Что такое диагностические параметры
Что такое диагностические параметры
1.2. Диагностические параметры
Классификация диагностических параметров (рис. 1.1). В процессе эксплуатации трущиеся сопряжения автомобиля изнашиваются, происходит разрегулировка его систем, узлов и агрегатов, т. е. изменяются значения его структурных параметров, непосредственно характеризующих исправность объекта диагностирования. К ним относят зазоры в сопряжении, величину износа поверхностей детали и другие параметры, измерение которых связано с необходимостью проведения разборочных работ. Это повышает трудоемкость контроля и существенно снижает (иногда на 5-10 %) ресурс контролируемого агрегата. Последнее объясняется появлением дополнительного цикла приработки поверхностей контролируемого сопряжения (рис. 1.2).
Рис. 1.1. Классификация диагностических параметров
Рис. 1.2. Схема изменения структурного параметра в зависимости от пробега
Из всего многообразия возможных диагностических параметров выбирают и используют в практических целях лишь те параметры, которые отвечают требованиям однозначности, стабильности, широты изменения, доступности и удобства измерения, информативности и технологичности. Смысл перечисленных требований графически показан на рис. 1.3.
Требование стабильности устанавливает возможную величину отклонения диагностического параметра от своего среднего значения, характеризующую рассеивание параметра при неизменных значениях структурных параметров и условиях их измерения (рис. 1.3,б).
Требование широты изменения устанавливает диапазон изменения диагностического параметра, соответствующий заданной величине изменения структурного параметра. Чем больше диапазон изменения диагностического параметра, тем выше его информативность. На рис. 1.3,в параметр кривой 6 имеет большую широту изменения диагностического параметра ΔД4, чем параметр кривой 7 ΔД5. Аналитически отмеченное условие выражается следующей зависимостью: dД4/dS>dД5/dS.
По объему и характеру передаваемой информации диагностические параметры классифицируют на частные, общие и взаимозависимые.
Частные диагностические параметры независимо от других указывают на вполне определенную конкретную неисправность. Например, угол замкнутого состояния контактов определяет зазор в контактах прерывателя.
Общие диагностические параметры характеризуют техническое состояние диагностируемого объекта в целом. Например, люфт на выходном валу коробки перемены передач характеризует общее ее техническое состояние, но не состояние конкретной зубчатой пары.
Взаимозависимые диагностические параметры оценивают неисправность только по совокупности нескольких измеренных параметров. Например, износ поршневых колец определяется давлением в цилиндре в конце такта сжатия, относительными утечками отработавших газов в картер двигателя, наличием «хлопков» в карбюраторе при пуске двигателя.
Естественно, что чем больше измеряемых диагностических параметров, тем шире информация о состоянии объекта, но при этом повышаются трудоемкость и стоимость диагностирования.
По содержанию передаваемой информации диагностические параметры разделяют на три группы: параметры, дающие информацию о техническом состоянии объекта, но не характеризующие его функциональные возможности; параметры, дающие информацию о функциональных возможностях объекта, но не дающие информацию о его техническом состоянии; параметры (комбинированные), дающие информацию как о техническом состоянии объекта, так и о его функциональных возможностях.
Выбор диагностических параметров. Выбор диагностических параметров (табл. 1.3) для оценки технического состояния автомобилей осуществляют из номенклатур, рекомендуемых государственными стандартами (ГОСТ 25478-82, 26048-83, 23435-79, 17 2 2 03-87, 21393-75 и др.), а также другой нормативно-технической документацией.
Таблица 1.3. Номенклатура диагностических параметров автомобилей с бензиновым двигателем
При выборе диагностических параметров можно применять метод, сущность которого заключается в следующем. Выбирают основные структурные параметры Дi и параметры Кj, которые можно использовать в качестве диагностических. По данным статистики отказов определяют «вероятностные веса» структурных параметров при различных состояниях диагностируемого объекта, а также устанавливают вероятность возникновения этих состояний при различных комбинациях диагностических параметров.
Рассматриваемая задача может решаться по методике, предложенной филиалом НАМИ. Методика носит рекомендательный характер и основана на критерии экономичности диагностирования. Рассматриваемая методика предусматривает три возможных метода диагностирования с помощью внешних традиционных средств, систем встроенных датчиков (СВД) и бортовых систем контроля.
Методика. В ней предлагается для каждого из трех приведенных выше методов диагностирования формула расчета издержек на контроль объекта (автомобиля в целом, агрегата, системы, узла), его профилактический и аварийный ремонты, а также из-за простоев в ремонте.
