Что такое динамическая типизация в python

Типы данных Python

Введение в тему

Данные не однородны. Информация, записанная на естественном языке, к примеру, это предложение, сильно отличается от данных, состоящих из чисел. Слова можно склонять, а числа – умножать. Для того, чтобы удобнее было работать с такими разными данными, создатели языков программирования разделяют их на различные типы. Типы данных Python не исключение. О них мы и поговорим в этом уроке.

Что такое динамическая типизация

Python, как уже говорилось, является типизированным языком программирования. Естественно, у такого языка должен быть механизм определения типа данных. Если бы этого не было, возникали бы ситуации, когда логика программы будет нарушена, а код выполнится некорректно.

Этим механизмом является типизация.

В процессе её выполнения выполняется определение используемых. Типизация бывает статической и динамической. При статической проверка выполняется во время компиляции программы, а при динамической — непосредственно во время выполнения программного кода.

У Пайтона типизация динамическая. Благодаря этому одну и ту же переменную можно использовать много раз с данными разных типов, и она при этом будет каждый раз менять свой тип чтобы код исполнялся корректно:

Но, увлекаться этим не стоит – для улучшения читаемости кода, в большинстве случаев, лучше ввести дополнительные переменные для данных с другими типами. Это полезно ещё и тем, что переменные с хорошо выбранными названиями являются альтернативой комментариям и объясняют, что за данные они хранят.

Существует давний спор между сторонниками разных языков о том, какая типизация лучше: статическая или динамическая. Так как у обоих подходов есть и минусы, и плюсы, то правильным ответом будет: лучше, та типизация, которая больше подходит под Ваши задачи. В среднем, программы, написанные на языках со статической типизацией, более надёжны, но разработка на языках с динамической типизацией происходит быстрее. Часто встречается комбинированный подход, когда на динамическом языке пишут прототип программы, а потом, критически важные места переписывают на статический язык.

В последнее время набирает популярность «смешанная типизация». Самым ярким примером этого подхода является язык Rust: статическая типизация при входе и выходе из блока кода, но динамическая внутри этого блока. В последних версиях Питон тоже делает шаг в эту сторону: появился такой инструмент, как аннотирование типов или type hinting, но это тема отдельной статьи.

К основным плюсам динамической типизации относятся:

К основным минусам динамической типизации относятся:

Разница между атомарными и структурными типы данных

Все типы данных в Python можно разделить на атомарные и ссылочные.

Разница между этими типами в том, что атомарные объекты, при их присваивании переменным, передаются по значению, а ссылочные передаются по ссылке.

Источник

Что такое типизация в программировании

Объясняем, что это такое, какая бывает типизация и на что она влияет.

Что такое динамическая типизация в python. Смотреть фото Что такое динамическая типизация в python. Смотреть картинку Что такое динамическая типизация в python. Картинка про Что такое динамическая типизация в python. Фото Что такое динамическая типизация в python

Что такое динамическая типизация в python. Смотреть фото Что такое динамическая типизация в python. Смотреть картинку Что такое динамическая типизация в python. Картинка про Что такое динамическая типизация в python. Фото Что такое динамическая типизация в python

Если вы читали что-то о языках программирования, то наверняка не раз наткнулись на упоминание типизации. Что это такое и что об этом нужно знать, когда выбираешь язык программирования?

Типизация — это то, как язык распознаёт типы переменных. Типизация определяет, нужно ли вам писать тип, или язык «поймёт» его сам, и насколько свободно можно с типами работать: например, можно ли их менять.

Что такое динамическая типизация в python. Смотреть фото Что такое динамическая типизация в python. Смотреть картинку Что такое динамическая типизация в python. Картинка про Что такое динамическая типизация в python. Фото Что такое динамическая типизация в python

В бэкграунде — программирование, французский язык, академическое рисование, капоэйра. Сейчас учит финский. Любит путешествия и Балтийское море.

А что такое типы?

В переменную можно записывать информацию, а тип переменной описывает, какая именно информация записана в переменной и что с ней можно делать.

Типы бывают разные и немного различаются в разных языках.

Зачем нужно знать о типизации?

От типизации зависит, как вам работается с языком, как он себя ведёт. Если вы знаете, какие выгоды или проблемы приносят разные виды типизации, вам легче будет выбрать язык.

