Что такое дейтерий в химии
Дейтерий
Открыт в 1932 г. американским физико-химиком Г. Юри. Природное содержание — 0,0115 ± 0,0070 [2] %.
Содержание
Изотопные модификации соединений водорода
По своим химическим свойствам соединения дейтерия имеют определенные особенности. Так, например, углерод-дейтериевые связи оказываются более «прочными», чем углерод-протиевые, из-за чего химические реакции с участием атомов дейтерия идут в несколько раз медленнее. Этим, в частности, обусловлена токсичность тяжёлой воды (вода состава D2O называется тяжёлой водой из-за большой разницы в массе протия и дейтерия).
Получение
Применение
Дейтерий широко используется в атомной энергетике как замедлитель нейтронов в атомных реакторах; в смеси с тритием или в соединении с литием-6 применяют для термоядерной реакции в водородных бомбах, применяется в качестве меченого стабильного индикатора в лабораторных исследованиях и технике. Перспективным также представляется применение дейтерия (в смеси с тритием) для получения высокотемпературной плазмы, необходимой для осуществления управляемого термоядерного синтеза (см. проект ITER).
Примечания
Литература
Стабильные: 1 H: Протий, D, 2 H: Дейтерий
Полезное
Смотреть что такое «Дейтерий» в других словарях:
ДЕЙТЕРИЙ — (тяжелый водород), D, стабильный изотоп водорода, атомная масса 2,01416, газ. Ядро атома дейтерия называется дейтрон. Дейтерий замедлитель нейтронов (в виде тяжелой воды) в ядерных реакторах, изотопный индикатор. Дейтерий открыт американским… … Современная энциклопедия
ДЕЙТЕРИЙ — ДЕЙТЕРИЙ, изотоп (D, или 2Н) водорода, ядра которого (ДЕЙТРОНЫ) помимо протона содержат также нейтрон. На каждый миллион атомов водорода, существующего в природе, приходится около 156 атомов дейтерия. Дейтерий находится также в воде (D2O, или… … Научно-технический энциклопедический словарь
дейтерий — изотоп, водород Словарь русских синонимов. дейтерий сущ., кол во синонимов: 2 • водород (10) • изотоп … Словарь синонимов
ДЕЙТЕРИЙ — (лат. deuterium от греч. deuteros второй), D, 2Н, тяжелый водород, стабильный изотоп водорода с массовым числом 2. Ядро атома (дейтрон) состоит из протона и нейтрона. С кислородом образует тяжелую воду. Открыт Г. Юри в 1932 … Большой Энциклопедический словарь
ДЕЙТЕРИЙ — [дэ, тэ ], я, муж. Тяжёлый водород, стабильный изотоп водорода. | прил. дейтериевый, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
ДЕЙТЕРИЙ — (от греч. deuteros второй; лат. Deuterium), D или 2H, тяжёлый стабильный изотоп водорода с массовым числом 2; содержание в природном водороде 0,0156% (по массе). Масса 2,0141018 а. е. м. Ядро Д. дейтрон состоит из 1 протона и 1 нейтрона. Д.… … Физическая энциклопедия
ДЕЙТЕРИЙ — тяжелый изотоп водорода с массовым числом 2. Отношение Н1/Н2 в космосе равно 1017, на Земле 6,41∙103; причины такого расхождения, вероятно, вызваны гравитационной дифференциацией и преимущественной потерей Землей более легкого изотопа.… … Геологическая энциклопедия
Дейтерий — Deuterium «тяжелый» изотоп водорода с атомной массой 2. Термины атомной энергетики. Концерн Росэнергоатом, 2010 … Термины атомной энергетики
дейтерий — дейтерий. Произносится [дэйтэрий] … Словарь трудностей произношения и ударения в современном русском языке
ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА
ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА. Дейтерий (тяжелый водород) – один из двух стабильных изотопов водорода, ядро которого состоит из одного протона и одного нейтрона. Молекула D2 – двухатомна. Содержание в природном водороде – 0,012–0,016%. Температура плавления – 254,5° С, температура кипения – 249,5° С. Тяжелая вода D2O (оксид дейтерия) – изотопная разновидность воды; плотность 1,1, температура плавления – 3,8° С, температура кипения – 101,4° С.
