Что такое диапазон волны
Что такое радиоволны?
Краткий обзор
В данной статье объясняется что такое радиоволна, рассказывется история возникновения радиоволновой теории, классификации и применение радиоволн различной длины.
Теория
Радиоволны представляют собой электромагнитное излучение, а также микроволны, инфракрасное излучение, рентгеновское излучение и гамма-лучи. Наиболее известное использование радиоволн – для общения. Телевещание, мобильная связь и радиоприемники получают радиоволны и преобразуют их в механические вибрации в динамике для создания звуковых волн, которые можно услышать.
Электромагнитное излучение передается волнами или частицами на разных длинах волн и частотах. Этот широкий диапазон длин волн известен как электромагнитный спектр. Спектр обычно делится на семь областей в порядке уменьшения длины волны, увеличения энергии и частоты. Основными являются радиоволны, микроволны, инфракрасные (ИК), видимые, ультрафиолетовые (УФ), рентгеновские и гамма-лучи.
По данным НАСА, радиоволны имеют самые длинные волны в электромагнитном спектре, в диапазоне от примерно 1 миллиметра до более чем 100 километров. Они также имеют самые низкие частоты: от 3 кГц до 300 ГГц.
Открытие
Шотландский физик Джеймс Клерк Максвелл, который разработал единую теорию электромагнетизма в 1870-х годах, предсказал существование радиоволн. Несколько лет спустя немецкий ученый Генрих Герц применил теории Максвелла для создания и получения радиоволн. Единица частоты волны электромагнитного излучения – один цикл в секунду – называется герцем в его честь.
Герц использовал разрядник, прикрепленный к индукционной катушке, и отдельный разрядник на приемной антенне. Когда волны, создаваемые разрядником передатчика катушки, были пойманы приемной антенной, электрические разряды начинали перескакивать через зазор между разрядниками. Герц доказал в своих экспериментах, что эти сигналы обладают всеми свойствами электромагнитных волн.
Диапазоны радиоволн
Национальное управление электросвязи и информации обычно делит радиочастотный спектр на девять полос.
Название | Диапазон частот | Диапазон длин волн |
---|---|---|
Инфранизкие (ИНЧ) | 100 км | |
Очень низкие (ОНЧ) | 3 – 30 кГц | 100 км – 10 км |
Низкие (НЧ) | 30 – 300 кГц | 10 км – 1 км |
Средние (СЧ) | 300 – 3000 кГц | 1000 м – 100 м |
Высокие (ВЧ) | 3 – 30 МГц | 100 м – 10 м |
Очень высокие (ОВЧ) | 30 – 300 МГц | 10 м – 1 м |
Ультравысокие (УВЧ) | 300 – 3000 МГц | 1000 мм – 100 мм |
Сверхвысокие (СВЧ) | 3 – 30 ГГц | 100 мм – 10 мм |
Крайне высокие (КВЧ) | 30 – 300 ГГц | 10 мм – 1 мм |
Радиочастотные диапазоны НЧ и CЧ включают в себя морскую и авиационную радиосвязь, а также коммерческую связь. Большинство радиостанций в этих диапазонах используют амплитудную модуляцию, чтобы перевести полученные данные в слышимый сигнал на радиоволновую частоту. Мощность или амплитуда сигнала изменяются или модулируются со скоростью, соответствующей частотам слышимого сигнала, такого как голос или музыка. Когда сигнал частично заблокирован, громкость звука соответственно уменьшается.
ВЧ, ОВЧ и УВЧ диапазоны включают FM-радио, широкополосный телевизионный сигнал, радиослужбы общественного вещания, мобильные телефоны и GPS. Эти полосы обычно используют частотную модуляцию, чтобы перевести звуковой сигнал или сигнал данных на несущую волну. В этой схеме амплитуда сигнала остается постоянной, а частота изменяется немного выше или ниже со скоростью и величиной, соответствующей звуку или сигналу данных. Это приводит к лучшему качеству сигнала, чем с амплитудной модуляцией, поскольку факторы окружающей среды не влияют на частоту так, как они влияют на амплитуду, и приемник игнорирует изменения амплитуды, пока сигнал остается выше минимального порога.
