Что такое дигетерозигота в биологии
дигетерозигота
Смотреть что такое «дигетерозигота» в других словарях:
дигетерозигота — diheterozigota statusas T sritis augalininkystė apibrėžtis Pagal du lokusus (AaBb) heterozigotinis organizmas ar genotipas. atitikmenys: angl. diheterozygote; dihybrid rus. дигетерозигота; дигибрид ryšiai: sinonimas – dihibridas … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
Дигибрид дигетерозигота — Дигибрид, дигетерозигота * дыгібрыд, дыгетеразігота * dihybrid or diheterozygote организм или генотип, характеризующиеся гетерозиготностью по двум локусам: AaBb. У Д. образуются 4 типа гамет с одинаковой частотой: AB, Ab, aB, ab (). Г. Менделем… … Генетика. Энциклопедический словарь
дигибрид — дигетерозигота Особь, гетерозиготная по двум парам аллелей. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.] Тематики генетика Синонимы дигетерозигота EN dihybriddiheterozygote … Справочник технического переводчика
Хромосомная теория наследственности — Хромосомная теория наследственности[1] теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду… … Википедия
diheterozygote — diheterozygote. = дигетерозигота (см.). (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.
dihybrid — dihybrid. См. дигетерозигота. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.
дигибрид — дигибрид. См. дигетерозигота. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.
МЕНДЕЛИЗМ — МЕНДЕЛИЗМ, совокупность открытых Г. Менделем закономерностей, к рые в наст, время лежат в основании науки о наследственности. Работа Менделя появилась в 1866 г. в малоизвестных «Записках об ва естествоиспытателей» в Брюнне. В этой… … Большая медицинская энциклопедия
diheterozigota — statusas T sritis augalininkystė apibrėžtis Pagal du lokusus (AaBb) heterozigotinis organizmas ar genotipas. atitikmenys: angl. diheterozygote; dihybrid rus. дигетерозигота; дигибрид ryšiai: sinonimas – dihibridas … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
diheterozygote — diheterozigota statusas T sritis augalininkystė apibrėžtis Pagal du lokusus (AaBb) heterozigotinis organizmas ar genotipas. atitikmenys: angl. diheterozygote; dihybrid rus. дигетерозигота; дигибрид ryšiai: sinonimas – dihibridas … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
Анализирующее скрещивание дигетерозигот, соотношение признаков (генотипов и фенотипов)
Анализирующее скрещивание – это вид генетических исследований, проводимый с целью определения гетерозиготности организма.
Сущность метода
Анализирующее скрещивание изучали Грегор Мендель и один из основателей генетики Уильям Бэтсон.
Для определения гетерозиготности используется анализатор – рецессивный гомозиготный организм (аа).
Анализируемая особь имеет доминантный признак в фенотипе. Например, это сплошной окрас шерсти у кошек.
В генотипе он может быть:
Р А? (кошка со сплошным окрасом) х аа (сиамский кот)
Первый вариант F1: Аа Аа (все окрасы котят сплошные)
Второй вариант F2: Аа аа (сиамские и сплошные окрасы в соотношении 1:1)
Точность анализа зависит от количества потомков. Чем больше потомков – тем выше точность.
Таким образом, в первом варианте анализируемый организм давал только А – гаметы. Значит он является гомозиготным (чистопородным). Во втором случае анализа кошка давала и А – гаметы, и а – гаметы, т. е. является гетерозиготой. Так по соотношению признаков при анализирующем скрещивании определяют генотип при полном доминировании.
В случае неполного доминирования в потомстве наблюдаются промежуточные (смешанные) признаки:
Рис. 1. Схема анализирующего скрещивания.
Определение дигетерозиготы (АаВв) при анализирующем скрещивании происходит при соотношении фенотипов и генотипов (F) 1:1:1:1.
F АаВв Аавв ааВв аавв
Возвратное скрещивание
Иногда проводят возвратное скрещивание – с родительской особью. Его цель – насыщение гибрида ценными родительскими генами.
Пример задачи
Известно, что чёрный окрас у кроликов доминирует над белым. Возможно ли получение в потомстве белых кроликов от чёрных родителей?
Рецессивный признак проявляется в гомозиготном состоянии (аа). Такая гомозигота может получиться при наличии у каждого родителя рецессивного гена а.
Рис. 2. Рисунок скрещивание белого и чёрного кролика.
Раз оба родителя чёрные, значит ген а будет в обеих гаметах, если каждый из них гетерозиготный (Аа).
25 % потомства гетерозиготных чёрных кроликов будет белым.
Практическое использование
Анализирующее скрещивание имеет большое значение во всех отраслях животноводства. С его помощью можно определить чистопородность особи.
В случае, если доминантный признак является экономически значимым и определяет продуктивность, или иную ценность животных, раннее определение гомозиготности помогает предотвратить финансовые потери.
Дело в том, что один или несколько самцов-производителей могут быть отцами всего поголовья страны. Поэтому требования к отбору таких животных очень жёсткие.
