Дивергенция (расходимость) — скалярный дифференциальный оператор векторного поля, который показывает, насколько поле имеет тенденцию расходиться из данной точки.
Содержание
Определение
Оператор дивергенции обозначается так: div F.
Допустим, что векторное поле дифференцируемо в некоторой области. Тогда в трёхмерном декартовом пространстве дивергенция будет определяться выражением
Это же выражение можно записать с использованием оператора набла
Физическая интерпретация
С точки зрения физики, дивергенция векторного поля является показателем того, в какой степени данная точка пространства является источником или потребителем потока поля. То есть, альтернативное определение дивергенции выглядит:
где Ф — поток векторного поля F через сферическую поверхность площадью S, ограничивающую объем V. Это определение применимо, в отличие от первого, не только к декартовым системам координат
0>» /> точка поля является источником точка поля является стоком стоков и источников нет, либо они компенсируют друг друга
Например, если в качестве векторного поля взять совокупность направлений наискорейшего спуска на земной поверхности, то дивергенция покажет местоположение вершин и впадин, причём на вершинах дивергенция будет положительна (направления спуска расходятся от вершин), а на впадинах отрицательная (ко впадинам направления спуска сходятся).
Свойства
Следующие свойства могут быть получены из обычных правил дифференцирования.
для любых векторных полей F и G и для всех действительных чисел a и b.
Дивергенция в ортогональных криволинейных координатах
Дивергенция (от лат. divergere — обнаруживать расхождение) — дифференциальный оператор, отображающий векторное поле на скалярное (то есть операция дифференцирования, в результате применения которой к векторному полю получается скалярное поле), который определяет (для каждой точки), «насколько расходится входящее и исходящее из малой окрестности данной точки поле» (точнее — насколько расходятся входящий и исходящий поток).
Если учесть, что потоку можно приписать алгебраический знак, то нет необходимости учитывать входящий и исходящий потоки по отдельности, всё будет автоматически учтено при суммировании с учётом знака. Поэтому можно дать более короткое определение дивергенции:
дивергенция — это линейный дифференциальный оператор на векторном поле, характеризующий поток данного поля через поверхность малой окрестности каждой внутренней точки области определения поля.
Оператор дивергенции, применённый к полю , обозначают как
.
Содержание
Определение
Определение дивергенции выглядит так:
где ФF — поток векторного поля F через сферическую поверхность площадью S, ограничивающую объём V. Ещё более общим, а потому удобным в применении, является определение, когда форма области с поверхностью S и объёмом V допускается любой. Единственным требованием является её нахождение внутри сферы радиусом, стремящимся к нулю (то есть чтобы вся поверхность находилась в бесконечно малой окрестности данной точки, что нужно, чтобы дивергенция была локальной операцией и для чего очевидно недостаточно стремления к нулю площади поверхности и объёма ее внутренности). В обоих случаях подразумевается, что
.
Это определение, в отличие от приводимого ниже, не привязано к определённым координатам, например, к декартовым, что может представлять дополнительное удобство в определённых случаях. (Например, если выбирать окрестность в форме куба или параллелепипеда, легко получаются формулы для декартовых координат, приведённые в следующем параграфе).
Определение легко и прямо обобщается на любую размерность n пространства: при этом под объёмом понимается n-мерный объём, а под площадью поверхности (n-1)-мерная площадь (гипер)поверхности соответствующей размерности.
Определение в декартовых координатах
Допустим, что векторное поле дифференцируемо в некоторой области. Тогда в трёхмерном декартовом пространстве дивергенция будет определяться выражением
Это же выражение можно записать с использованием оператора набла
Многомерная, а также двумерная и одномерная, дивергенция определяется в декартовых координатах в пространствах соответствующей размерности совершенно аналогично (в верхней формуле меняется лишь количество слагаемых, а нижняя остается той же, подразумевая оператор набла подходящей размерности).
Физическая интерпретация
С точки зрения физики (и в строгом смысле, и в смысле интуитивного физического образа математической операции) дивергенция векторного поля является показателем того, в какой степени данная точка пространства (или очень малая окрестность точки) является источником или стоком этого поля:
0 » border=»0″ /> — точка поля является источником; — точка поля является стоком; — стоков и источников нет, либо они компенсируют друг друга.
