Что такое дисперсия ряда чисел
Дисперсия, виды и свойства дисперсии
Понятие дисперсии
Дисперсия в статистике находится как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:
1. Простая дисперсия (для несгруппированных данных) вычисляется по формуле:
2. Взвешенная дисперсия (для вариационного ряда):
где n — частота (повторяемость фактора Х)
Пример нахождения дисперсии
На данной странице описан стандартный пример нахождения дисперсии, также Вы можете посмотреть другие задачи на её нахождение
Пример 1. Имеются следующие данные по группе из 20 студентов заочного отделения. Нужно построить интервальный ряд распределения признака, рассчитать среднее значение признака и изучить его дисперсию
Построим интервальную группировку. Определим размах интервала по формуле:
где X max– максимальное значение группировочного признака;
X min–минимальное значение группировочного признака;
n – количество интервалов:
Принимаем n=5. Шаг равен: h = (192 — 159)/ 5 = 6,6
Составим интервальную группировку
Для дальнейших расчетов построим вспомогательную таблицу:
X’i– середина интервала. (например середина интервала 159 – 165,6 = 162,3)
Среднюю величину роста студентов определим по формуле средней арифметической взвешенной:
Определим дисперсию по формуле:
Формулу дисперсии можно преобразовать так:
Из этой формулы следует, что дисперсия равна разности средней из квадратов вариантов и квадрата и средней.
Дисперсия в вариационных рядах с равными интервалами по способу моментов может быть рассчитана следующим способом при использовании второго свойства дисперсии (разделив все варианты на величину интервала). Определении дисперсии, вычисленной по способу моментов, по следующей формуле менее трудоемок:
где i — величина интервала;
А — условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;
m1 — квадрат момента первого порядка;
m2 — момент второго порядка
Дисперсия альтернативного признака (если в статистической совокупности признак изменяется так, что имеются только два взаимно исключающих друг друга варианта, то такая изменчивость называется альтернативной) может быть вычислена по формуле:
Подставляя в данную формулу дисперсии q =1- р, получаем:
Виды дисперсии
Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.
Внутригрупповая дисперсия характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.
Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:
где хi — групповая средняя;
ni — число единиц в группе.
Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию).
Средняя из внутри групповых дисперсий отражает случайную вариацию, т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле:
Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле:
Правило сложения дисперсии в статистике
Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:
Смысл этого правила заключается в том, что общая дисперсия, которая возникает под влиянием всех факторов, равняется сумме дисперсий, которые возникают под влиянием всех прочих факторов, и дисперсии, возникающей за счет фактора группировки.
Пользуясь формулой сложения дисперсий, можно определить по двум известным дисперсиям третью неизвестную, а также судить о силе влияния группировочного признака.
Свойства дисперсии
1. Если все значения признака уменьшить (увеличить) на одну и ту же постоянную величину, то дисперсия от этого не изменится.
2. Если все значения признака уменьшить (увеличить) в одно и то же число раз n, то дисперсия соответственно уменьшится (увеличить) в n^2 раз.
Что такое дисперсия в статистике
Статистика, в частности, оперирует рядами данных, характеризующих какой-либо признак, явление. Интересует их изменение.
Вариация представляет собой отличие величин одинакового показателя у разных предметов. Ее изучение позволит понять причины отклонений от нормы, анализировать их и в какой-то мере прогнозировать. Также станет возможным выявить факторы, влияющие на значения, отсеяв случайные.
Характеристики равномерного распределения представлены на картинке:
При значительном объеме статистики, средняя величина очевидно близка к нормальной. Об этом говорят и законы распределения. Отклонения от нее будут являться объективной характеристикой.
Только вот отрицательные значения этих разбросов будут сбивать с толку при расчетах, погашая положительные. А оставлять лишь модули – для математика не корректно. Напрашивается возвести в четную степень, а именно – во вторую.
Решение оказалось не только удобным. Оно открыло бо́льшие возможности в изучении отклонений. А важны именно они, поскольку сама по себе средняя мало что дает.
В качестве одного из важных показателей вариации, вводится понятие «дисперсия» – усредненный квадрат отклонений численных значений каких-либо событий от средней величины.
Никакого наглядного смысла величина не несет. Другое дело, среднее квадратическое отклонение – корень квадратный из дисперсии.
Виды дисперсии дискретной случайной величины
Для анализа данных цифр в таком виде недостаточно. Гораздо больше можно выжать из последовательности, если разбить ее на группы по определенному признаку.
Общая дисперсия
Как можно заметить, вычисленная по приведенному выше определению величина характеризует отклонения в целом. Без учета определяющих вариацию факторов. Вернее, с учетом всех, включая совершенно случайные. Поэтому и называется «общей» и рассчитывается по формулам, указанным ниже.