Для первых двух методов составляют целевые функции, характеризующие зависимость издержек от периодичности диагностирования рассматриваемого элемента автомобиля. Минимум этих функций и дает оптимальную периодичность диагностирования, которая определяет минимальные издержки на эксплуатацию и ремонт элемента, включая и затраты на диагностирование. Для третьего метода диагностирования также предложена формула определения издержек.
Например, пусть для диагностического параметра «Контрольный расход топлива» соответствующие характеристики трех способов диагностирования равны:
1. A=20 руб., B=5 руб., С=5 руб., D=6 руб/ч, tA=8 ч, tC=2 ч, tВ=0,25 ч.
1(τ), С2(τ) и их составляющих РА(τ), РС(τ)»>
Таблица 1.4. Значения функций C1(τ), С2(τ) и их составляющих РА(τ), РС(τ)
Требования к диагностическим параметрам
Тема урока: Диагностические параметры и требования к ним.
Техническое состояние машин и их сборочных единиц проявляется в различных формах через множество признаков. Признаки, характеризующие техническое состояние машин и имеющие количественное выражение, относят к параметрам технического состояния. В их число входят:
— Структурные параметры, характеризующие структуру машины, сборочной единицы или деталей и сопряжений (зазоры, натяги, несоосность, положения регулируемых элементов);
— Функциональные параметры, характеризующие функционирование машин в целом и их сборочных единиц (мощность, удельный расход энергии; давление жидкости в гидросистеме, продолжительность циклов или операций);
— Сопутствующие параметры процессов, сопровождающих работу машин или их сборочных единиц (параметры шума и вибраций, изменения температуры).
Любой из параметров технического состояния, входящих в перечисленные виды, если его используют непосредственно для диагностирования, является диагностическим параметром. Кроме диагностических параметров в процессе диагностирования измеряют также параметры, необходимые для контроля и поддержания заданного режима работы объекта диагностирования. К таким параметрам, например, относят температуру рабочей жидкости в гидросистеме, давление и частоту вращения вала гидронасоса при определении коэффициента подачи (по результатам измерения подачи при разных давлениях в напорной магистрали). Контролируемые параметры могут и не быть параметрами технического состояния.
К числу обобщенных диагностических параметров относят мощность электродвигателя, полный КПД его привода, ток холостого хода.
К частным диагностическим параметрам относят амплитуды расхода мощности электродвигателя, скорость нарастания давления на кривой пульсирующего давления аксиально-поршневого насоса.
Диагностические параметры могут содержать в себе не один, а несколько признаков технического состояния.
Требования к диагностическим параметрам
Для того, чтобы диагностический параметр был информативным и обеспечивал достоверность диагноза, необходимо, чтобы он отвечал трем требованиям: был чувствительным, однозначным и стабильным и информативным.
Рассмотрим эти требования.
На рис. показаны три варианта поведения диагностического параметра по мере изменения состояния.
Чувствительность диагностического параметра определяется скоростью его приращения при изменении величины структурного параметра и математически описывается зависимостью dS/dU >> 0.
Требование чувствительности является важным для оценки качества диагностического параметра и служит удобным критерием при выборе наиболее эффективного метода диагностирования в конкретных условиях.
Так, например, на рисунке графическое изображение диагностического параметра 1 соответствует количеству газов, прорывающихся в картер двигателя, а 2 – изменению компрессии в цилиндрах двигателя в зависимости от износа деталей цилиндропоршневой группы. В первом случае мы имеем параметр, значение которого, например, для двигателя ЗИЛ-130 изменяется от номинального значения 22 л/мин до предельно допустимого, равного 120 л/мин., т.е. почти в 6 раз. У второго же параметра значение для данного двигателя меняется от 0,75 МПа у нового до 0,63 МПа, соответствующего полностью изношенной цилиндропоршневой группе, т.е. уменьшается всего на 16%. С учетом имеющейся нестабильности второго диагностического параметра можно сделать вывод о практически невозможном использовании его из-за малой чувствительности для определения промежуточных значений износа цилиндропоршневой группы и прогнозирования ее остаточного ресурса. Его использование эффективно при выявлении крупных неисправностей, таких как залегание поршневых колец, зависание клапана, предельный износ цилиндропоршневой группы. И, наоборот, первый параметр – прорыв газов в картер позволяет с высокой точностью оценить уровень износа деталей, определить остаточный ресурс и наметить сроки предупредительных работ.