Украинский бык-производитель подольской породы Репп ежегодно становится отцом 50 000 телят. Масса этого быка 1500 кг.
Что мы узнали?
Изучая в 10 классе анализирующее скрещивание, мы узнали, что это важный метод генетического анализа. Соотношение генотипов и фенотипов при анализирующем скрещивании зависит от гомозиготности или гетерозиготности родительской особи. Если особь гомозиготна, то в потомстве наблюдается единообразие по фенотипу и генотипу. Если исходный организм гетерозиготен, то в потомстве наблюдается расхождение и по генотипу, и по фенотипу (1:1). Гетерозиготы имеют меньшую ценность в животноводстве, если с доминантным геном связан экономически важный признак.
Законы Менделя
С него часто начинаются генетические задачи (в качестве первого скрещивания). Этот закон гласит о том, что при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения будут единообразны по данным признакам.
Анализирующее скрещивание
Анализируя полученное потомство, можно сделать вывод о генотипе гибридной особи.
Неполное доминирование
«При скрещивании гетерозиготных гибридов (Aa) первого поколения F1 во втором поколении F2 наблюдается расщепление по данному признаку: по генотипу 1 : 2 : 1, по фенотипу 3 : 1″
В нем речь идет о дигибридном скрещивании, то есть мы исследуем не один, а два признака у особей (к примеру, цвет семян и форма семян). Каждый ген имеет два аллеля, поэтому пусть вас не удивляют генотипы AaBb 🙂 Важно заметить, что речь в данном законе идет о генах, которые расположены в разных хромосомах.
Запомните III закон Менделя так: «При скрещивании особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга, комбинируясь друг с другом во всех возможных сочетаниях.
Очевидно, что расщепление по фенотипу среди гибридов второго поколения составляет: 9:3:3:1.
Пример решения генетической задачи №1
Доминантный ген отвечает за развитие у человека нормальных глазных яблок. Рецессивный ген приводит к почти полному отсутствию глазных яблок (анофтальмия). Гетерозиготы имеют глазное яблоко малых размеров (микрофтальмия). Какое строение глазных яблок будет характерно для потомства, если оба родителя страдают микрофтальмией?
Пример решения генетической задачи №2
Полидактилия и отсутствие малых коренных зубов передаются как аутосомно-доминантные признаки. Гены, отвечающие за развитие этих признаков, расположены в разных парах гомологичных хромосом. Какова вероятность рождения детей без аномалий в семье, где оба родителя страдают обеими болезнями и гетерозиготны по этим парам генов.
В данном случае мы построим решетку Пеннета, которая сделает генотипы потомства более наглядными. Вы видите, что на потомстве буквально нет ни одного живого места: почти все 16 возможных потомков больны либо одним, либо другим заболеванием, кроме одного, aabb. Вероятность рождения такого ребенка очень небольшая 1/16 = 6.25%.
Пример решения генетической задачи №3
У голубоглазой близорукой женщины от брака с кареглазым мужчиной с нормальным зрением родилась кареглазая близорукая девочка и голубоглазый мальчик с нормальным зрением. Ген близорукости (A) доминантен по отношению к гену нормального зрения (a), а ген кареглазости (D) доминирует над геном голубоглазости (d). Какова вероятность рождения в этой семье нормального кареглазого ребенка?
Первый этап решения задачи очень важен. Мы учли описания генотипов родителей и, тем не менее, белые пятна остались. Мы не знаем гетерозиготна (Aa) или гомозиготная (aa) женщина по гену близорукости. Такая же ситуация и с мужчиной, мы не можем точно сказать, гомозиготен (DD) он или гетерозиготен (Dd) по гену кареглазости.
Аутосомно-доминантный тип наследования
Я не забыл о том, что по ходу изучения генетики вас надо научить видеть различные варианты наследования на генеалогическом древе (родословной) =) Из предыдущей статьи мы узнали о том, как выглядит и чем характеризуется аутосомно-рецессивный тип наследования, сейчас поговорим об аутосомно-доминантном, с которым мы столкнулись в задачах выше.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Дигибрид дигетерозигота
Дигибрид, дигетерозигота * дыгібрыд, дыгетеразігота * dihybrid or diheterozygote — организм или генотип, характеризующиеся гетерозиготностью по двум локусам: AaBb. У Д. образуются 4 типа гамет с одинаковой частотой: AB, Ab, aB, ab (Скрещивание дигибридное). Г. Менделем было установлено, что скрещивание чистых линий гороха, различающихся двумя не связанными друг с другом признаками, приводит к образованию в F1 генетически единообразных форм, а скрещивание их между собой к появлению потомков 2-го поколения (F2) с генотипами как родительских форм, так и рекомбинантных (Рекомбинант).