Простым, хоть быть может и несколько схематическим, примером может служить озеро (для простоты — постоянной единичной глубины со всюду горизонтальной скоростью течения воды, не зависящей от глубины, давая, таким образом, двумерное векторное поле на двумерном пространстве). Если угодно иметь более реалистическую картину, то можно рассмотреть горизонтальную проекцию скорости, проинтегрированную по вертикальной пространственной координате, что даст ту же картину двумерного векторного поля на двумерном пространстве, причём картина качественно будет для наших целей не сильно отличаться от упрощённой первой, количественно же являться её обобщением (весьма реалистическим). В такой модели (и в первом, и во втором варианте) родники, бьющие из дна озера будут давать положительную дивергенцию поля скоростей течения, а подводные стоки (пещеры, куда вода утекает) — отрицательную дивергенцию.
Дивергенция вектора плотности тока даёт минус скорость накопления заряда в электродинамике (так как заряд сохраняется, то есть не исчезает и не появляется, а может только переместиться через границы какого-то объёма, чтобы накопиться в нём или уйти из него; а если и возникают или исчезают где-то положительные и отрицательные заряды — то только в равных количествах). (См. Уравнение непрерывности).
Геометрическая интерпретация
Если в качестве векторного поля (на двумерном пространстве) взять совокупность направлений наискорейшего спуска на земной поверхности, то дивергенция покажет местоположение вершин и впадин, причём на вершинах дивергенция будет положительна (направления спуска расходятся от вершин), а на впадинах отрицательная (ко впадинам направления спуска сходятся).
Дивергенция в физике
В стандартной формулировке классической теории поля дивергенция занимает центральное место (в альтернативных формулировках может не находиться в самом центре изложения, но всё равно остается важным техническим инструментом и важной идеей).
Свойства
Следующие свойства могут быть получены из обычных правил дифференцирования.
Дивергенция в ортогональных криволинейных координатах
Дивергенция векторного поля. Формула Остроградского–Гаусса в векторной форме
Пусть задано векторное поле
Дивергенцией или расходимостью векторного поля называется скалярная функция, определяемая равенством:
На этот раз векторное поле порождает скалярное поле .
С учетом понятий дивергенции и потока векторного поля формулу Остроградского–Гаусса можно представить в форме:
т. е. поток векторного поля через замкнутую поверхность S в направлении внешней нормали равен тройному интегралу от дивергенции векторного поля по области, ограниченной этой поверхностью.
На основании формулы () можно записать:
и, переходя к пределу, стягивая V в точку М (при этом величина V → 0 ), имеем:
То есть есть предел отношения потока поля через бесконечно малую замкнутую поверхность, окружающую точку М, к величине объёма, ограниченного этой поверхностью. Из этого следует, что дивергенция не зависит от выбора системы координат.
то в область V втекает большее количество жидкости, чем вытекает из неё, т.е. внутри области V имеются источники жидкости.
Для характеристики точки можно использовать .
Если , то данная точка есть источник, если – то сток.
Заметим, что можно записать с помощью символического вектора Гамильтона
в следующем виде:
1˚ Если – постоянный вектор, то
4˚ , U – скалярная функция.
Вихревой вектор поля. Формула Стокса в векторной форме
Вихревым вектором (вихрем), или ротором векторного поля
называется вектор, имеющий координаты:
Тем самым векторное поле порождает векторное поле вихря
Через символический вектор Гамильтона
вихревой вектор записывается как векторное произведение вектора на вектор поля , т. е.
Как легко видеть, выражение
стоящее под знаком поверхностного интеграла в формуле Стокса, представляет собой скалярное произведение вихря векторного поля на единичный вектор нормали к поверхности S.
Следовательно, формулу Стокса можно представить в векторной форме следующим образом:
Левая и правая части формулы () представляют, соответственно, циркуляцию векторного поля и поток его вихря. Значит, формула Стокса утверждает: циркуляция векторного поля по замкнутому контуру L равна потоку его вихря через поверхность S, натянутую на этот контур.
Можно определить проекцию вектора на любое направление следующим образом:
т.е. есть вектор, проекция которого на любое направление равна пределу отношения циркуляции векторного поля по контуру L плоской площадки τ, перпендикулярной этому направлению , к площади этой площадки, когда размеры этой площадки стремятся к нулю.
Или другими словами: есть вектор, нормальный к поверхности, на которой плотность циркуляции достигает наибольшего значения.
Это, кроме прочего, означает и то, что вихрь поля (как и градиент, так и дивергенция) не зависит от выбора системы координат, а является характеристикой самого поля.
Отметим некоторые свойства ротора:
1˚ Если – постоянный вектор, то
2˚
3˚
4˚ Если U – скалярная функция, а – векторная, то
§4. СПЕЦИАЛЬНЫЕ ВЕКТОРНЫЕ ПОЛЯ
Векторное поле называется соленоидальным, если во всех точках его дивергенция равна нулю, т.е. Примерами соленоидальных полей являются: поле скоростей вращающегося твердого тела; магнитное поле, создаваемое прямолинейным проводником, вдоль которого течет электрический ток, и т.д.