Однозначностьобеспечивает каждому возможному состоянию структурного параметра соответствующую одну вполне определенную величину признака. Приведенные на рисунке параметры S1 и S2 – однозначные. Параметр S3— неоднозначен, поскольку одно и то же значение признака может соответствовать двум (или более) состояниям U1 и U2.
Математически это требование определяется условием dS/dU ≠ 0, т. е. отсутствием перехода от возрастания к убыванию или, наоборот, в диапазоне Uн £ Ui £ Uпд.
Таким образом, из представленных на рис. параметров предпочтительным для диагностики является , поскольку он однозначный и чувствительный.
Стабильность диагностического параметра определяется вариацией его значений при многократных измерениях на объектах с одним и тем же состоянием (рисунок 67).. Разброс значений параметра может быть выражен средним квадратическим отклонением, которое следует рассчитывать для заведомо исправного и неисправного состояния диагностируемого объекта.
Нестабильность диагностического параметра снижает достоверность оценки технического состояния механизма с его использованием, что в некоторых случаях заставляет отказаться от быстродействующих и удобных методов диагностирования.
Рисунок 67 – Плотность распределения результатов замеров значения диагностического параметра Si при Ui
Так, например, именно по этой причине, до сих пор не нашли распространение площадочные тормозные стенды, несмотря на их несомненные преимущества при организации инспекторского экспресс-диагностирования эффективности тормозной системы автомобиля.
Информативность является главным критерием, положенным в основу определения возможности применения параметра для целей диагностики. Она характеризует достоверность диагноза, получаемого в результате измерения значений параметра.
Рисунок 69 – Плотность вероятности информативного (а) и
малоинформативного (б) диагностических параметров для групп исправных (1) и неисправных (2) объектов.
Так, в приведенном на рисунке 69 примере, информативному параметру соответствует прорыв газов в картер двигателя, а малоинформативному параметру соответствует люфт редуктора главной передачи.
В первом случае с помощью назначения предельно допустимого значения параметра статистическим методом представляется возможным свести к минимуму ошибку второго рода и почти все поле значений параметра от номинала до предельно допустимого значения будет однозначно соответствовать исправному состоянию объекта. Во втором случае при значении диагностического параметра меньше предельно допустимого норматива такой однозначной оценки состояния объекта диагностирования дать невозможно. Здесь можно оценить фактическое состояние объекта только с вероятностных позиций, учитывая соотношение для данного значения параметра вероятностей
Отсюда информативность данного диагностического параметра можно оценить значением коэффициента
1. Прочитайте конспект.
2. Выпишите в тетрадь диагностические параметры и требования к ним.
Диагностические параметры и нормативы
Чтобы определить, в каком состоянии находится автомобиль или его элемент, необходимо знать параметры его технического состояния, заданные нормативно-технической документацией предприятия-изготовителя.
Параметры технического состояния (структурными параметрами) — это физические величины (выраженные в миллиметрах, градусах и т.п.), определяющие связь и взаимодействие элементов автомобиля и его функционирование в целом. Например, параметрами технического состояния сопряжения поршень—цилиндр двигателя могут быть размеры сопряженных деталей поршней и цилиндров, которые определяют зазор между ними, овальность и т.п. В процессе эксплуатации параметры технического состояния изменяются от номинального до предельного значения под влиянием различных конструктивно-технологических и эксплуатационных факторов. Предельные значения структурных параметров обусловлены вероятностью отказов и неисправностей автомобиля и являются в основном значениями технико-экономического характера.
Возможность непосредственного измерения в процессе эксплуатации структурных параметров (износов, зазоров) сопряжений механизмов автомобиля без их разборки весьма ограничена. Поэтому при диагностировании пользуются косвенными признаками, отражающими техническое состояние автомобиля. Эти признаки называются диагностическими параметрами и представляют собой пригодные для измерения физические величины, связанные с параметрами технического состояния автомобиля и несущие информацию о его состоянии.
Диагностический параметр — это мера проявления технического состояния автомобиля и его элементов по косвенным признакам, определяемая количественными значениями.
Диагностическими параметрами могут быть параметры рабочих процессов (мощность, тормозной путь, расход топлива и др.), сопутствующих процессов (вибрация, шум и т.п.) и геометрические величины (зазор, люфт, свободный ход, биение и др.).
Для обеспечения надлежащей достоверности и экономичности диагностирования диагностические параметры должны обладать чувствительностью, однозначностью, стабильностью, информативностью.