Простая дисперсия, без разделения на группы:
Или в несколько преобразованном виде:
Взвешенная дисперсия, для вариационного ряда:
где xi – значение из ряда;
fi – частота, количество повторений;
n – число вариантов.
Черта сверху указывает на среднюю величину.
Межгрупповая дисперсия
Характеризует систематическое отклонение, возникающее из-за фактора, по которому производилось выделение признаков в группы. Поэтому также называется «факторной».
Как найти данную дисперсию? По формуле:
где k – количество групп;
nj – элементов в группе с индексом j.
Внутригрупповая дисперсия
Возникает по хаотичной причине, не связанной с причиной сделанной выборки. Неучтенный фактор. Еще обозначается как «остаточная».
Например, рассматривается количество выпущенных деталей за месяц каждым фрезеровщиком цеха.
В качестве критерия отбора в группу выбираем возраст оборудования. Он-то и не будет влиять на производительность внутри подборки: там станки у всех практически одинаковые.
Если вычислить среднюю величину от всех групповых,
то получим характеристику случайного разброса. Иными словами, составляющую вариации, зависящую от чего угодно, кроме фактора отбора.
Взаимосвязь
В соответствии с правилом сложения, общая D[X] включает средние выражения остаточной и факторной. И это логично, поскольку учитывает и случайное изменение в группе, и систематическое в факторной.
Свойства дисперсии
Если последовательность состоит из одинаковых чисел, то D[X] будет нулевой.
Уменьшение всех значений на постоянную величину на дисперсию не влияет. Иначе говоря, рассчитать σ 2 можно по отклонениям от фиксированного числа.
Уменьшение всех цифр в k раз приведет к падению D[X] в k 2 раз. Можно, например, иметь в виду значения в метрах, а результат вычислить в футах. Достаточно учесть один раз то, на что следует умножить.
Показатели вариаций
Кроме размаха (разницы максимального и минимального значений), среднего линейного и дисперсии, изменения описываются коэффициентом вариации:
Оценить масштаб разброса проще по относительной величине. Тем более, что измеряются в одних единицах.
Пример расчета дисперсии
Компания объявила конкурсный отбор для приема сотрудников. В качестве критерия принят стаж работы по специальности. Приведем исходные данные и расчеты.
По альтернативной формуле:
Заключение
Статистика оперирует значительными объемами данных. Вариация, как одно из основных понятий – не исключение. И дисперсия в качестве основной характеристики.
Для упрощения расчетов существует масса онлайн калькуляторов. Имеется упомянутый инструмент в MS Excel.
43. Дисперсия и среднее квадратичное отклонение
При анализе результатов наблюдений полезно иметь сведения о разбросе данных в ряду. Некоторое представление об этом даёт размах ряда, но он является слишком грубой оценкой. Поэтому известные вам статистические показатели дополняют ещё одним понятием, называемым дисперсией.
Разъясним смысл понятия дисперсия на примере.
Пусть имеется ряд данных
Среднее арифметическое этого ряда равно:
Для каждого члена ряда найдём его отличие, или, как говорят, его отклонение от среднего арифметического:
Нетрудно подсчитать, что сумма отклонений равна нулю:
(-1) + (-3) + 2 + (-2) + (-3) + 7 = 0.
Вообще для любого ряда данных сумма отклонений от среднего арифметического равна нулю и потому не может характеризовать разброс данных в ряду.
Для того чтобы судить о разбросе данных в некотором ряду, поступают следующим образом: составляют ряд квадратов отклонений и вычисляют среднее арифметическое этого ряда, которое называют дисперсией заданного ряда данных.
Дисперсией ряда чисел называется среднее арифметическое квадратов их отклонений от среднего арифметического этого ряда.
Дисперсия является мерой разброса чисел в ряду.
В приведённом примере дисперсия ряда равна:
Рассмотрим такой пример. При подготовке к соревнованиям по стрельбе из пистолета спортсмены Петров и Смирнов произвели по 8 серий выстрелов. Подсчитывая для каждой серии, состоящей из 10 выстрелов, число попаданий в цель, получили такие данные:
Петров: 10, 10, 9, 7, 10, 7, 10, 9;
Смирнов: 10, 9, 10, 9, 10, 8, 8, 8.
Для каждого ряда данных найдём среднее арифметическое:
Вычислим дисперсию для каждого ряда данных.
Для ряда результатов, показанных Петровым, имеем
Для ряда результатов, показанных Смирновым, имеем
Мы видим, что, хотя среднее арифметическое числа попаданий в обоих случаях одинаково, разброс данных во втором ряду меньше. Следовательно, Смирнов показал на тренировке более стабильный результат.