Смотреть что такое «Дигибрид дигетерозигота» в других словарях:
дигибрид — дигетерозигота Особь, гетерозиготная по двум парам аллелей. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.] Тематики генетика Синонимы дигетерозигота EN dihybriddiheterozygote … Справочник технического переводчика
дигетерозигота — dihybrid, diheterozygote дигибрид, дигетерозигота. Oсобь, гетерозиготная по двум парам аллелей. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.
дигибрид — дигибрид. См. дигетерозигота. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.
дигетерозигота — diheterozigota statusas T sritis augalininkystė apibrėžtis Pagal du lokusus (AaBb) heterozigotinis organizmas ar genotipas. atitikmenys: angl. diheterozygote; dihybrid rus. дигетерозигота; дигибрид ryšiai: sinonimas – dihibridas … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
дигибрид — diheterozigota statusas T sritis augalininkystė apibrėžtis Pagal du lokusus (AaBb) heterozigotinis organizmas ar genotipas. atitikmenys: angl. diheterozygote; dihybrid rus. дигетерозигота; дигибрид ryšiai: sinonimas – dihibridas … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
МЕНДЕЛИЗМ — МЕНДЕЛИЗМ, совокупность открытых Г. Менделем закономерностей, к рые в наст, время лежат в основании науки о наследственности. Работа Менделя появилась в 1866 г. в малоизвестных «Записках об ва естествоиспытателей» в Брюнне. В этой… … Большая медицинская энциклопедия
diheterozigota — statusas T sritis augalininkystė apibrėžtis Pagal du lokusus (AaBb) heterozigotinis organizmas ar genotipas. atitikmenys: angl. diheterozygote; dihybrid rus. дигетерозигота; дигибрид ryšiai: sinonimas – dihibridas … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
diheterozygote — diheterozigota statusas T sritis augalininkystė apibrėžtis Pagal du lokusus (AaBb) heterozigotinis organizmas ar genotipas. atitikmenys: angl. diheterozygote; dihybrid rus. дигетерозигота; дигибрид ryšiai: sinonimas – dihibridas … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
dihybrid — diheterozigota statusas T sritis augalininkystė apibrėžtis Pagal du lokusus (AaBb) heterozigotinis organizmas ar genotipas. atitikmenys: angl. diheterozygote; dihybrid rus. дигетерозигота; дигибрид ryšiai: sinonimas – dihibridas … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
Моно- и дигибридное скрещивание. Законы Менделя
теория по биологии 🌿 основы генетики
Гибридологический метод
Создателем современной генетики считается австрийский биолог, ботаник и монах Грегор Мендель. Свои исследования Г. Мендель проводил на горохе. Ученый использовал гибридологический метод. Вы, наверное, сталкивались с понятием «гибрид», его часто указывают на упаковках семян. Гибрид – потомство, полученное в результате скрещивания особей, отличных по одному или нескольким признакам. На рынке можно встретить инжирный персик, а в животноводстве – мула (гибрид лошади и осла). Самцы мула стерильны и потомства не приносят.
Вернемся к Грегору Менделю и гороху. Как говорилось ранее, он использовал в своих опытах горох, но не любой, а только чистые линии – группы организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В качестве такого признака был выбран цвет горошин: одна линия была только зеленая во всех поколениях, а друга – желтая.
Таким образом Мендель скрещивал разные родительские особи гороха и далее подсчитывал результаты по некоторым признакам: количество гороха с желтой/зеленой кожурой, гладкие горошины и морщинистые, карликовое растение/нормальное/высокое и так далее. Ученый использовал 22 чистых линии и около 10.000 растений бобового.
Моногибридное скрещивание
Такое скрещивание было выбрано первым для опытов. Моногибридное скрещивание – скрещивание особей, отличающихся друг от друга лишь одним признаком. Ген, в котором заключена информация об этом одном из признаков называется аллельным геном или аллелью.
В зависимости от комбинации генов в паре, организм может быть гомозиготным или гетерозиготным. В первом случае оба гена несут одну разновидность признака, во втором – две разные. Гомозиготами будут являться горох, оба аллели которого несут окраску только желтого или только зеленого цвета. Гетерозиготами – те, у которых один ген несет желтый цвет, а другой – зеленый.
Есть доминантные и рецессивные гены. Первые преобладают, вторые – подавляются. Посмотрим на схему моногибридного скрещивания выше и разберемся в некоторых правилах записи.
Здесь мы видим 2 признака: цвет и текстуру кожуры. Разные типы признаков обозначаются разными буквами. Например, желтый – А, зеленый – В. Доминантные признаки записываются заглавными буквами, а рецессивные – строчными. Один ген аллели – одна буква.
Исходя из этого, монозиготы могут быть либо аа (рецессивная гомозигота), либо АА (доминантная монозигота).
Запись начинается с родителей, в задачах пишется «Р:» и перечисляются предки. Между ними ставится знак скрещивания «х».
Следующей строкой идут гаметы, обозначаются «G:» и перечисляются гаметы каждого из родителей.