Какая бывает типизация?

Слабая и сильная

Если у языка сильная типизация (её ещё называют строгой), это значит, что он требует, чтобы разработчики строго следовали правилам работы с типами: если вы обозначили что-то как целое число, будьте добры с ним работать как с целым числом.

Языки со слабой типизацией «добрее»: если вы решите прибавить число к тексту, они не будут ругаться, а попробуют сделать то, что вы просите. Правда, результат может быть не совсем таким, как вы планировали.

В JavaScript, языке со слабой типизацией, можно сложить строку с числом, например вот так:

И получить строку «21».

А в Java так сделать нельзя: появится ошибка.

Что такое динамическая типизация в python. Смотреть фото Что такое динамическая типизация в python. Смотреть картинку Что такое динамическая типизация в python. Картинка про Что такое динамическая типизация в python. Фото Что такое динамическая типизация в python

Статическая и динамическая

Статическая типизация значит, что типы определяются на этапе компиляции. То есть ошибки в типах будут видны ещё до того, как программа запустится.

В языках с динамической типизацией типы определяются во время выполнения программы.

Так, в динамически типизированном языке у одной и той же переменной могут быть разные типы в разных частях программы, а в статически типизированном, если вы задали переменной тип string, у неё будет только тип string.

Например, в Python (динамическая типизация) можно сделать вот так:

И язык не будет возражать. В Java (статическая типизация) так сделать нельзя.

Явная и неявная

Ещё типизацию делят на явную и неявную. Когда типизация неявная, тип определяется сам в момент, когда вы записываете в переменную информацию.

Например, если в Python написать так:

Он прочитает, что вы записали в переменную b целое число, и определит b как integer (int).

Явная типизация значит, что тип переменной написан. Например, в С переменная записывается вот так:

Само по себе разделение типизации на явную и неявную не столь важно: в статически типизированных языках она почти всегда явная, а в динамически — неявная.

Как типизация влияет на работу с языком?

Важно учитывать, что типизация — далеко не единственный фактор, который влияет на скорость. Нельзя сказать, что все языки со статической типизацией быстрее языков с динамической.

В каких языках какая типизация

Напоследок — типизации некоторых популярных языков:

Если вы пока новичок в программировании, то приглашаем вас на наш курс «Python-разработчик». Потому что Python — один из лучших языков для начинающих, в том числе благодаря своей типизации. Он научит дисциплине в работе с переменными, но при этом не уморит долгой писаниной. В курсе расскажут подробнее о разных типах переменных и динамической типизации, научат работе с классами и объектами и познакомят с разными библиотеками.

Источник

Список типов данных в Python

Н ачнём с того, что все данные в Python являются объектами. Они могут создаваться нами вручную, либо быть изначально встроенными на уровне языка. Объект можно охарактеризовать, как особую область памяти, где хранятся некоторые значения и определённые для этих значений операции.

Проиллюстрировать фундаментальность объектов в разрезе Питона можно, приведя пример общего вида программы на этом языке. Итак:

Ну и вполне закономерно, что объекты можно классифицировать по их типам.

Что такое динамическая типизация

Прежде, чем мы приступим к рассмотрению наиболее употребляемых типов данных в Python, проведём небольшую параллель с другими языками программирования. Всё их множество можно разделить на две составляющие:

Нетипизированные языки в основной своей массе сосредоточены на низком уровне, где большинство программ напрямую взаимодействует с железом. Так как компьютер «мыслит» нулями и единицами, различия между строкой и, допустим, классом для него будут заключаться лишь в наборах этих самых 0 и 1. В связи с этим, внутри бестиповых языков, близких к машинному коду, возможны любые операции над какими угодно данными. Результат на совести разработчика.

Python же — язык типизированный. А, раз в нём определено понятия «типа», то должен существовать и процесс распознания и верификации этих самых «типов». В противном случае вероятны ситуации, когда логика кода окажется нарушенной, а программа выполнится некорректно.

Таким процессом и является типизация. В ходе её выполнения происходит подтверждение используемых типов и применение к ним соответствующих ограничений. Типизация может быть статической и динамической. В первом случае, проверка выполняется во время компиляции, во втором — непосредственно во время выполнения программного кода.