Одна из особенностей дисперсии состоит в следующем: если в ряду, содержащем большое число данных, есть лишь несколько данных, значительно отличающихся от среднего арифметического этого ряда, то дисперсия такого ряда обычно бывает невелика.
Необходимо отметить, что дисперсия как характеристика ряда данных имеет существенный недостаток. Он заключается в следующем. Если величины измеряются в каких-либо линейных единицах, например, в метрах, часах, килограммах и т. п., то дисперсия измеряется в квадратах этих единиц, т. е. в мерах, некоторые из которых не имеют реального смысла. Поэтому, при оценке разброса данных дисперсию часто заменяют другим показателем, называемым средним квадратичным отклонением.
Средним квадратичным отклонением числового ряда называют квадратный корень из дисперсии этого ряда.
Для результатов стрельбы, показанных Петровым и Смирновым, дисперсия, согласно расчётам, равна соответственно 1,5 и 0,75. Среднее квадратичное отклонение в первом случае равно , а во втором оно равно
.
Среднее квадратичное отклонение принято обозначать греческой буквой а (сигма). В рассмотренном примере σ1 = ≈ 1,2, σ2 =
≈ 0,9.
Упражнения
Пользуясь калькулятором, найдите для каждого ряда данных:
а) среднее арифметическое месячных температур;
б) отклонения температур от среднего арифметического;
в) дисперсию.
Алгебра. 8 класс
При анализе результатов исследований полезно иметь представление о разбросе данных в числовом ряду. Размах ряда один из таких показателей, но дает слишком грубую оценку.
Размах ряда чисел – разность между наибольшим и наименьшим числами в данном ряду чисел.
Рассмотрим наиболее часто используемый на практике статистический показатель – дисперсия.
Представлен ряд чисел 4; 8; 12; 7; 16; 13.
Вычислим среднее арифметическое данного ряда. Сумму всех чисел ряда разделим на их количество.
Вычислим отклонение каждого члена ряда от среднего арифметического:
4 – 10 = –6;
8 – 10 = –2;
12 – 10 = 2;
7 – 10 = –3;
16 – 10 = 6;
13 – 10 = 3.
Заметим, что сумма отклонений равна нулю:
(–6) + (–2) + 2 + (–3) + 6 + 3 = 0.
Данный показатель не может характеризировать разброс данных, так как для любого ряда чисел он всегда будет равен нулю.
Составим ряд квадратов отклонений и рассчитаем среднее арифметическое ряда, т. е. определим дисперсию заданного ряда данных.
Дисперсия рассматриваемого ряда равна 16.
Дисперсией ряда чисел называется среднее арифметическое квадратов их отклонений от среднего арифметического этого ряда.
Дисперсия – мера разброса чисел в ряду.
Кто лучше готов к соревнованиям?
Спортсмены проводили подготовку к соревнованиям по стрельбе из лука. Оба спортсмена произвели по 7 серий выстрелов. Каждая серия состояла из 12 выстрелов. По итогам каждой серии подведены результаты попадания в цель.
Получили следующие данные:
Спортсмен 1: 11, 11, 12, 11, 9, 11, 12.
Спортсмен 2: 12, 10, 9, 12, 11, 12, 11.
Найдём среднее арифметическое для каждого спортсмена.
Спортсмен 1: .
Спортсмен 2:
Вычислим дисперсию результатов для каждого спортсмена.
Спортсмен 1:
Спортсмен 2:
Обратите внимание на полученные значения.
Разброс данных у первого спортсмена меньше. Это говорит о его лучшей подготовке.
Данный пример демонстрирует, что при равных средних арифметических значениях, именно дисперсия позволила выявить наименьший разброс данных среди результатов.
Первый спортсмен лучше готов. Показал более стабильный результат.
Отметим особенность дисперсии.
Если в ряду содержится большое число данных, среди которых есть лишь несколько данных, значительно отличающихся от среднего арифметического этого ряда, то дисперсия такого ряда данных обычно не велика.
Если исследуемые величины измеряются в каких-либо линейных единицах измерения: килограммах, метрах, часах и т. д., то по сущности вычислений дисперсия измеряется в квадратах этих единиц, т. е. некоторые из этих единиц измерений не имеют реального смысла.
Поэтому дисперсию часто заменяют на среднее квадратичное отклонение.
Средним квадратичным отклонением числового ряда называют квадратный корень из дисперсии этого ряда.
Запишем результаты для рассматриваемого нами примера.
Спортсмен 1: .
Спортсмен 2: .
Среднее квадратичное отклонение принято обозначать греческой буквой σ (сигма).
Алгебра. 8 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. – 6-е изд. – М.: Просвещение, 2017.