Затем пишется потомство. Если это первое поколение, то «F1», если дальше, то цифра соответствует очередности. Здесь должны быть все версии потомков. Так как при скрещивании монозигот у нас были только гаметы А и а, то вариант всего один: Аа. Это гетерозигота. Так как по условию желтый цвет доминирует над зеленым, то горошины будут желтыми.
Законы Менделя
В результате такого скрещивания Мендель открыл закон единообразия гибридов первого поколения. Он гласит: при скрещивании двух гомозиготных организмов, отличающихся друг от друга только по одному признаку, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по этому признаку будет единообразно.
Далее Мендель продолжил изучать потомство гороха, теперь он скрестил то самое единообразное поколение.
Так Мендель вывел закон расщепления. Из него следует, что при скрещивании потомков первого поколения, во втором снова появляются особи с рецессивным признаком, эти особи составляют 1: 4 часть от всего числа потомков второго поколения.
Фенотип – внешнее проявление признака.
Исходя из этого же скрещивания, Мендель вывел еще один закон. Закон чистоты гамет: при образовании гамет в каждую пару попадает только один из двух «элементов наследственности», отвечающих за данный признак. На эту мысль его натолкнуло именно появление одной части зеленых горошин. Мендель сделал выводы о том, что гены из пары не пропадают бесследно, а передаются в следующее поколение.
Ранее мы говорили о том, что доминирующий признак подавляет рецессивный. Если у гороха генотип Аа, где доминирующий цвет желтый, то горошины будут этого цвета. Однако, все не всегда так однозначно.
Если скрестить пурпурные и белые цветы ночной красавицы, то гетерозиготное потомство приобретет отличный от родителей цвет: розовый. По закону неполного доминирования при скрещивании доминантной и рецессивной гомозигот, все особи в потомстве проявят либо признаки родителей, либо промежуточный признак.
Если скрещиваются организмы, отличающиеся друг от друга не по одному признаку (моногибридное), а по двум, то скрещивание называется дигибридным.
Для своих опытов в этом направлении Мендель взял горох двух цветов и двух фактур.
Независимое наследование признаков
Родители были доминантной и рецессивной гомозиготами. В первом поколении горошины желтые и гладкие, гетерозиготы. Так как при скрещивании двух гетерозигот по обоим признакам от каждого родителя по 4 варианта гамет, то удобно воспользоваться решеткой Пеннета. Для этого гаметы одного родителя записывают по горизонтали, а второго – по вертикали. Затем на пересечениях заполняются ячейки решетки.
Если пересчитать количество потомков каждого фенотипа, то получится следующее:
9 шт. – желтый гладкий
3 шт. – желтый морщинистый
3 шт. – зеленый гладкий
1 шт. – зеленый морщинистый
Так Мендель пришел к закону независимого наследования признаков, из которого следует, что при дигибридном скрещивании гены и признаки, за которые отвечают эти гены, наследуются независимо друг от друга.
А. Опираясь на рисунок, мы видим, что чашелистики изображены свободными, тогда как все лепестки срослись. Пять тычинок свободные, а плодолистиков три, и они также срослись. (У Колокольчиковых
Гомозигота — особь, дающая один сорт гамет.
Гамета — половая, или репродуктивная, клетка с гаплоидным набором хромосом.
pазбирался: Надежда | обсудить разбор | оценить
pазбирался: Надежда | обсудить разбор | оценить
Гомозигота — особь, дающая один сорт гамет.
АаВв – Высокий, гладкий эндосперм.
G2: АВ, Ав, аВ, ав ; ав
F2: АаВв, Аавв, ааВв, аавв
АаВв — Высокий, гладкий эндосперм.
Аавв — Высокий, шероховатый эндосперм.
ааВв — Низкий, гладкий эндосперм.
аавв — Низкий, шероховатый эндосперм.
Томас Морган установил, что при неполном сцеплении гетерозигота дает 4 типа
Гамета — половая, или репродуктивная, клетка с гаплоидным набором хромосом.
Аавв — Высокий, шероховатый эндосперм.
ааВв — Низкий, гладкий эндосперм.
аавв — Низкий, шероховатый эндосперм.
АаВв — Высокий, гладкий эндосперм.
Аавв — Высокий, шероховатый эндосперм – 123 или 124.
ааВв — Низкий, гладкий эндосперм – 123 или 124.
аавв — Низкий, шероховатый эндосперм – 26 или 27.
АаВв — Высокий, гладкий эндосперм – 26 или 27.
Ответ: пункты 4 и 6 (или схема из п. 8), пункты 9 и 10.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Дигетерозиготная – значит, мы имеем дело с двумя признаками, каждый из которых имеет доминантный и рецессивный аллель.
Анализирующее скрещивание – скрещивание с особью с рецессивными аллелями генов.
Независимое наследование – значит, доминирование абсолютное, промежуточного признака нет. То есть, проявляется доминантный признак и при доминантной гомозиготе, и при гетерозиготе.
F: АаВв, Аавв, ааВв, аавв
АаВв – проявляются оба доминантных признака.