Векторное поле называется безвихревым, если его ротор тождественно равен нулю в области определения поля:
Векторное поле называется потенциальным, если оно является полем градиентов некоторой скалярной функции φ(M), т. е. В этом случае функция φ(M) называется потенциалом поля.
Имеет место важное утверждение.
Если векторное поле непрерывно дифференцируемо в замкнутой односвязной области V, то каждое из следующих четырёх предложений равносильно любому другому из них:
ü – потенциальное поле;
ü – безвихревое поле;
ü циркуляция поля по любому замкнутому контуру, лежащему внутри области V, равна нулю;
ü криволинейный интеграл
не зависит от формы пути интегрирования.
Любой потенциал φ(М) поля очевидно, можно представить в виде:
Отметим важное свойство указанных выше специальных векторных полей.
Произвольное векторное поле всегда может быть представлено в виде суммы потенциального поля и соленоидального поля , т.е. .
Заметим, что для соленоидального поля можно определить векторный потенциал поля.
§5. ОПЕРАТОР ЛАПЛАСА. ГАРМОНИЧСЕКИЕ ФУНКЦИИ
Рассмотрим дифференциальную операцию второго порядка где U – скалярная функция. Тогда
то скалярный квадрат записывают в виде:
Подобно символическому оператору Гамильтона , можно ввести символический оператор:
называемый оператором Лапласа.
Скалярная функция φ(x; y; z) называется гармонической в некоторой области, если она непрерывна в этой области вместе со своими производными удовлетворяет уравнению
Векторный анализ — раздел математики, изучающий вещественный анализ векторов в двух или более измерениях. Методы векторного анализа находят большее применение в физике и инженерии.
Векторный анализ изучает векторные поля — функции из n-мерного векторного пространства в m-мерное — и скалярные поля — функции из n-мерного векторного пространства во множество скаляров.
Многие из результатов векторного анализа рассматриваются как частные случаи результатов из дифференциальной геометрии.
Для получения основных соотношений, используемых в векторном анализе, оказывается практически важным рассмотрение криволинейных и поверхностных интегралов, и их геометрических приложений. Так, например, теорема Стокса в векторной форме приобретает совершенно новый физический смысл.
Практически полезным является и введение оператора Гамильтона, с его помощью удобно записывать векторные операции первого порядка (градиент, дивергенция, ротор), а также комбинации со скалярными и векторными функциями. Для введения дифференциальных операций второго порядка используется оператор Лапласа. Дифференциальное уравнение Лапласа играет важную роль в различных разделах математической физики.
К рассмотрению скалярных и векторных полей приводят многие задачи физики, электротехники, математики, механики и других технических дисциплин. Изучение одних физических полей способствует изучению и других. Математическим ядром теории поля являются рассмотренные нами понятия градиента, потока, потенциала, дивергенции, ротора, циркуляции и др. Эти понятия важны и в усвоении основных идей математического анализа функций многих переменных.
1. Березанский Ю. М., Левитан Б. М.. Функциональный анализ/ http://www.cultinfo.ru/fulltext/1/001/008/117/905.htm
2. Бронштейн И.Н., Семендяев К.А. Справочник по математике для и инженеров и учащихся втузов. – М.: Наука, 1964. – 608 с.
3. Выгодский М.Я. Справочник по высшей математике. – М.: Наука, 1966. – 872 с.
4. Квальвассер В.И., Фридман М.И. Теория поля. Теория функций комплексного переменного. Операционное исчисление. – М.: Высшая школа, 1967. – 240 с.
5. Кузнецов Д.С. Специальные функции. – М.: Высшая школа, 1965. – 424 с.
6. Лекции по математическому анализу: Учеб. для вузов/ Г.И. Архипов, В.А. Садовничий, В.Н. Чубариков; Под ред. В.А. Садовничего. – 4-е изд., испр. – М.: Дрофа, 2004. – 640 с.
7. Ляшко И.И., Боярчук А.К., Гай Я.Г., Головач Г.П. Справочное пособие поп высшей математике. Т.3. Ч.2: Математический анализ: кратные и криволинейные интегралы. Изд. 6-е. – М.: КомКнига, 2007.
8. Магазинников Л.И. Функции комплексного переменного. Ряды. Интегральные преобразования. Учебное пособие. – Томск: Томский межвузовский центр дистанционного образования, 1999. – 205 с.
9. Панов В.Ф. Математика древняя и юная. – 2-е изд. – М.: Изд-во МГТУ им. Н.Э.Баумана, 2006.