Дисперсия свойства, формула вычисления дисперсии дискретной случайной величины, виды, правило и примеры расчетов, онлайн-калькулятор
В различных научных дисциплинах словосочетание «дисперсия это» характеризует мало схожие понятия. С латыни «dispersio» переводится как «рассеяние».
В физике, например, означает связь фазовой скорости волны с частотой. В химии описывает несмешиваемые субстанции. В биологии – многообразие признаков популяции.
В данной статье речь пойдет о математической трактовке. Рассматривается как одно из свойств случайных величин.
Что такое дисперсия в статистике
Статистика, в частности, оперирует рядами данных, характеризующих какой-либо признак, явление. Интересует их изменение.
Вариация представляет собой отличие величин одинакового показателя у разных предметов. Ее изучение позволит понять причины отклонений от нормы, анализировать их и в какой-то мере прогнозировать. Также станет возможным выявить факторы, влияющие на значения, отсеяв случайные.
Характеристики равномерного распределения представлены на картинке:
При значительном объеме статистики, средняя величина очевидно близка к нормальной. Об этом говорят и законы распределения. Отклонения от нее будут являться объективной характеристикой.
Только вот отрицательные значения этих разбросов будут сбивать с толку при расчетах, погашая положительные. А оставлять лишь модули – для математика не корректно. Напрашивается возвести в четную степень, а именно – во вторую.
Решение оказалось не только удобным. Оно открыло бо́льшие возможности в изучении отклонений. А важны именно они, поскольку сама по себе средняя мало что дает.
В качестве одного из важных показателей вариации, вводится понятие «дисперсия» – усредненный квадрат отклонений численных значений каких-либо событий от средней величины.
Никакого наглядного смысла величина не несет. Другое дело, среднее квадратическое отклонение – корень квадратный из дисперсии.
Виды дисперсии дискретной случайной величины
Для анализа данных цифр в таком виде недостаточно. Гораздо больше можно выжать из последовательности, если разбить ее на группы по определенному признаку.
Общая дисперсия
Как можно заметить, вычисленная по приведенному выше определению величина характеризует отклонения в целом. Без учета определяющих вариацию факторов. Вернее, с учетом всех, включая совершенно случайные. Поэтому и называется «общей» и рассчитывается по формулам, указанным ниже.
Простая дисперсия, без разделения на группы:
Или в несколько преобразованном виде:
Взвешенная дисперсия, для вариационного ряда:
где xi – значение из ряда;
fi – частота, количество повторений;
n – число вариантов.
Черта сверху указывает на среднюю величину.
Межгрупповая дисперсия
Характеризует систематическое отклонение, возникающее из-за фактора, по которому производилось выделение признаков в группы. Поэтому также называется «факторной».
Как найти данную дисперсию? По формуле:
где k – количество групп;
nj – элементов в группе с индексом j.
Внутригрупповая дисперсия
Возникает по хаотичной причине, не связанной с причиной сделанной выборки. Неучтенный фактор. Еще обозначается как «остаточная».
Например, рассматривается количество выпущенных деталей за месяц каждым фрезеровщиком цеха.
В качестве критерия отбора в группу выбираем возраст оборудования. Он-то и не будет влиять на производительность внутри подборки: там станки у всех практически одинаковые.
Если вычислить среднюю величину от всех групповых,
то получим характеристику случайного разброса. Иными словами, составляющую вариации, зависящую от чего угодно, кроме фактора отбора.
Взаимосвязь
В соответствии с правилом сложения, общая D[X] включает средние выражения остаточной и факторной. И это логично, поскольку учитывает и случайное изменение в группе, и систематическое в факторной.
Свойства дисперсии
Если последовательность состоит из одинаковых чисел, то D[X] будет нулевой.
Уменьшение всех значений на постоянную величину на дисперсию не влияет. Иначе говоря, рассчитать σ 2 можно по отклонениям от фиксированного числа.
Уменьшение всех цифр в k раз приведет к падению D[X] в k 2 раз. Можно, например, иметь в виду значения в метрах, а результат вычислить в футах. Достаточно учесть один раз то, на что следует умножить.
Показатели вариаций
Кроме размаха (разницы максимального и минимального значений), среднего линейного и дисперсии, изменения описываются коэффициентом вариации:
Оценить масштаб разброса проще по относительной величине. Тем более, что измеряются в одних единицах.
Пример расчета дисперсии
Компания объявила конкурсный отбор для приема сотрудников. В качестве критерия принят стаж работы по специальности. Приведем исходные данные и расчеты.
По альтернативной формуле:
Заключение
Статистика оперирует значительными объемами данных. Вариация, как одно из основных понятий – не исключение. И дисперсия в качестве основной характеристики.
Для упрощения расчетов существует масса онлайн калькуляторов. Имеется упомянутый инструмент в MS Excel.