Python — язык с динамической типизацией. И здесь, к примеру, одна и та же переменная, при многократной инициализации, может являть собой объекты разных типов:

a = 1 print(type(a)) a = ‘one’ print(type(a)) a = <1: 'one'>print(type(a))

В языке со статической типизацией такой фокус не пройдёт:

💭 Адепты и приверженцы разных языков часто спорят о том, что лучше: динамическая типизация или статическая, но, само собой, преимущества и недостатки есть и там, и там.

👍 К плюсам динамической типизации можно отнести:

# список, элементами которого являются строка, целое число и кортеж variety_list = [‘String’, 42, (5,25)]

🙁 К минусам же динамической проверки типов можно отнести такие моменты, как:

Так или иначе, сказать, что «одно лучше другого» нельзя. Иначе «другого» бы не было. Динамически типизированные языки экономят уйму времени при кодинге, но могут обернуться неожиданными проблемами на этапе тестирования или, куда хуже, продакшена. Однако вряд ли кто-то будет спорить с тем, что динамический Python куда более дружелюбный для новичков, нежели статический C++.

Разница между атомарными и структурными типы данных

По одной из классификаций все типы данных в Python делятся на атомарные и ссылочные.

Разница между этими двумя группами уходит глубоко в корни языка. Вкратце:

Атомарные объекты, при их присваивании, передаются по значению, а ссылочные — по ссылке

# пример присваивания атомарного объекта atom = 3 btom = atom atom = 2 print(atom) > 2 print(btom) > 3

Из результатов видно, что переменной btom было присвоено именно значение, содержащееся в atom, а не ссылка, указывающая на область памяти.

Посмотрим, как это работает для структурных типов:

# пример присваивания ссылочного объекта link = [‘Ipona’, ‘Master Sword’] alin = link link[0] = ‘Zelda’ print(link) > [‘Zelda’, ‘Master Sword’] print(alin) > [‘Zelda’, ‘Master Sword’]

Поскольку списки — это ссылочные объекты, то вполне закономерно, что после присваивания переменной link переменной alin передалась именно ссылка на объект list-а и, при печати, на экран были выведены две одинаковые надписи.

Собственно, в этом и вся разница.

Числовые типы

«Все сущее есть Число» — сказал однажды мудрый грек по имени Пифагор. Числа — важнейший и фундаментальнейший из всех типов данных для всех языков программирования. В Python для их представления служит числовой тип данных.

int (целое число)

Концепция целых чисел проста и естественна. Это числа без дробной части, которые, говоря математическим языком, являются расширением натурального ряда, дополненного нулём и отрицательными числами.

Там, где есть числа, есть и математика. Поэтому резонно, что целые числа используются для исчисления всевозможных математических выражений. Также int применяется в качестве описаний количественных свойств какого-либо объекта.

float (число с плавающей точкой)

Действительные или вещественные числа придуманы для измерения непрерывных величин. В отличие от математического контекста, ни один из языков программирования не способен реализовать бесконечные или иррациональные числа, поэтому всегда есть место приближению с определенной точностью, из-за чего возможны такие ситуации:

print(0.3 + 0.3 + 0.3) > 0.8999999999999999 print(0.3 * 3 == 0.9) > False

В плане записи, float ничем не отличаются от int :

# примеры вещественных чисел zero = 0.0 pi = 3.14 e = 2.71

В плане использования — тоже, разве что в любых мало-мальски серьёзных вычислениях без float никуда.

complex (комплексное число)

Привет высшей математике! Как вещественный ряд расширяет множество рациональных чисел, так и ряд комплексных чисел расширяет множество вещественных. Показательной особенностью комплексного ряда является возможность извлечения корня из отрицательных чисел.

В Python комплексные числа задаются с помощью функции complex() :

# пример комплексного числа z = complex(1, 2) print(z) > (1+2j) # вещественная часть print(z.real) > 1.0 # мнимая часть print(z.imag) > 2.0 # сопряженное комплексное число print(z.conjugate()) > (1-2j)

Помните, что операция сравнения для комплексных чисел не определена:

z1 = complex(4, 5) z2 = complex(100, 200) print(z1 > z2) > Traceback (most recent call last): print(z1> z2) TypeError: ‘>’ not supported between instances of ‘complex’ and ‘complex’

Комплексные числа широко применяются, например, для решения дифференциальных уравнений.

