиоволн – один из основных способов обмена информацией в современном мире. Существует большое разнообразие различных методов их применения. Они широко используются для радио и телевещания, для исследования, обеспечения дальней связи, повседневной коммуникации, а также для организации деятельности различных специальных служб: охранных подразделений, полиции, пожарных, медицинской службы. Все типы радиоволн находят себе применение в деятельности человека.