Чувствительность диагностического параметра — это отношение его приращения к соответствующему изменению структурного параметра.
Чем больше значение этой величины, тем чувствительнее диагностический параметр к изменению структурного параметра.
Однозначность диагностического параметра определяется монотонно возвращающей или убывающей зависимостью его от структурного параметра в диапазоне от начального до предельного изменения структурного параметра.
Стабильность диагностического параметра определяется дисперсией его значения при многократных измерениях в неизменных условиях при одном и том же значении структурного параметра. Нестабильность диагностического параметра снижает достоверность оценки технического состояния механизма, что в некоторых случаях заставляет отказаться от удобных методов диагностирования. Так, например, именно это является одной из основных причин, по которой площадочные тормозные стенды, несмотря на некоторые их преимущества, не нашли широкого применения на практике. Для определения истинного состояния тормозной системы на таких стендах необходимо проводить целую серию измерений, что представляет определенную трудность.
Информативность диагностического параметра является главным критерием, положенным в основу определения возможности применения параметра для целей диагностирования. Она характеризует достоверность диагноза, получаемого в результате измерения значений параметра.
Рис. Сравнительная схема информативности диагностических параметров: а — информативного (П); б — малоинформативного (П’); в — неинформативного (П»); f1, f2 — функции распределения параметров соответственно исправных и неисправных объектов
Диагностические параметры механизма, как и структурные, являются переменными случайными величинами и имеют соответствующие номинальные и предельные значения. С увеличением пробега автомобиля диагностические параметры могут либо увеличиваться (вибрации и др.), либо уменьшаться (давление масла и т.д.). Существующая связь между диагностическими и структурными параметрами позволяет без разборки автомобиля и его элементов количественно оценить их техническое состояние.
Диагностические нормативы — это количественная оценка технического состояния диагностируемой системы. К ним относятся:
Определение технического состояния системы в данный момент и прогнозирование ее работоспособности в период предстоящей наработки выполняются путем сравнения измеренного значения диагностического параметра с его допустимым значением.
Функциональная диагностика сердечно-сосудистой системы в амбулаторной практике
Основными методами функциональной диагностики в амбулаторной практике являются стандартные исследования функций сердечно-сосудистой системы, одинаково необходимые как для первичной диагностики, так и для дальнейшего отслеживания состояния сердца и сосудов. К этим методам относятся:
Электрокардиография (ЭКГ)
Первичным, самым распространенным и часто назначаемым методом исследования функции сердца является электрокардиография (ЭКГ).
ЭКГ – это запись электрической активности сердца в покое, в данный момент времени, на бумагу или электронный носитель.
ЭКГ является основным методом диагностики патологии сердца в амбулаторно-поликлинической практике и позволяет диагностировать:
Следует отметить, что электрокардиография даже в норме отличается вариабельностью, что зависит от возраста, пола, анатомических и конституциональных особенностей человека и других факторов. И именно правильная интерпретация графического отображения деятельности сердца, проводимая врачом функциональной диагностики, анализ зубцов, интервалов ЭКГ, позволяет проводить правильную клиническую оценку и дифференциальную диагностику.
ЭКГ часто используется и при неотложных клинических ситуациях, требующих экстренного лечения:
ЭКГ включена практически во все терапевтические программы диспансерного наблюдения, предварительные, периодические и профилактические медицинские осмотры.
С ЭКГ начинается обследование всех пациентов, предъявляющих жалобы на повышение артериального давления, имеющих указание в истории жизни (анамнезе) на наличие хронического или перенесенного острого заболевания сердца.
ЭХО-кардиографию (ЭХО-КГ)
При выявлении у пациента в ходе осмотра повышенных цифр артериального давления, расширения границ сердца, шумов при выслушивании сердца, выявлении на ЭКГ патологических изменений, а также, если на рентгенограмме органов грудной клетки видны изменения размера и формы сердца, нетипичное его расположение, или же определяются видоизмененные аорта и легочная артерия, врач назначает ультразвуковое исследование сердца: трансторакальную ЭХО-кардиографию.
ЭХО-кардиография (ЭХО-КГ, УЗИ сердца) это ультразвуковой метод исследования строения и функции сердца. Метод основан на улавливании датчиком отраженных от структур сердца ультразвуковых сигналов и преобразовании их в изображение на экране монитора. При выполнении ЭХО-КГ врач оценивает:
ЭХО-КГ является основным методом диагностики острых и хронических заболеваний сердца: пороков, воспалительных заболеваний клапанного аппарата сердца и его оболочек (эндокардит, перикардит). При данном исследовании также проводится оценка и уточняется степень гипертрофии миокарда, наличие дисфункции работы сердечной мышцы при ее поражении (инфаркт, миокардит), наличие тромбов в полостях сердца. Врач-кардиолог или терапевт, соотнося данные, полученные при ЭХО-КГ с клинической картиной, решают вопрос о тактике дальнейшего ведения пациента.