Источник

Ликбез по типизации в языках программирования

Что такое динамическая типизация в python. Смотреть фото Что такое динамическая типизация в python. Смотреть картинку Что такое динамическая типизация в python. Картинка про Что такое динамическая типизация в python. Фото Что такое динамическая типизация в python

Эта статья содержит необходимый минимум тех вещей, которые просто необходимо знать о типизации, чтобы не называть динамическую типизацию злом, Lisp — бестиповым языком, а C — языком со строгой типизацией.

В полной версии находится подробное описание всех видов типизации, приправленное примерами кода, ссылками на популярные языки программирования и показательными картинками.

Рекомендую прочитать сначала краткую версию статьи, а затем при наличии желания и полную.

Краткая версия

Языки программирования по типизации принято делить на два больших лагеря — типизированные и нетипизированные (бестиповые). К первому например относятся C, Python, Scala, PHP и Lua, а ко второму — язык ассемблера, Forth и Brainfuck.

Так как «бестиповая типизация» по своей сути — проста как пробка, дальше она ни на какие другие виды не делится. А вот типизированные языки разделяются еще на несколько пересекающихся категорий:

Примеры:
Статическая: C, Java, C#;
Динамическая: Python, JavaScript, Ruby.

Примеры:
Сильная: Java, Python, Haskell, Lisp;
Слабая: C, JavaScript, Visual Basic, PHP.

Примеры:
Явная: C++, D, C#
Неявная: PHP, Lua, JavaScript

Также нужно заметить, что все эти категории пересекаются, например язык C имеет статическую слабую явную типизацию, а язык Python — динамическую сильную неявную.

Тем-не менее не бывает языков со статической и динамической типизаций одновременно. Хотя забегая вперед скажу, что тут я вру — они действительно существуют, но об этом позже.

Подробная версия

Если краткой версии Вам показалось недостаточно, хорошо. Не зря же я писал подробную? Главное, что в краткой версии просто невозможно было уместить всю полезную и интересную информацию, а подробная будет возможно слишком длинной, чтобы каждый смог ее прочесть, не напрягаясь.

Бестиповая типизация

В бестиповых языках программирования — все сущности считаются просто последовательностями бит, различной длины.

Бестиповая типизация обычно присуща низкоуровневым (язык ассемблера, Forth) и эзотерическим (Brainfuck, HQ9, Piet) языкам. Однако и у нее, наряду с недостатками, есть некоторые преимущества.

Преимущества
Недостатки
Сильная безтиповая типизация?

Да, такое существует. Например в языке ассемблера (для архитектуры х86/х86-64, других не знаю) нельзя ассемблировать программу, если вы попытаетесь загрузить в регистр cx (16 бит) данные из регистра rax (64 бита).

mov cx, eax ; ошибка времени ассемблирования

Так получается, что в ассемлере все-таки есть типизация? Я считаю, что этих проверок недостаточно. А Ваше мнение, конечно, зависит только от Вас.

Статическая и динамическая типизации

Что такое динамическая типизация в python. Смотреть фото Что такое динамическая типизация в python. Смотреть картинку Что такое динамическая типизация в python. Картинка про Что такое динамическая типизация в python. Фото Что такое динамическая типизация в python

Главное, что отличает статическую (static) типизацию от динамической (dynamic) то, что все проверки типов выполняются на этапе компиляции, а не этапе выполнения.

Некоторым людям может показаться, что статическая типизация слишком ограничена (на самом деле так и есть, но от этого давно избавились с помощью некоторых методик). Некоторым же, что динамически типизированные языки — это игра с огнем, но какие же черты их выделяют? Неужели оба вида имеют шансы на существование? Если нет, то почему много как статически, так и динамически типизированных языков?

Преимущества статической типизации
Преимущества динамической типизации
Обобщенное программирование

Хорошо, самый важный аргумент за динамическую типизацию — удобство описания обобщенных алгоритмов. Давайте представим себе проблему — нам нужна функция поиска по нескольким массивам (или спискам) — по массиву целых чисел, по массиву вещественных и массиву символов.

Как же мы будем ее решать? Решим ее на 3-ех разных языках: одном с динамической типизацией и двух со статической.