Аавв – проявляется доминантный признак, обозначенный буквой «А» и рецессивный признак, обозначенный буквой «В».
ааВв — проявляется доминантный признак, обозначенный буквой «В» и рецессивный признак, обозначенный буквой «А».
аавв — проявляются оба рецессивных признака.
Следовательно, все 4 варианта фенотипов потомков различаются.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Начнем с очевидного: признак с полом не сцеплен, так как мы видим на схеме и черные квадраты, и черные круги (то есть и мужчин с проявлением этого признака, и женщин с проявлением этого признака)
Признак проявляется в каждом поколении, значит, он доминантный.
Раз признак доминантный, то генотип женщины (1) аа, ведь признак у нее не проявляется.
Теперь мужчина (2): раз у детей пары (1) и (2) есть те, у кого признак не проявляется, то мужчина (2) – гетерозигота. В противном случае, так как у него признак проявляется, он должен был быть доминантной гомозиготой. Тогда все его дети были бы с этим признаком.
Женщина (3) имеет проявление признака, ее муж – не имеет, но не у всех детей признак проявляется. Значит, муж –рецессивная гомозигота, а жена – гетерозигота
Женщина (4) и мужчина (5) – рецессивные гомозиготы, так как признаки у них не проявляются.
Женщина (6) и ее муж –гетерозиготы, так как у обоих признак проявляется, но у их ребенка признак не проявляется.
Мужчина (7) — рецессивная гомозигота, так как признак у него не проявляется.
Какова вероятность рождения ребёнка с признаком, выделенным на рисунке чёрным цветом, у мужчины 5, если будущая жена будет иметь данный признак?
Жена может иметь данный признак в двух случаях.
Первый: генотип жены Аа.
Аа – проявление признака.
Аа — нет проявления признака.
Второй случай: генотип жены АА.
Аа – проявление признака.
1) Признак доминантный (окрашенный символ), с полом не сцеплен (т.к встречается у большего числа особей, независимо от их пола)
2) генотипы: 1 – аа, 2 – Аа, 3 – Аа, 4 – аа, 5 – аа, 6 – Аа, 7 – аа
3) Если генотип жены будет АА, то вероятность рождения ребенка с этим признаком составит 100%, а если генотип будет Аа, то 50%
Ответ: см. «конечный ответ»
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Дальтонизм – разновидность нарушения восприятия цветов, обусловленная генетическим отклонением. Ген дальтонизма является рецессивным и сцепленным с полом, он находится в Х-хромосоме. Так как мужской пол имеет набор половые хромосом ХУ, то в случае, если Х-хромосома несет рецессивный аллель по признаку дальтонизма, то человек будет иметь это нарушение. Так как у женщин набор ХХ, то вероятность иметь оба рецессивных аллеля ниже, чем один у мужчин, поэтому женщины имеют дальтонизм существенно реже, чем мужчины. Однако, они могут быть носителями этого гена.
Являются «выпадающими» варианты 1 и 5.
Ген дальтонизма находится не в аутосоме, а в половой клетке.
Передаются от матери к сыну:
Допустим, мать здорова, но носитель, отец здоров
Нас интересуют только сыновья: Х H У, Х h У. Они получат Х-хромосому от матери, а У-хромосому от отца. Ген дальтонизма находится в Х-хромосоме, поэтому 5) вариант ошибочный.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Разбираемся в условии.
«Моногибридное скрещивание» — один признак. «Гетерозиготы» имеют набор Аа. «Полное доминирование» — значит, нет среднего фенотипического проявления признака.
АА – проявится доминантный признак.
2 Аа – проявится доминантный признак.
аа – проявится рецессивный признак.
Значит, в 3 из 4 случаев проявится доминантный признак, это ¾ = 75%.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Раз первое поколение драконов серого цвета, а родители черный и белый драконы, то произошло неполное доминирование.
Гомозигота — особь, дающая один сорт гамет.
Запишем первую часть решения:
Аа – серый цвет дракона.
Теперь скрещивание серого дракона с черным.
АА – черный цвет дракона.
Аа – серый цвет дракона.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Дигетерозиготный – 2 признака, притом есть и доминантный и рецессивный аллели, то есть АаВв
Гомозиготный по рецессивным признакам – только рецессивные аллели, то есть аавв
Запишем решение в виде задачи.
Определяем генотипы потомства:
F1: АаВв; Аавв; ааВв; аавв
Определим фенотипы потомства:
АаВв – проявятся оба доминантных признака.
Аавв – проявится первый доминантный признак и второй рецессивный признак.
ааВв — проявится первый рецессивный признак и второй доминантный признак.
аавв — проявятся оба рецессивных признака.
Следовательно, 4 фенотипа
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
При скрещивании самки дрозофилы с нормальными крыльями, красными глазами и самца с растопыренными крыльями, белыми глазами всё гибридное потомство было единообразным по форме крыльев и окраске глаз.