Коротковолновая радиостанция
По данным Национальной ассоциации коротковолновых радиовещателей (NASB), радиоволны с короткой волной используют частоты в диапазоне ВЧ, от примерно 1,7 МГц до 30 МГц. В этом диапазоне коротковолновый спектр разделен на несколько сегментов, некоторые из которых отведены регулярным радиовещательным станциям, таким как «Голос Америки», Британская вещательная корпорация и «Голос России». По данным NASB, во всем мире есть сотни коротковолновых станций. Около 25 частных коротковолновых станций лицензированы в Соединенных Штатах Федеральной комиссией по связи.
По словам NASB, коротковолновые станции можно услышать на тысячи миль, потому что сигналы отражаются от ионосферы и возвращаются назад, на сотни или тысячи миль от места их происхождения.
FM-стерео
По мере роста популярности двухканальной стереофонической музыки спрос на стерео-радиовещание тоже вырос. Однако одноканальные (монофонические или моно) радиостанции уже широко используются и, вероятно, останутся таковыми в обозримом будущем. Проблема заключалась в том, чтобы создать систему, которая могла бы производить стереомузыку, но все же быть совместимой с существующими моноприёмниками.
Очень высокие частоты
СВЧ и КВЧ представляют собой самые высокие частоты в радиодиапазоне и иногда считаются частью микроволнового диапазона. Молекулы в воздухе, как правило, поглощают эти частоты, что ограничивает их диапазон и применение. Однако их короткие длины волн позволяют передавать сигналы в узких волнах с помощью параболических антенн, поэтому они могут быть эффективны для ближней связи с высокой пропускной способностью между фиксированными местоположениями. СВЧ, который меньше влияет на воздух, чем КВЧ, используется для устройств малого радиуса действия, таких как Wi-Fi, Bluetooth и беспроводной USB. Кроме того, волны СВЧ имеют тенденцию отскакивать от объектов, таких как автомобили, лодки и самолеты, поэтому эта полоса часто используется для радара.
Астрономические источники радиоволн
Космос изобилует радиоисточниками. К ним относятся планеты, звезды, газовые и пылевые облака, галактики, пульсары и даже черные дыры. Эти источники позволяют астрономам узнать о движении и химическом составе этих источников, а также о процессах, вызывающих эти выбросы.
По словам Роберта Паттерсона, профессора астрономии в Университете штата Миссури, астрономы используют большие радиотелескопы для картирования холодных нейтральных водородных облаков в галактиках. Эти облака представляют особый интерес, поскольку они выстраиваются вдоль спиральных рукавов галактик, таких как Млечный Путь, позволяя ученым отображать структуру облаков.
Специфические радиочастоты, соответствующие резонансным частотам общих атомов и молекул, зарезервированы FCC для исключительного использования радиоастрономами для предотвращения создания помех поскольку радиотелескопы чрезвычайно чувствительны к ним. Список этих частот можно найти на веб-сайте Национальной астрономии и ионосферы.
Согласно NASA, радиоастрономы часто объединяют несколько меньших радиотелескопов в массив, чтобы сделать более четкое или более высокое разрешение радио изображения. Например, радиотелескоп с очень большим массивом (САР) в Нью-Мексико состоит из 27 антенн, расположенных в огромном Y образце до 22 миль (36 км) в поперечнике.
По данным НАСА, радиотелескоп видит небо совсем не так, как кажется в видимом свете. Вместо того, чтобы видеть похожие на точки звезды, такой телескоп захватывает удаленные пульсары, звездообразующие области и остатки сверхновых.
Теория радиоволн: ликбез
Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков.
Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами.
Давайте ближе познакомимся с теорией радиоволн.
Радиоволна
Длина волны(λ) — это расстояние между соседними гребнями волны.
Амплитуда(а) — максимальное отклонения от среднего значения при колебательном движении.
Период(T) — время одного полного колебательного движения
Частота(v) — количество полных периодов в секунду
Существует формула, позволяющая определять длину волны по частоте:
Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)
«УКВ», «ДВ», «СВ»
Сверхдлинные волны — v = 3—30 кГц (λ = 10—100 км).
Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.
Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.
Длинные волны(ДВ) v = 150—450 кГц (λ = 2000—670 м).
Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.
Средние волны (СВ) v = 500—1600 кГц (λ = 600—190 м).
Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.
Короткие волны (КВ) v= 3—30 МГц (λ = 100—10 м).
Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.
Ультракороткие Волны(УКВ) v = 30 МГц — 300 МГц (λ = 10—1 м).
Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:
Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.
Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц — 3 ГГц (λ = 1—0,1 м).
Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.
Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц — 30 ГГц (λ = 0,1—0,01 м).
Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.
AM — FM
Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:
AM — амплитудная модуляция
Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
АМ — первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.
FM — частотная модуляция
Это изменение несущей частоты под воздействие кодирующего колебания.
Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.
На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.
Еще термины
Интерференция — в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.
Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.
Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».
Дифракция — явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.
Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света. Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей.
Измеряется частота в герцах (Гц). 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Радиоволны (радиочастоты), используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:
Диапазон частот | Сокращённое название диапазона | Название диапазона волн | Длина волны |
3-30 кГц | ОНЧ (Очень низкие частоты) | Мириаметровые | 10-100 км |
30-300 кГц | НЧ (Низкие частоты) | Километровые | 1-10 км |
300-3000 кГц | СЧ (Средние частоты) | Гектометровые | 0,1-1 км |
3-30 МГц | ВЧ (Высокие частоты) | Декаметровые | 10-100 м |
30-300 МГц | ОВЧ (Очень высокие частоты) | Метровые | 1-10 м |
300-3000 МГц | УВЧ (Ультра высокие частоты) | Дециметровые | 0,1-1 м |
30-3000 МГц | УКВ (Ультра короткие волны) | Метровые | 0,1-10 м |
3-30 ГГц | СВЧ (Сверхвысокие частоты) | Сантиметровые | 1-10 см |
30-300 ГГц | КВЧ (Крайне высокие частоты) | Миллиметровые | 1-10 мм |
300-3000 ГГц | ГВЫ (Гипервысокие частоты) | Децимиллиметровые | 0,1-1 мм |
Помимо разделения диапазона частот по признаку длины волны, в подвижной служебной и гражданской связи используются следующие обозначения:
Волновой диапазон
Электромагни́тный спектр — спектр электромагнитного излучения.
Длина волны — Частота — Энергия фотона
В качестве спектральной характеристики электромагнитного излучения используют следующие величины:
Содержание
В верхней части шкалы приводятся значения энергии (в электронвольтах). Частоты, указанные в нижней части шкалы, выражены в герцах, а также в кратных единицах: кГц = 1000 Гц, МГц = 1000 кГц = 1000000 Гц, ГГц = 1000 МГц = 10 9 Гц, ТГц = 1000 ГГц = 10 12 Гц.
Шкала частот (длин волн, энергий) является непрерывной, но традиционно разбита на ряд диапазонов. Соседние диапазоны могут немного перекрываться.
Основные электромагнитные диапазоны
γ-излучение
Гамма-лучи имеют энергию выше 124 000 эВ и длину волны меньше 0,01 нм = 0,1 Å.
Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Зеркал и линз для γ-лучей не существует.
Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты — электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).
Рентгеновское излучение
Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое, тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.
В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа.
Ультрафиолетовое излучение
Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)
Наименование | Аббревиатура | Длина волны в нанометрах | Количество энергии на фотон |
---|---|---|---|
Ближний | NUV | 400 нм — 300 нм | 3,10 — 4,13 эВ |
Средний | MUV | 300 нм — 200 нм | 4,13 — 6,20 эВ |
Дальний | FUV | 200 нм — 122 нм | 6,20 — 10,2 эВ |
Экстремальный | EUV, XUV | 121 нм — 10 нм | 10,2 — 124 эВ |
Вакуумный | VUV | 200 нм — 10 нм | 6,20 — 124 эВ |
Ультрафиолет А, длинноволновой диапазон, Чёрный свет | UVA | 400 нм — 315 нм | 3,10 — 3,94 эВ |
Ультрафиолет B (средний диапазон) | UVB | 315 нм — 280 нм | 3,94 — 4,43 эВ |
Ультрафиолет С, коротковолновой, гермицидный диапазон | UVC | 280 нм — 100 нм | 4,43 — 12,4 эВ |
Оптическое излучение
Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.