Алгоритм поиска я возьму один из простейших — перебор. Функция будет получать искомый элемент, сам массив (или список) и возвращать индекс элемента, или, если элемент не найден — (-1).

Динамическое решение (Python):

Как видите, все просто и никаких проблем с тем, что список может содержать хоть числа, хоть списки, хоть другие массивы нет. Очень хорошо. Давайте пойдем дальше — решим эту-же задачу на Си!

Статическое решение (Си):

Ну, каждая функция в отдельности похожа на версию из Python, но почему их три? Неужели статическое программирование проиграло?

И да, и нет. Есть несколько методик программирования, одну из которых мы сейчас рассмотрим. Она называется обобщенное программирование и язык C++ ее неплохо поддерживает. Давайте посмотрим на новую версию:

Статическое решение (обобщенное программирование, C++):

Хорошо! Это выглядит не сильно сложнее чем версия на Python и при этом не пришлось много писать. Вдобавок мы получили реализацию для всех массивов, а не только для 3-ех, необходимых для решения задачи!

Эта версия похоже именно то, что нужно — мы получаем одновременно плюсы статической типизации и некоторые плюсы динамической.

Здорово, что это вообще возможно, но может быть еще лучше. Во-первых обобщенное программирование может быть удобнее и красивее (например в языке Haskell). Во-вторых помимо обобщенного программирования также можно применить полиморфизм (результат будет хуже), перегрузку функций (аналогично) или макросы.

Статика в динамике

Также нужно упомянуть, что многие статические языки позволяют использовать динамическую типизацию, например:

Сильная и слабая типизации

Что такое динамическая типизация в python. Смотреть фото Что такое динамическая типизация в python. Смотреть картинку Что такое динамическая типизация в python. Картинка про Что такое динамическая типизация в python. Фото Что такое динамическая типизация в python

Языки с сильной типизацией не позволяют смешивать сущности разных типов в выражениях и не выполняют никаких автоматических преобразований. Также их называют «языки с строгой типизацией». Английский термин для этого — strong typing.

Слабо типизированные языки, наоборот всячески способствуют, чтобы программист смешивал разные типы в одном выражении, причем компилятор сам приведет все к единому типу. Также их называют «языки с нестрогой типизацией». Английский термин для этого — weak typing.

Слабую типизацию часто путают с динамической, что совершенно неверно. Динамически типизированный язык может быть и слабо и сильно типизирован.

Однако мало, кто придает значение строгости типизации. Часто заявляют, что если язык статически типизирован, то Вы сможете отловить множество потенциальных ошибок при компиляции. Они Вам врут!

Язык при этом должен иметь еще и сильную типизацию. И правда, если компилятор вместо сообщения об ошибке будет просто прибавлять строку к числу, или что еще хуже, вычтет из одного массива другой, какой нам толк, что все «проверки» типов будут на этапе компиляции? Правильно — слабая статическая типизация еще хуже, чем сильная динамическая! (Ну, это мое мнение)

Так что-же у слабой типизации вообще нет плюсов? Возможно так выглядит, однако несмотря на то, что я ярый сторонник сильной типизации, должен согласиться, что у слабой тоже есть преимущества.

Хотите узнать какие?

Преимущества сильной типизации
Преимущества слабой типизации

Оказывается есть и даже два.

Неявное приведение типов, в однозначных ситуациях и без потерь данных

Ух… Довольно длинный пункт. Давайте я буду дальше сокращать его до «ограниченное неявное преобразование» Так что же значит однозначная ситуация и потери данных?

Однозначная ситуация, это преобразование или операция в которой сущность сразу понятна. Вот например сложение двух чисел — однозначная ситуация. А преобразование числа в массив — нет (возможно создастся массив из одного элемента, возможно массив, с такой длинной, заполненный элементами по-умолчанию, а возможно число преобразуется в строку, а затем в массив символов).

Потеря данных это еще проще. Если мы преобразуем вещественное число 3.5 в целое — мы потеряем часть данных (на самом деле эта операция еще и неоднозначная — как будет производиться округление? В большую сторону? В меньшую? Отбрасывание дробной части?).

Преобразования в неоднозначных ситуациях и преобразования с потерей данных — это очень, очень плохо. Ничего хуже этого в программировании нет.

Если вы мне не верите, изучите язык PL/I или даже просто поищите его спецификацию. В нем есть правила преобразования между ВСЕМИ типами данных! Это просто ад!