При скрещивании самки дрозофилы с растопыренными крыльями, белыми глазами и самца с нормальными крыльями, красными глазами в потомстве получились самки с нормальными крыльями, красными глазами и самцы с нормальными крыльями, белыми глазами.
Составьте схемы скрещиваний. Определите генотипы родительских особей, генотипы и фенотипы, пол потомства в двух скрещиваниях. Объясните фенотипическое расщепление во втором скрещивании.
Форма крыльев – аутосомный признак.
Цвет глаз – сцепленный с полом признак.
Самец и самка, про которых идет речь в первом абзаце, имеют разный цвет глаз. Самец гетерогаметен. Исходя из пункта 2) нашего решения, мы знаем, что скрещиваются гомозиготы, доминантная и рецессивная.
Если у самки будут рецессивные признаки, а у самца доминантный:
Потомство не единообразно по признаку цвета глаз. А это противоречит условию. Значит, самка имеет доминантный признак.
«При скрещивании самки дрозофилы с нормальными крыльями, красными глазами и самца с растопыренными крыльями, белыми глазами…»
P1: ♀ ВВХ А Х А * ♂ bbХ а У
F1: ♀ BbХ А Х а ; ♂ ВВХ А У
Определим фенотипы потомства:
♀ BbХ А Х а – нормальные крылья, красные глаза.
♂ ВВХ А У — нормальные крылья, красные глаза.
Потомство единообразно, соответствует условию.
«При скрещивании самки дрозофилы с растопыренными крыльями, белыми глазами и самца с нормальными крыльями, красными глазами…»
P2: ♀ bbХ а Х а * ♂ ВВХ А У
F2: ♀ BbХ А Х а ; ♂ ВbХ а У
Определим фенотипы потомства:
♀ BbХ А Х а — нормальные крылья, красные глаза.
♂ ВbХ а У — нормальные крылья, белые глаза.
Сравниваем с условием: «… в потомстве получились самки с нормальными крыльями, красными глазами и самцы с нормальными крыльями, белыми глазами.». Все совпало.
Ответ: Между первым и вторым признаками независимое наследование; по признаку окраски глаз сцеплен с Х-хромосомой.
Ответ: В бланк выписываем таблицу «ген-признак», схемы скрещиваний из пунктов 5) и 6) и ответ на теоретический вопрос из пункта 7).
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
А) Разберем условие задачи.
Запишем все в виде задачи, использую первый вариант генотипа отца:
Б) Р: ♀ i 0 i 0 Rr х ♂ I B I B Rr
G: i 0 R i 0 r ; I B R I B r
F1: I B i 0 RR; I B i 0 Rr; I B i 0 Rr; I B i 0 rr
I B i 0 RR – третья группа крови, резус-фактор положительный.
I B i 0 Rr — третья группа крови, резус-фактор положительный.
I B i 0 Rr — третья группа крови, резус-фактор положительный.
I B i 0 rr — третья группа крови, резус-фактор отрицательный.
Вероятность рождения ребенка с отрицательным резус-фактором ¼, 25%.
Запишем все в виде задачи, использую второй вариант генотипа отца:
В) Р: ♀ i 0 i 0 Rr х ♂ I B i 0 Rr
G: i 0 R i 0 r ; I B R I B r i 0 R i 0 r
F1: I B i 0 RR; I B i 0 Rr; I B i 0 Rr; I B i 0 rr; i 0 i 0 RR; i 0 i 0 Rr; 0 i 0 Rr; 0 i 0 rr
I B i 0 RR — третья группа крови, резус-фактор положительный.
2 I B i 0 Rr — третья группа крови, резус-фактор положительный.
I B i 0 rr — третья группа крови, резус-фактор отрицательный.
i 0 i 0 RR — первая группа крови, резус-фактор положительный.
2 i 0 i 0 Rr — первая группа крови, резус-фактор положительный.
i 0 i 0 rr — первая группа крови, резус-фактор отрицательный.
Вероятность рождения ребенка с отрицательным резус-фактором 2/8, 25%.
Ответ: пункты Б) и В)
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Запишем в виде задачи:
Гетерозиготен, т.е есть и доминантный и рецессивный аллель. Так как в условии сказано, что горошек самоопыляется, то оба генотипа будут одинаковыми.
Мы получили 3 вида генотипов, рассмотрим фенотипы.
АА – проявится доминантный признак.
Аа – проявится доминантный признак.
аа – проявится рецессивный признак.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Распишем это как задачу:
Выписываем особей, которые скрещиваются.
Теперь определим гаметы обоих «родителей», т.к они имеют одинаковый генотип, то и гаметы будут одинаковыми.
Получаем потомков первого поколения. Для этого запишем все возможные варианты пар гамет.
Мы выписали генотипы потомков, но вопрос про фенотипы. В условии сказано, что доминирование неполное. Это значит, что доминантный признак в гетерозиготе (Аа) не будет проявляться строго как доминантный, это будет среднее между доминантным (А) и рецессивным (а).