Суточное мониторирование ЭКГ по Холтеру
В зависимости от характера течения патологического процесса, клиническая картина в текущий момент времени может не давать четких критериев для установки клинического диагноза. В этом случае врач назначает диагностические исследования, проводимые в более широком временном диапазоне, в режиме повседневной деятельности пациента, позволяющие не только провести мониторинг деятельности сердечно сосудистой системы, но и выявить те триггерные факторы, которые приводят к патологическим сдвигам. К данной группе исследований, применяемых в амбулаторной практике, относятся суточное мониторирование ЭКГ по Холтеру (СМЭКГ по Холтеру) и суточное мониторирование артериального давления (СМАД).
Система суточного мониторирования ЭКГ состоит из регистратора ЭКГ (который пациент обычно носит на поясе в предлагающемся футляре) и системы электродов (проводов), присоединяющихся к телу пациента. По окончании исследования врач переносит ЭКГ данные в компьютерную программу, и после выполнения цифрового анализа, интерпретирует результаты и составляет врачебное заключение.
Показаниями для проведения суточного мониторирования ЭКГ являются:
Для проведения исследования важна правильная подготовка кожи к постановке электродов: волосы в местах присоединения проводов сбриваются, кожа обезжиривается. Пациенту желательно надеть свободную удобную одежду на время обследования. Водные процедуры (принятие ванны, душа) на время СМЭКГ исключаются.
Во время исследования пациент ведет обычный образ жизни (работает, занимается спортом, гуляет), записывая все возникающие в процессе мониторинга жалобы в специальный дневник. Кроме того, в дневнике указывается возможный прием лекарств, смена видов физической активности.
Суточное мониторирование артериального давления (СМАД)
Помимо суточного мониторирования ЭКГ в амбулаторной практике часто используется суточное мониторирование артериального давления (СМАД).
Этот вид исследования первично назначается пациентам, у которых были выявлены повышенные цифры артериального давления (самостоятельно пациентом или на приеме у врача). Исследование позволяет исключить феномен «белого халата», когда повышение давления происходит только во время приема врача. При СМАД уточняется:
Все эти факторы влияют на прогноз риска развития сердечно-сосудистых осложнений у пациента с гипертонией (инфаркт миокарда, инсульт и др.).
Пациентам, с уже установленным диагнозом и принимающим лекарственные препараты, суточное мониторирование АД назначается для оценки эффективности проводимой терапии.
Исследование проводится в течение 24 часов. Пациенту на руку одевают манжету, сравнимую с манжетой стандартного тонометра, к которой присоединяется регистратор (принцип тот же, что и при мониторировании ЭКГ). Один раз в 15 минут в дневное время и один раз в 30 минут в ночные часы аппарат надувает манжету, проводит измерение артериального давления пациенту и записывает данные на электронный носитель внутри прибора. Пациент так же, как и при мониторировании ЭКГ, ведет дневник жалоб, приема медикаментов и физической активности. По истечении 24 часов врач переносит данные исследования в компьютер, интерпретирует результаты и выдает заключение.
Часто суточное мониторирование ЭКГ и АД проводят одновременно. Существуют современные приборы бифункционального мониторирования ЭКГ и АД, позволяющие вести одновременную запись АД и ЭКГ на один аппарат. В практическом смысле это оправдано тем, что чаще всего у пациентов нарушения деятельности сердца совпадают по времени с патологией артериального давления (например, ишемические приступы на фоне повышения АД).
Исследование СМАД не требует специфической подготовки. Для удобства пациенту рекомендуется приходить на исследование в свободной одежде. Во время мониторирования пациент ведет привычный для себя образ жизни.
В заключении следует отметить, что приведенные методы функциональных исследований являются рутинными, используемыми в амбулаторной практике для первичной диагностики патологии сердечно сосудистой системы. Дальнейшее ведение пациента определяется индивидуально, в соответствии с характером выявленных нарушений.
Информацию для Вас подготовила:
Конюхова Мария Юрьевна, терапевт, врач функциональной диагностики. Ведет прием в корпусе клиники на Бауманской.