В 1932 одно за другим следовали выдающиеся открытия в области физики: были открыты нейтрон и позитрон, разработана протоно-нейтронная теория строения ядер и релятивистская квантовая механика, построен первый циклотрон и изобретен электронный микроскоп, проведена первая реакция ядерного синтеза, экспериментально измерена скорость движения молекул. Недаром физики назвали этот год anno mirabilis – год чудес. В этом же году был открыт и второй изотоп водорода, названный дейтерием (от греческого deuteros – второй, символ D).
Открытие дейтерия может служить прекрасной иллюстрацией к парадоксальному на первый взгляд высказыванию французского физикохимика Анри Ле Шателье, обращенному к ученикам: «Ошибкой не только начинающих исследователей, но многих немолодых, весьма опытных и зачастую талантливых ученых является то, что они устремляют свое внимание на разрешение очень сложных проблем, для чего еще недостаточно подготовлена почва. Если вы хотите сделать нечто действительно большое в науке, если вы хотите создать нечто фундаментальное, беритесь за детальное обследование самых, казалось бы, до конца обследованных вопросов. Эти-то на первый взгляд простые и не таящие в себе ничего нового объекты и являются тем источником, откуда вы при умении сможете почерпнуть наиболее ценные и порой неожиданные данные».
Действительно, что можно было ожидать от исследования физических свойств обыкновенной чистой воды – они были изучены, как говорится, вдоль и поперек еще в 19 в. Вспомним однако, что проведенные в 1893 рутинные определения плотности газообразного азота, полученного разными методами (литр азота из воздуха весил 1,257 г, а полученного химическим путем – 1,251 г), привели к выдающемуся открытию – сначала аргона, а за ним и других благородных газов.
Можно ли было надеяться обнаружить нечто новое в обычной воде? В начале 19 в. лондонский врач и химик Уильям Праут опубликовал гипотезу, согласно которой из самого легкого элемента – водорода могли возникнуть все остальные элементы путем конденсации. В этом случае атомные массы всех элементов должны быть кратны массе атома водорода. Определения атомных масс, которые оказались дробными, эту гипотезу не подтвердили, и химики 19 в. часто осмеивали ее как лишенную научного содержания (см. ОТНОСИТЕЛЬНАЯ АТОМНАЯ МАССА).
В 1917 немецкий ученый К.Шерингер предположил, что атомы разных элементов построены не только из протия (от греческого protos – первый), т.е. «легкого» водорода с атомной массой 1, а из разных изотопов водорода. К тому времени уже было известно, что один и тот же элемент может иметь изотопы с разной массой. Впечатляющих успехов в открытии большого числа изотопов нерадиоактивных элементов достиг английский физик Фрэнсис Уильям Астон с помощью сконструированного им масс-спектрографа. В этом приборе изучаемые атомы или молекулы бомбардируются пучком электронов и превращаются в положительно заряженные ионы. Пучок этих ионов далее подвергается действию электрического и магнитного поля, и их траектории отклоняются от прямой. Это отклонение тем сильнее, чем больше заряд иона и чем меньше его масса. Из значений отклоняющих напряжений непосредственно получают относительные массы ионов. А из интенсивности пучка ионов с данной массой можно судить об относительном содержании в образце этих ионов.
Гипотеза Шерингера предполагала, что и у самого легкого элемента – водорода тоже могут быть изотопы. Однако попытки обнаружить «второй», тяжелый водород, предпринятые в 1919 Отто Штерном и Максом Фольмером, оказались безуспешными. Не удалось обнаружить его и Астону. Это означало одно из двух: либо у водорода тяжелого изотопа вовсе нет, либо его содержание в природном водороде слишком мало и чувствительности имевшегося в распоряжении Астона прибора недостаточно для его обнаружения. Правильным оказалось второе предположение, однако тяжелый водород прятался от исследователей в течение еще многих лет, маскируясь под ошибки эксперимента.