Проанализируем полученных потомков:
АА — проявляется только доминантный признак, это доминантная гомозигота.
Аа — генотип, который мы получили дважды. Это гетерозигота, проявится признак отличающийся и от доминантного, и от рецессивного.
аа — рецессивная гомозигота, проявится только рецессивный признак.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Для начала вспомним о том, что дальтониками могут быть только мужчины, однако женщины могут быть носителями гена дальтонизма. Притом он рецессивный.
Начнем с генотипа Павла. Он имеет нормальное зрение, так что его генотип – Х А Y
Теперь Анна. Так у нее есть потомки-дальтоники, то она – носитель. Так как она здорова, то ее генотип – гетерозигота — Х А Х а
Р1: ♀ Х А Х а х ♂ Х А Y
♀ Х А Х А – вторая дочь Анны и Павла, так как ее пять сыновей здоровы.
Генотип ее сыновей — Х А Y
♀ Х А Х а — первая дочь Анны и Павла, так как у нее есть дети-дальтоники.
Генотип ее сыновей – Х а Y
Генотип первого сына-дальтоника Анны и Павла — ♂Х а Y
Генотип его здоровых сыновей — Х А Y
Генотип его дочерей – либо Х А Х а
Генотип второго сына Анны и Павла — Х А Y
Генотип его сыновей — Х А Y
PS: использовать букву А или D – не принципиально.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Так как в первом поколении все томаты шаровидные и красные, то эти признаки являются доминантными
Ген | Признак |
А | Шаровидная форма |
а | Грушевидная форма |
В | Красные |
в | Желтые |
Определим генотипы скрещиваемых сортов:
Желтые грушевидные – аавв
Красные шаровидные – либо АаВв, либо ААВВ
Так как первое поколение – красные и шаровидные, то скрещиваемый сорт не может быть гетерозиготой, его генотип — ААВВ
Найдем генотип первого поколения:
Красные шаровидные. С условием сходится.
Произведем скрещивание полученных томатов:
G2: АВ Ав ав аВ; АВ Ав ав аВ
Найдем генотип второго поколения. Для этого составим решетку Пеннета:
АВ | Ав | ав | аВ | |
АВ | ААВВ К,Ш | ААВв К,Ш | АаВв К,Ш | АаВВ К,Ш |
Ав | ААВв К,Ш | ААвв К,Г | Аавв К,Г | АаВв К,Ш |
ав | АаВв К,Ш | Аавв К,Г | аавв Ж,Г | ааВв Ж,Ш |
аВ | АаВВ К,Ш | АаВв К,Ш | ааВв Ж,Ш | ааВВ Ж,Ш |
Посчитаем соотношение фенотипов:
Красный шаровидный – 9 шт
Красный грушевидный – 3 шт
Желтый шаровидный – 3 шт
Желтый грушевидный – 1 шт
9 — красные шаровидные,
3 — красные грушевидные,
3 — желтые шаровидные,
1 — желтые грушевидные.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Ген | Признак |
А | Карие глаза |
а | Голубые глаза |
В | Правша |
в | Левша |
Определим генотип мужа: аавв
Определим генотип жены: либо ААВВ, либо АаВв
Определим генотип ребенка: аавв
Так как генотип ребенка- рецессивная гомозигота, то генотип матери – АаВв
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Составим для удобства табличку:
Ген | Признак |
i 0 i 0 | Первая группа |
I A i 0 или I A I A | Вторая группа |
I B i 0 или I B I B | Третья группа |
I A I B | Четвертая группа |
Определим генотипы родителей:
Р: I A i 0 х I B I B
Теперь найдем варианты потомства:
F1: I A I B ; I B i 0
I A I B – IV группа
I B i 0 — III группа
Детей со второй группой крови быть не может, значит, вероятность 0%
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Для начала составляем табличку ген/признак, просто для удобства:
Черепаховой окраске соответствует генотип Х А Х В
Ген | Признак |
Х А | Черная окраска |
Х В | Рыжая окраска |
Х А Х В | Черепаховая окраска |
Определим генотипы родителей:
Р: ♀ Х А Х В х ♂ Х В Y
Теперь найдем варианты потомства:
F1: Х А Х В ; Х А Y; Х В Х В ; Х В Y
Здесь же можно под генотипами подписывать окраски, чтобы ничего не потерять.
Выберем котят с рыжей окраской: ♀ Х В Х В ; ♂ Х В Y
Наследование, сцепленное с полом, что и является кодоминированием.
Теперь чистовой вариант:
По условию: Х А — черная; Х В — рыжая, тогда Х А Х В — черепаховая
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Для начала определим характер наследования признака. Так как признак проявляется через поколение, а не в каждом, то делаем вывод, что признак рецессивный.
Признак проявляется только у мужчин. Значит, признак сцеплен с полом, а именно, с Y-хромосомой. Он сцеплен с Х а — хромосомой.