Цвета видимого излучения, соответствующие монохроматическому излучению, называются спектральными. Спектр и спектральные цвета можно увидеть при прохождении узкого светового луча через призму или какую-либо другую преломляющую среду. Традиционно, видимый спектр делится, в свою очередь, на диапазоны цветов:
Цвет | Диапазон длин волн, нм | Диапазон частот, ТГц | Диапазон энергии фотонов, эВ |
---|---|---|---|
Фиолетовый | 380—440 | 790—680 | 2,82—3,26 |
Синий | 440—485 | 680—620 | 2,56—2,82 |
Голубой | 485—500 | 620—600 | 2,48—2,56 |
Зелёный | 500—565 | 600—530 | 2,19—2,48 |
Жёлтый | 565—590 | 530—510 | 2,10—2,19 |
Оранжевый | 590—625 | 510—480 | 1,98—2,10 |
Красный | 625—740 | 480—405 | 1,68—1,98 |
Ближнее инфракрасное излучение занимает диапазон от 207 ТГц (0,857 эВ) до 405 ТГц (1,68 эВ). Верхняя граница определяется способностью человеческого глаза к восприятию красного света, различной у разных людей. Как правило, прозрачность в ближнем инфракрасном излучении соответствует прозрачности в видимом свете.
Инфракрасное излучение
Диапазон: от 200 мкм (1,5 ТГц) до 740 нм (405 ТГц).
Электромагнитное терагерцовое излучение
Терагерцовое (субмиллиметровое) излучение расположено между инфракрасным излучением и микроволнами, в диапазоне от 1 мм (300 ГГц) до 0,1 мм (3 ТГц).
Электромагнитные микро- и радиоволны
Для электромагнитных волн с частотой ниже 300 ГГц существуют достаточно монохроматичные источники, излучение которых пригодно для амплитудной и частотной модуляции. Поэтому, распределение частот в этой области всегда имеет в виду задачи передачи сигналов.
В отличие от оптического диапазона, исследование спектра в радиодиапазоне проводится не физическим разделением волн, а методами обработки сигналов.
См. также
Полезное
Смотреть что такое «Волновой диапазон» в других словарях:
ВОЛНОВОЙ ДИАПАЗОН судового радиооборудования — спектр частот радиоволн используемых в установках и приборах судовой радиосвязи, радионавигации, радиолокации. Практически Волновой Диапазон охватывает частоты от 10 кГц до 40 ГГц (длина волны от 30 км до 0,75 см). Волны различной длины имеют… … Морской энциклопедический справочник
Infrared Space Observatory — Это статья о космической обсерватории. См. также ISO (значения). Infrared Space Observatory (ISO) Организация: ЕКА Волновой диапазон: 2,5 200 мкм NSSDC ID: 1995 062A Местонахождение: На орбите Тип орбиты: Геоцентрическая орбита … Википедия
Квант-1 — У этого термина существуют и другие значения, см. Квант (значения). Модуль космической станции МИР КВАНТ … Википедия
HEAO-2 — (High Energy Astronomy Observatory) HEAO2/Обсерватория им. Эйнштейна Организация … Википедия
Far Ultraviolet Spectroscopic Explorer — Это статья о космической обсерватории. См. также FUSE. Far Ultraviolet Spectroscopic Explorer (FUSE) Предстартовая подготовка: FUSE в « … Википедия
RXTE — Rossi X ray Timing Explorer Обсерватория RXTE в представлении художника (рисунок NASA) Организация … Википедия
Гранат (обсерватория) — Международная астрофизическая обсерватория «Гранат» схематическое изображение обсерватории «Гранат» Организация: Советская космическая программа Главные подрядчики: НПО им. Лавочкина … Википедия
Интеграл (обсерватория) — У этого термина существуют и другие значения, см. Интеграл (значения). INTEGRAL (International Gamma Ray Astrophysics Laboratory) Организация … Википедия
Кеплер (телескоп) — У этого термина существуют и другие значения, см. Кеплер. Космический телескоп «Кеплер» Организация … Википедия
Гершель (космическая обсерватория) — У этого термина существуют и другие значения, см. Гершель. Herschel Space Observatory Организация: European Space Agency (ESA) и Thales Alenia Space как головной подрядчик Другие названия: Far Infrared and Submillimetre Telescope (FIRST)… … Википедия