В 1927 Астон очень точно для того времени измерил отношение масс атомов водорода и кислорода-16; у него получилось 1,00778:16,0000, что, казалось, находится в прекрасном соответствии с результатами самых точных измерений атомной массы водорода химическим путем: у химиков это отношение получалось равным 1,00777:16,0000. Однако такое единодушие физиков и химиков было недолгим: оказалось, что природный кислород, с которым работали химики, – плохой эталон для измерения атомных масс, поскольку кислород представляет собой смесь изотопов, причем их относительное содержание в разных источниках не вполне постоянно. Точные измерения в начале 30-х соотношения 18 O: 16 O = 1:630 существенным образом изменили все прежние расчеты и данные об атомных массах. Пришлось в срочном порядке отказываться от «химической» шкалы атомных масс и переходить на «физическую» шкалу, основанную на кислороде-16. Такой пересчет данных химических анализов дал отношение масс Н: 16 О = 1,00799:16,0000, что уже заметно отличалось от измерений Астона. Кто же ошибся – физики или химики, выполнившие определения атомных масс? И те и другие ручались за точность своих определений, расхождение в результатах далеко выходило за пределы экспериментальных ошибок.
В 1931 было высказано предположение о том, что причина небольшого расхождения – наличие в обычном водороде более тяжелого изотопа. Расчеты показали, что расхождение устраняется в том случае, если на 5000 атомов обычного водорода 1 H приходится всего один атом его вдвое более тяжелой разновидности 2 Н. Дело оставалось за малым – обнаружить этот изотоп экспериментально. Но как это сделать, если его действительно так мало? С учетом чувствительности имевшейся в то время аппаратуры выход был один: сконцентрировать тяжелый водород, увеличив тем самым его содержание в обычном водороде, – примерно так же, как концентрируют спирт, перегоняя его смесь с водой. Если перегонять смесь обычного и тяжелого водорода, остаток должен обогащаться более тяжелым изотопом. После этого можно было снова попытаться обнаружить тяжелый изотоп водорода аналитически.
В конце 1931 группа американских физиков – Гарольд Юри со своими учениками, Фердинандом Брикведде и Джорджем Мерфи, взяли 4 л жидкого водорода и подвергли его фракционной перегонке, получив в остатке всего 1 мл, т.е. уменьшив объем в 4 тысячи раз. Этот последний миллилитр жидкости после ее испарения и был исследован спектроскопическим методом. Талантливый спектроскопист Гарольд Клейтон Юри заметил на спектрограмме обогащенного водорода новые очень слабые линии, отсутствующие у обычного водорода. При этом положение линий в спектре точно соответствовало проведенному им квантово-механическому расчету предполагаемого атома 2 H. Соотношение интенсивностей линий нового изотопа (Юри назвал его дейтерием) и обычного водорода показало, что в исследованном обогащенном образце нового изотопа в 800 раз меньше, чем обычного водорода. Значит, в исходном водороде тяжелого изотопа еще меньше. Но насколько?
Пытаясь оценить так называемый коэффициент обогащения при испарении жидкого водорода, исследователи поняли, что в своих опытах использовали самый неподходящий источник водорода. Дело в том, что он был получен, как обычно, путем электролиза воды. А ведь при электролизе легкий водород должен выделяться быстрее, чем тяжелый. Получается, что образец был сначала обеднен тяжелым водородом, а затем снова обогащался им!
После того, как дейтерий был обнаружен спектроскопически, Эдвард Уошберн предложил разделять изотопы водорода электролизом. Эксперименты показали, что при электролизе воды легкий водород действительно выделяется быстрее, чем тяжелый. Именно это открытие стало ключевым для получения тяжелого водорода. Статья, в которой сообщалось об открытии дейтерия, была напечатана весной 1932, а уже в июле были опубликованы результаты по электролитическому разделению изотопов. В 1934 за открытие тяжелого водорода Юри была присуждена Нобелевская премия по химии. (Уошберн тоже был представлен к премии, но скончался в том же году, а по положению о Нобелевских премиях они вручаются только прижизненно.)
Когда был открыт нейтрон, стало ясно, что в ядре дейтерия, в отличие от протия, помимо протона находится также нейтрон. Поэтому ядро дейтерия – дейтрон вдвое тяжелее протона; его масса в углеродных единицах равна 2,0141018. В среднем в природном водороде содержится 0,0156% дейтерия. В прибрежной морской воде его немного больше, в поверхностных водах суши – меньше, в природном газе – еще меньше (0,011–0,013%). По химическим свойствам дейтерий схож с протием, но огромное различие в их массах приводит к заметному замедлению реакций с участием атомов дейтерия. Так, реакция дейтерированного углеводорода R–D с хлором или кислородом замедляется, в зависимости от температуры, в 5–10 раз по сравнению с реакцией R–Н. С помощью дейтерия можно «пометить» водородсодержащие молекулы и изучить механизмы их реакций. Так, в частности, были изучены реакции синтеза аммиака, окисления углеводородов, ряд других важных процессов.
Тяжелая вода.
После фундаментальных работ Уошберна и Юри исследования нового изотопа стали развиваться быстрыми темпами. Уже вскоре после открытия дейтерия в природной воде была обнаружена ее тяжелая разновидность. Обычная вода состоит в основном из молекул 1 Н2О. Но если в природном водороде есть примесь дейтерия, то и в обычной воде должны быть примеси НDO и D2O. И если при электролизе воды Н2 выделяется с большей скоростью, чем НD и D2, то со временем в электролизере должна накапливаться тяжелая вода. В 1933 Гилберт Льюис и американский физикохимик Роналд Макдональд сообщили, что в результате длительного электролиза обычной воды им удалось получить не виданную никем до этого новую разновидность воды – тяжелую воду.
Открытие и выделение весовых количеств новой разновидности воды – D2O произвело большое впечатление на современников. Всего за два года после открытия было опубликовано более сотни работ, посвященных исключительно тяжелой воде. О ней читались популярные лекции, печатались статьи в массовых изданиях. Практически сразу же после открытия тяжелую воду стали использовать в химических и биологических исследованиях. Так, было обнаружено, что рыбы, микробы и черви не могут существовать в ней, а животные погибают от жажды, если их поить тяжелой водой. Не прорастают в тяжелой воде и семена растений.
Однако технически получение значительных количеств D2О представляло собой трудную задачу. Для обогащения воды дейтерием на 99% необходимо уменьшить объем воды при электролизе в 100 тысяч раз. Льюис и Макдональд взяли для своих опытов 10 л воды из проработавшей несколько лет большой электролитической ванны, в которой содержание дейтерия было повышенным. Пропуская через эту воду ток большой силы – 250 ампер (для увеличения электропроводности вода содержала щелочь), они за неделю уменьшили ее объем в 10 раз. Чтобы жидкость при электролизе таким огромным током не закипела, ее приходилось непрерывно охлаждать холодной водой, пропускаемой по металлическим трубкам внутри электролизера. Остаток объемом 1 л перенесли в электролизер поменьше и снова путем электролиза снизили объем в 10 раз. Затем в третьей ячейке объем был уменьшен до 10 мл, и, наконец, в четвертой он был доведен до 0,5 мл. Отогнав этот остаток в вакууме в небольшую колбочку, они получили воду, содержащую 31,5% D2O. Ее плотность (1,035) уже заметно отличалась от плотности обычной воды.
В следующей серии опытов из 20 л воды, также в несколько этапов, получили 0,5 мл воды с плотностью 1,075, содержащей уже 65,7% D2O. Продолжая такие опыты, удалось, наконец, получить 0,3 мл воды, плотность которой (1,1059 при 25° С) уже больше не увеличивалась при уменьшении объема при электролизе до 0,12 мл. Эти несколько капель и были первые за всю историю Земли капли почти чистой тяжелой воды. Соответствующие расчеты показали, что прежние оценки соотношения обычного и тяжелого водорода в природе были слишком оптимистическими: оказалось, что в обычной воде содержится всего 0,017% (по массе) дейтерия, что дает соотношение D:Н = 1:6800.
Чтобы получать заметные количества тяжелой воды, необходимой ученым для исследований, необходимо было подвергать электролизу уже огромные по тем временам объемы обычной воды. Так, в 1933 группе американских исследователей для получения всего 83 мл D2O 99%-ой чистоты пришлось взять уже 2,3 тонны воды, которую разлагали в 7 стадий. Было ясно, что такими методами ученые не смогут обеспечить всех желающих тяжелой водой. А тут выяснилось, что тяжелая вода является прекрасным замедлителем нейтронов и потому может быть использована в ядерных исследованиях, в том числе для построения ядерных реакторов. Спрос на тяжелую воду вырос настолько, что стала ясна необходимость налаживания ее промышленного производства. Трудность состояла в том, что для получения 1 тонны D2O необходимо переработать около 40 тысяч тонн воды, израсходовав при этом 60 млн кВт-ч электроэнергии – столько уходит на выплавку 3000 т алюминия!
Первые полупромышленные установки были маломощными. В 1935 на установке в Беркли еженедельно получали 4 г почти чистой D2O, стоимость которой составляла 80 долларов за грамм – это очень дорого, если учесть, что за прошедшие годы доллар «подешевел» в десятки раз. Более эффективной была установка в химической лаборатории Принстонского университета – она давала ежедневно 3 г D2O ценой по 5 долларов за грамм (через 40 лет стоимость тяжелой воды снизилась до 14 центов за грамм). Наиболее трудоемким оказался самый первый этап электролиза, в котором концентрация тяжелой воды повышалась до 5–10%, поскольку именно на этом этапе приходилось перерабатывать огромные объемы обычной воды. Дальнейшее концентрирование можно было уже без особых проблем провести в лабораторных условиях. Поэтому преимущества получали те промышленные установки, которые могли подвергать электролизу большие объемы воды.
Теоретически можно вместо электролиза использовать простую перегонку, поскольку обычная вода испаряется легче, чем тяжелая (ее температура кипения 101,4° С). Однако этот способ еще более трудоемкий. Если при электролизе коэффициент разделения изотопов водорода (т.е. степень обогащения в одной стадии) теоретически может достигать 10, то при перегонке он составляет всего 1,03–1,05. Это означает, что разделение путем перегонки исключительно малоэффективно. Академик Игорь Васильевич Петрянов-Соколов как-то подсчитал, сколько воды должно испариться из чайника, чтобы в остатке заметно повысилось содержание дейтерия. Оказалось, что для получения 1 литра воды, в которой концентрация D2О всего в 10 раз превышает природную, в чайник надо долить в общей сложности 2,1O 30 тонн воды, что в 300 млн. раз превышает массу Земли!
В настоящее время разработан ряд эффективных методов получения тяжелой воды: электролизом, изотопным обменом, сжиганием обогащенного дейтерием водорода. В настоящее время тяжелую воду получают ежегодно тысячами тонн. Ее используют в качестве замедлителя нейтронов и теплоносителя в ядерных реакторах (для заполнения одного современного крупного ядерного реактора требуется 100–200 тонн тяжелой воды чистотой не менее 99,8%); для получения дейтронов D + в ускорителях частиц; как растворитель в спектроскопии протонного магнитного резонанса (обычная вода своими протонами смазывает картину). Не исключено, что роль тяжелой воды значительно возрастет, если будет осуществлен промышленный термоядерный синтез.
«Битва за воду».
Металлический дейтерий
Группе исследователей из Национальной Лаборатории Сандии, работающей совместно с коллегами из Университета Ростока, удалось сжать жидкий дейтерий до состояния, в котором он приобрел свойства металла. Исследователи предполагают, что разработанная ими методика приближает исследователей к заветной цели – получению твердого металлического водорода.
Схематическая фазовая диаграмма водорода. На графике показаны четыре известные твердые фазы водорода I-IV и две наблюдаемые жидкие фазы наряду с предсказанной фазой атомизированной жидкости. (Рисунок из Science, 2015: Vol. 348 no. 6242, 1455)
Еще в 1935 году Хиллард Белл Хангтинтон (Hillard Bell Huntington) и Ойген Вигнер (Eugene Wigner) впервые опубликовали теоретические выкладки, в которых говорилось, что при достижении определенного (очень высокого) давления можно сжать водород до твердого металлического состояния. Вот уже 80 лет многочисленные группы исследователей пытаются доказать правильность этих теоретических выкладок, но, увы, безуспешно. В новой работе исследователи сообщают о том, что им удалось разработать новый способ, позволяющий достичь нужного давления.
Помимо пальмы первенства за получение твердого металлического водорода и прилагающегося к этой пальме первенства почета достижение цели, к которой физики идут уже восемь десятилетий, может оказаться полезным, например, для изучения других планет, гравитация которых может обеспечить достижение такого давления.
До настоящего времени все методики сжатия водорода основывались на сжатии образцов водорода с помощью «алмазной наковальни» – эксперименты с ее применением доказали, что металлизировать можно если не сам водород, то соединения, в которых его содержание высоко.
Описывая новый эксперимент, исследователи отмечают, что применение алмазной наковальни для перевода водорода в металлическое состояние вряд ли может привести к желаемому результату из-за увеличения реакционной способности водорода, сжатого до высокого давления. По этой причине они решили выбрать другой путь – они использовали оборудование, способное создавать магнитное поле до 20 Мегагаусс и с помощью этого оборудования сжали образец жидкого дейтерия, а затем, воздействуя электрическим током, вызывали шоковую волну в образце дейтерия.
Когда материал был сжат, исследователи измерили отражаемость образца – обычный способ для идентификации металла. По мере сжатия образец переходил из прозрачного состояния в отражаемое, что позволило исследователям говорить о том, что сжимаемый дейтерий превращался из изолятора в проводник I рода.
Полученные результаты говорят о том, что в настоящий момент мы находимся к получению металлического водорода настолько близко, насколько это возможно, и исследователи из Ростока надеются, что вскоре этот участок пути будет пройден или ими, или кем-то другими.
Дейтерий
Общий | |
---|---|
Символ | 2 ч |
Имена | дейтерий, H-2, водород-2, D |
Протоны | 1 |
Нейтронов | 1 |
Данные о нуклидах | |
Природное изобилие | 0,0115% (Земля) [1] |
Изотопная масса | 2,01410177811 [2] u |
Вращение | 1 + |
Избыточная энергия | 13135,720 ± 0,001 кэВ |
Связующая энергия | 2224,52 ± 0,20 кэВ |
Изотопы водорода Полная таблица нуклидов |
Таким образом, отношения дейтерия к протию продолжают оставаться активной темой исследований как в астрономии, так и в климатологии.
Химический символ
Спектроскопия
Приведенная масса системы в этих уравнениях близка к массе отдельного электрона, но отличается от нее на небольшую величину, примерно равную отношению массы электрона к атомному ядру. Для водорода это количество составляет примерно 1837/1836, или 1.000545, а для дейтерия еще меньше: 3671/3670, или 1.0002725. Таким образом, энергии спектральных линий дейтерия и легкого водорода ( водорода-1 ) различаются соотношением этих двух чисел, которое составляет 1.000272. Длины волн всех спектральных линий дейтерия короче соответствующих линий легкого водорода в 1.000272 раз. В астрономических наблюдениях это соответствует синему доплеровскому смещению, в 0,000272 раза превышающему скорость света, или 81,6 км / с. [8]
Нуклеосинтез Большого взрыва
Избыток
Существование дейтерия в низком, но постоянном содержании первичной фракции во всем водороде является еще одним аргументом в пользу теории Большого взрыва по сравнению с теорией устойчивого состояния Вселенной. Наблюдаемое соотношение водорода, гелия и дейтерия во Вселенной трудно объяснить, кроме как с помощью модели Большого взрыва. По оценкам, содержание дейтерия существенно не изменилось с момента его производства около 13,8 миллиарда лет назад. [12] Измерения галактического дейтерия в Млечном Пути с помощью ультрафиолетового спектрального анализа показывают соотношение целых 23 атомов дейтерия на миллион атомов водорода в невозмущенных газовых облаках, что всего на 15% ниже расчетного первичного отношения WMAP, составляющего около 27 атомов на миллион. от Большого взрыва. Это было интерпретировано как означающее, что при звездообразовании в нашей галактике было разрушено меньше дейтерия, чем ожидалось, или, возможно, дейтерий был восполнен за счет большого количества первичного водорода, поступающего извне. [13] В космосе в нескольких сотнях световых лет от Солнца содержание дейтерия составляет всего 15 атомов на миллион, но на это значение предположительно влияет дифференциальная адсорбция дейтерия на зернах углеродной пыли в межзвездном пространстве. [14]
Содержание дейтерия в атмосфере Юпитера было напрямую измерено космическим зондом «Галилео» как 26 атомов на миллион атомов водорода. Наблюдения ISO-SWS обнаружили 22 атома на миллион атомов водорода в Юпитере. [15], и это количество считается близким к изначальному соотношению солнечной системы. [5] Это примерно 17% земного отношения дейтерия к водороду, составляющего 156 атомов дейтерия на миллион атомов водорода.
Также наблюдалось, что концентрация дейтерия превышает среднюю солнечную концентрацию на других планетах земной группы, в частности на Марсе и Венере. [16]
Производство
В то время как Индия самодостаточна тяжелой водой для собственного использования, Индия теперь также экспортирует тяжелую воду реакторного качества.
Физические свойства
Квантовые свойства
Ядерные свойства (дейтрон)
Масса и радиус дейтрона
Спин и энергия
Изоспиновое синглетное состояние дейтрона
Это ядро с одним протоном и одним нейтроном, то есть ядро дейтерия. Тройка
и, таким образом, состоит из трех типов ядер, которые считаются симметричными: ядро дейтерия (фактически, его высоковозбужденное состояние ), ядро с двумя протонами и ядро с двумя нейтронами. Эти состояния нестабильны.
Приближенная волновая функция дейтрона
Волновая функция дейтрона должна быть антисимметричной, если используется изоспиновое представление (поскольку протон и нейтрон не являются идентичными частицами, волновая функция в целом не обязательно должна быть антисимметричной). Помимо изоспина, два нуклона также имеют спиновые и пространственные распределения своей волновой функции. Последний является симметричным, если дейтрон является симметричным относительно четности (т.е. имеет «четную» или «положительную» четность), и антисимметричным, если дейтрон антисимметричен относительно четности (т.е. имеет «нечетную» или «отрицательную» четность). Четность полностью определяется полным орбитальным угловым моментом двух нуклонов: если он четный, то четность четная (положительная), а если она нечетная, то четность нечетная (отрицательная).
Дейтрон, будучи изоспиновым синглетом, антисимметричен по отношению к обмену нуклонами из-за изоспина, и поэтому должен быть симметричным по отношению к двойному обмену их спина и местоположения. Следовательно, он может находиться в любом из следующих двух разных состояний:
Магнитные и электрические мультиполи
Чтобы теоретически найти дипольный магнитный момент дейтерия μ, используется формула для ядерного магнитного момента
μ → знак равно грамм ( л ) л → + грамм ( s ) s → <\ displaystyle <\ vec <\ mu>> = g ^ <(l)><\ vec >>
Последний вклад является доминирующим в отсутствие чистого l = 0 вклада, но его нельзя вычислить, не зная точной пространственной формы волновой функции нуклонов внутри дейтерия.
Высшие магнитные и электрические мультипольные моменты не могут быть рассчитаны с помощью вышеупомянутой модели по аналогичным причинам.
Дейтерий имеет ряд коммерческих и научных применений. Это включает:
Ядерные реакторы
ЯМР спектроскопия
Спектроскопия ядерного магнитного резонанса также может быть использована для получения информации об окружении дейтрона в образцах, меченных изотопами ( ЯМР дейтерия ). Например, гибкость хвоста, представляющего собой длинную углеводородную цепь, в молекулах липидов, меченных дейтерием, можно количественно оценить с помощью твердотельного дейтериевого ЯМР. [28]
Спектры ЯМР дейтерия особенно информативны в твердом состоянии из-за его относительно небольшого квадрупольного момента по сравнению с более крупными квадрупольными ядрами, такими как, например, хлор-35.
Отслеживание
Контрастные свойства
Методы рассеяния нейтронов особенно выигрывают от наличия дейтерированных образцов: сечения H и D очень различны и различаются по знаку, что позволяет варьировать контраст в таких экспериментах. Кроме того, неприятной проблемой обычного водорода является его большое некогерентное нейтронное сечение, которое равно нулю для D. Таким образом, замещение атомов водорода атомами дейтерия снижает шум рассеяния.
Ядерное оружие
Это обсуждается ниже. Примечательно, что, хотя большинство звезд, включая Солнце, генерируют энергию на протяжении большей части своей жизни, превращая водород в более тяжелые элементы, такой синтез легкого водорода (протия) никогда не был успешным в условиях, достижимых на Земле. Таким образом, весь искусственный синтез, включая синтез водорода, который происходит в так называемых водородных бомбах, требует тяжелого водорода (трития или дейтерия, либо того и другого) для того, чтобы этот процесс работал.
Наркотики
Усиленные незаменимые питательные вещества
Термостабилизация
Замедление циркадных колебаний
Подозрение на изотопы легких элементов
Обнаружен дейтерий
Название изотопа и Нобелевской премии
Эксперименты с «тяжелой водой» во Второй мировой войне
Незадолго до войны Ханс фон Халбан и Лью Коварски переместили свои исследования замедления нейтронов из Франции в Великобританию, переправив все мировые запасы тяжелой воды (произведенной в Норвегии) в 26 стальных бочках. [51] [52]
В термоядерном оружии
Современные исследования
Формула: D 2 или 2 1ЧАС 2
Данные примерно на 18 К для D 2 ( тройная точка ):