Теперь разберемся с генотипом людей первого поколения. Мы уже установили, что признак рецессивный. Для проявления такого признака в следующем поколении женщин необходимо, чтобы у женщины в первом поколении была рецессивная хромосома. У нас во втором поколении нет людей, с проявляющимся признаком. Следовательно, так как генотип мужчины в первом поколении Х а Y (так как у него признак проявился), то у женщины генотип –Х А Х А
Найдем генотип женщины №6:
Выпишем генотипы родителей
Р: ♀ Х А Х а х ♂ Х А Y
Найдем первое поколение, выберем женщин и мужчину, который является носителем признака.
F1: ♀Х А Х А ; Х А Y; ♀Х А Х а ; ♂Х а Y
Вывод: у женщины №6 может быть два варианта генотипа. Мы не можем однозначно сказать, какой из них принадлежит ей, так как не знаем ее потомство.
Генотип мужчины №7: Х а Y
Теперь определим возможное потомство:
Генотип отца Х А Y, так как в условии указано, что в его семье данного признака не наблюдалось
Р: ♀ Х А Х А х ♂ Х А Y
0% потомства с данным признаком
Р: ♀ Х А Х а х ♂ Х А Y
F1: Х А Х А ; Х А Y; Х А Х а ; ♂Х а Y
25% потомства с проявлением данного признака
Что должно быть в чистовике:
Её муж Х А Y, т.к. по условию в семье её супруга этот признак никогда не наблюдался.
то вероятность рождения ребёнка с исследуемым признаком 25% Х а Y мальчики
Схема решения задачи:
F1Х А Х А ;Х А Х a ;Х А Y;Х a Y
Схема решения задачи:
(Допускается иная генетическая символика)
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Для начала определим характер наследования признака. Так как признак проявляется через поколение, а не в каждом, то делаем вывод, что признак рецессивный.
Признак проявляется только у мужчин. Значит, признак сцеплен с полом, а именно, с Y-хромосомой. Он сцеплен с Х а — хромосомой.
Теперь разберемся с генотипом людей первого поколения. Мы уже установили, что признак рецессивный. Для проявления такого признака в следующем поколении женщин необходимо, чтобы у женщины в первом поколении была рецессивная хромосома. У нас во втором поколении нет людей, с проявляющимся признаком. Следовательно, так как генотип мужчины в первом поколении Х а Y (так как у него признак проявился), то у женщины генотип –Х А Х А
Получаем:
Что писать в чистовик:
Генотипы людей, обозначенных на схеме цифрами 3, 4, 8, 11:
3 — женщина-носитель — Х А Х а
4 — мужчина без признака — Х А Y
8 — мужчина с признаком — Х а Y
11 — женщина-носитель — Х А Х а
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Если признак сцеплен с Y-хромосомой, значит, на Х-хромосоме он никак не отражается.
Женский пол гомозиготен: ХХ, а мужской гетерозиготен: ХY.
Решение задач с половыми хромосомами практически не отличается от решения задач с аутосомами.
Составим табличку ген и признак, которую также следует составлять и для задач про аутосомные хромосомы, если указаны признаки и это важно.
ген | признак |
Х | Здорова |
Y a | Болен |
Буква над Y обозначает, что с этой хромосомой сцеплен ген. Признаки бывают доминантными и рецессивными, они обозначаются заглавными и маленькими буквами, могут относиться как к Х-хромосоме, так и к Y-хромосоме, зависит от задачи.
F1: ХХ — девочка, здорова
ХY a — мальчик, болен
Мальчики, родившиеся у этой пары, будут 100% больны, значит 0% здоровы.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Анализирующее дигибридное скрещивание, значит, у второй особи рецессивная дигомозигота: aabb.
Здесь можно обойтись без решетки Пеннета.
Поколения обозначаются буквой F.
F1: AaBb; Aabb; aaBb; aabb
Все четыре варианта фенотипов разные, так что относятся они друг к другу как 1:1:1:1.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Составим решетку Пеннета. Для это выпишем гаметы одной особи в столбик, гаметы другой — в строку, получим таблицу:
Найдем дигетерозиготы в таблице:
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Раз растения дигетерозиготны, то это значит, что по обоим признакам у них одна аллель доминантная, а вторая-рецессивная.
Получаем генотипы AaBb и AaBb.
Гаметы в задачах обозначаются буквой G, притом без запятых, в кружочках, указываются вначале гаметы одной особи, потом ставится точка с запятой (;), пишутся гаметы другой особи, тоже в кружочках.
Скрещивание обозначается значком «х».
Выпишем гаметы, для этого переберем все сочетания:
Гаметы у первой и второй особи получились одинаковыми, так генотип их был тоже одинаков. Значит, у нас получилось 4 разных типа гамет:
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
У нас есть две пары аллельных хромосом:
Это все гомозиготы. Можно составить лишь одну комбинацию: ab.
pазбирался: Ксения Алексеевна | обсудить разбор | оценить