Ладно, давайте вспомним про ограниченное неявное преобразование. Есть ли такие языки? Да, например в Pascal Вы можете преобразовать целое число в вещественное, но не наоборот. Также похожие механизмы есть в C#, Groovy и Common Lisp.

Ладно, я говорил, что есть еще способ получить пару плюсов слабой типизации в сильном языке. И да, он есть и называется полиморфизм конструкторов.

Я поясню его на примере замечательного языка Haskell.

Полиморфные конструкторы появились в результате наблюдения, что чаще всего безопасные неявные преобразования нужны при использовании числовых литералов.

И это сделано в Haskell, благодаря тому, что у литерала 1 нет конкретного типа. Это ни целое, ни вещественное, ни комплексное. Это же просто число!

Конечно спасает этот прием только при использовании смешанных выражений с числовыми литералами, а это лишь верхушка айсберга.

Таким образом можно сказать, что лучшим выходом будет балансирование на грани, между сильной и слабой типизацией. Но пока идеальный баланс не держит ни один язык, поэтому я больше склоняюсь к сильно типизированным языкам (таким как Haskell, Java, C#, Python), а не к слабо типизированным (таким как C, JavaScript, Lua, PHP).

Ладно, пойдем дальше?

Явная и неявная типизации

Что такое динамическая типизация в python. Смотреть фото Что такое динамическая типизация в python. Смотреть картинку Что такое динамическая типизация в python. Картинка про Что такое динамическая типизация в python. Фото Что такое динамическая типизация в python

Язык с явной типизацией предполагает, что программист должен указывать типы всех переменных и функций, которые объявляет. Английский термин для этого — explicit typing.

Язык с неявной типизацией, напротив, предлагает Вам забыть о типах и переложить задачу вывода типов на компилятор или интерпретатор. Английски термин для этого — implicit typing.

По-началу можно решить, что неявная типизация равносильна динамической, а явная — статической, но дальше мы увидим, что это не так.

Есть ли плюсы у каждого вида, и опять же, есть ли их комбинации и есть ли языки с поддержкой обоих методов?

Преимущества явной типизации
Преимущества неявной типизации
Явная типизация по-выбору

Есть языки, с неявной типизацией по-умолчанию и возможностью указать тип значений при необходимости. Настоящий тип выражения транслятор выведет автоматически. Один из таких языков — Haskell, давайте я приведу простой пример, для наглядности:

* Спасибо int_index за нахождение ошибки.

Хм. Как мы видим, это очень красиво и коротко. Запись функции занимает всего 18 символов на одной строчке, включая пробелы!

Однако автоматический вывод типов довольно сложная вещь, и даже в таком крутом языке как Haskell, он иногда не справляется. (как пример можно привести ограничение мономорфизма)

Есть ли языки с явной типизацией по-умолчанию и неявной по-необходимости? Кон
ечно.

Неявная типизация по-выбору

В новом стандарте языка C++, названном C++11 (ранее назывался C++0x), было введено ключевое слово auto, благодаря которому можно заставить компилятор вывести тип, исходя из контекста:

Неплохо. Но запись сократилась не сильно. Давайте посмотрим пример с итераторами (если не понимаете, не бойтесь, главное заметьте, что запись благодаря автоматическому выводу очень сильно сокращается):

Ух ты! Вот это сокращение. Ладно, но можно ли сделать что-нибудь в духе Haskell, где тип возвращаемого значения будет зависеть от типов аргументов?

И опять ответ да, благодаря ключевому слову decltype в комбинации с auto:

Может показаться, что эта форма записи не сильно хороша, но в комбинации с обобщенным программированием (templates / generics) неявная типизация или автоматический вывод типов творят чудеса.

Некоторые языки программирования по данной классификации

Я приведу небольшой список из популярных языков и напишу как они подразделяются по каждой категории “типизаций”.

Возможно я где-то ошибся, особенно с CL, PHP и Obj-C, если по какому-то языку у Вас другое мнение — напишите в комментариях.

Заключение

Окей. Уже скоро будет светло и я чувствую, что про типизацию больше нечего сказать. Ой как? Тема бездонная? Очень много осталось недосказано? Прошу в комментарии, поделитесь полезной информацией.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *