Что такое детерминированные эффекты почему они называются пороговыми и как они проявляются
Что такое детерминированные эффекты почему они называются пороговыми и как они проявляются
Действие излучения на организм зависит от многих факторов. Определяющими факторами являются: доза, вид излучения, продолжительность облучения, размеры облучаемой поверхности, индивидуальная чувствительность организма. Возможные последствия облучения человека дозами, бульшими фонового уровня, делятся на детерминированные и стохастические (вероятностные).
К детерминированным эффектам относятся поражения, вероятность возникновения и степень тяжести которых растут по мере увеличения дозы облучения и для возникновения которых существует дозовый порог. К таким эффектам относят, например, незлокачественное повреждение кожи (лучевой ожог), катаракту глаз (потемнение хрусталика), повреждение половых клеток (временная или постоянная стерилизация).
Имеются данные многочисленных и длительных наблюдений за персоналом и населением, подвергшимся воздействию повышенных доз облучения [11]. Из этих данных следует, что профессиональное длительное облучение дозами до 50 мЗв в год взрослого человека не вызывает никаких неблагоприятных соматических изменений, регистрируемых с помощью современных методов исследования. Детерминированные эффекты проявляются при достаточно высоких дозах облучения всего тела или отдельных органов.
Последствия для здоровья от доз облучения всего тела за короткий период (секунды, минуты или часы) бывают следующими:
облучение дозой 0,25 Зв не приводит к заметным изменениям в организме;
при дозе 0,25–0,5 Зв наблюдаются изменения показателей крови;
доза 0,5–1,0 Зв вызывает снижение уровня лейкоцитов или белых кровяных телец, но вскоре нормальные уровни восстанавливаются;
пороговой дозой, вызывающей лучевую болезнь, считается 1 Зв. Лучевая болезнь проявляется в виде тошноты, рвоты, кишечных спазмов, чувства усталости, апатии, повышенного потоотделения, головной боли;
доза около 2 Зв может вызвать тошноту, головную боль, наблюдается снижение уровня лимфоцитов и тромбоцитов примерно на 50 %. Нормальные уровни восстанавливаются относительно быстро;
при дозе около 3 Зв наблюдается рвота, слабость, высокая температура, обезвоживание организма, выпадение волос. Существует небольшой риск смерти, выжившие выздоравливают в течение нескольких недель или месяцев;
при дозе 4–6 Зв происходит поражение слизистых оболочек внутренних органов и тканей костного мозга. 4 Зв создают существенную угрозу жизни, 5 Зв означают высокую вероятность смерти, а 6 Зв без интенсивного медицинского лечения почти определенно
означают смерть;
при дозе свыше 6 Зв шансы выжить дольше нескольких недель весьма малы;
Стохастическими эффектами считаются такие, для которых от дозы зависит только вероятность возникновения поражений, а не их тяжесть. Для стохастических эффектов отсутствует дозовый порог. К стохастическим эффектам относят злокачественные опухоли, индуцированные излучением, а также врожденные уродства, возникшие в результате мутаций и других нарушений в половых клетках. Стохастические эффекты не исключаются при малых дозах, так как не имеют дозового порога. Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Малые дозы облучения могут «запустить» не до конца еще установленную цепь событий, приводящую к раку или к генетическим повреждениям. Раковые заболевания проявляются спустя много лет после облучения, как правило, не ранее чем через одно-два десятилетия. Врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, проявляются лишь в следующем или последующих поколениях (дети, внуки и более отдаленные потомки). Изучение генетических последствий облучения связано с большими трудностями. Невозможно отличить наследственные дефекты, полученные при облучении, от тех, которые возникли совсем по другим причинам. Около 10 % всех новорожденных имеют те или иные генетические дефекты. Генетические нарушения можно отнести к двум основным типам: хромосомные аберрации, включающие изменения числа или структуры хромосом, и мутации в самих генах.
Теоретически достаточно самой малой дозы, чтобы вызвать такие последствия, как рак или повреждение генетического аппарата. В то же время никакая доза облучения не приводит к этим последствиям во всех случаях. Даже при относительно больших дозах облучения далеко не все люди обречены на эти болезни: действующие в организме человека репарационные механизмы обычно ликвидируют все повреждения. Однако вероятность (или риск) наступления таких последствий больше у человека, который был облучен. И риск этот тем больше, чем больше доза облучения.
В 1955 г. Генеральная Ассамблея ООН основала Научный комитет по действию атомной радиации (НКДАР ООН). Комитет систематически анализирует все природные и искусственные радиоактивные источники в окружающей среде или используемые человеком. В своей работе НКДАР опирается на два основных допущения:
1) не существует пороговой дозы, за которой отсутствует риск заболевания раком; любая сколь угодно малая доза увеличивает вероятность заболевания раком для человека, получившего эту дозу;
2) вероятность (риск) заболевания раком возрастает прямо пропорционально дозе облучения.
НКДАР полагает, что при таком допущении возможна переоценка риска в области малых доз, но вряд ли возможна его недооценка.
Согласно имеющимся данным, первыми в группе раковых заболеваний, поражающих население в результате облучения, стоят лейкозы. По оценкам НКДАР, от каждой дозы облучения в 1 Зв от лейкозов в среднем умерли бы 2 человека из 1000. Самыми распространенными видами рака, вызванными действиями радиации, оказались рак молочной железы и рак щитовидной железы. По оценкам НКДАР, примерно у 10 человек из 1000 облученных отмечается рак щитовидной железы, а у 10 женщин из 1000 — рак молочной железы (в расчете на каждый зиверт индивидуальной поглощенной дозы). Однако обе разновидности рака в принципе излечимы, а смертность от рака щитовидной железы особенно низка. Рак легких тоже принадлежит к распространенным разновидностям раковых заболеваний среди облученных групп населения. Согласно оценкам НКДАР, 5 человек из 1000 умерли бы от рака легких в расчете на 1 Зв средней индивидуальной дозы облучения.
Рак других органов и тканей встречается реже среди облученных групп населения. Согласно оценкам НКДАР, из 1000 человек от рака желудка, печени или толстой кишки умер бы 1 человек (в расчете на 1 Зв средней индивидуальной дозы облучения). Риск возникновения рака костных тканей, пищевода, тонкой кишки, мочевого пузыря, поджелудочной железы, прямой кишки и лимфатических тканей составляет от 0,2 до 0,5 на каждую тысячу человек (в расчете на каждый зиверт индивидуальной дозы облучения).
Учеными получены неоспоримые доказательства вредного действия низкоинтенсивной радиации на отдельные системы живых организмов и на организм в целом [12]. Малые дозы очень коварны, они провоцируют у человека разнообразные заболевания, которые обычно врачи не связывают с прямым действием радиации. Уровень наших знаний не позволяет в настоящее время однозначно принять определенные механизмы биологического действия малых доз радиации. Есть основания считать, что и для стохастических эффектов существует порог, величина которого остается невыясненной.
Детерминированные и стохастические эффекты.
При воздействии на организм человека ионизирующая радиация может вызвать два вида эффектов: детерминированный и стохастический.
Детерминированные – биологические эффекты излучения, в отношении которых предполагается существование дозового порога (0,5 ¸ 1 Гр), выше которого тяжесть эффекта зависит от дозы.
К детерминированным эффектам относятся:
1. Острая лучевая болезнь (ОЛБ) – проявляется как при внешнем, так и при внутреннем облучении. В случае однократного равномерного внешнего фотонного облучения ОЛБ возникает при поглощенной дозе D ³ 1 Гр и подразделяется на четыре степени:
III – тяжелая (D = 4¸6 Гр) средняя летальная доза – в течение 30 дней возможен летальный исход в 50% случаев.
2. Хроническая лучевая болезнь формируется постепенно при длительном облучении дозами, значения которых ниже доз, вызывающих ОЛБ, но выше предельно-допустимых. Последствия – лейкоз, опухоли – через 10 – 25 лет возможен летальный исход.
3. Локальные лучевые повреждения характеризуются длительным течением заболевания и могут приводить к лучевому ожогу и раку (некрозу) кожи, помутнению хрусталика глаза (лучевая катаракта).
Стохастические (вероятностные) эффекты – это биологические эффекты излучения, не имеющие дозового порога. Принимается, что вероятность этих эффектов пропорциональна дозе, а тяжесть их проявления от дозы не зависит.
Основные стохастические эффекты:
1. Канцерогенные – злокачественные опухоли, лейкозы – злокачественные изменения крове образующих клеток.
2. Генетические – наследственные болезни, обусловленные генными мутациями.
Стохастические эффекты оцениваются значениями эффективной (эквивалентной) дозы. Имеют длительный латентный (скрытый) период, измеряемый десятками лет после облучения, трудно обнаруживаемы.
№18.Лучевая болезнь (острая, хроническая)
Лучевая болезнь – это заболевание, поражающее организм человека в результате радиоактивного излучения, диапазон доз которого составляет 1–10 Гр и более. Изменения начинаются при облучении, доза которого составляет 0,1–1 Гр, они относятся к доклинической стадии заболевания.
В зависимости от степени облучения и определенного участка тела или органа, которые попали под радиационное излучение, выделяют две формы лучевой болезни: острую и хроническую.
Острая лучевая болезнь возникает в результате гибели делящихся клеток организма. Причиной этому, как правило, становится то, что в течение небольшого времени на достаточно значительную по размерам область тела человека воздействует ионизирующее излучение, доза которого превышает 600 рентген. Это может быть как аварийная ситуация, так и лечебная терапия, например тотальное облучение при трансплантации костного мозга. Острое лучевое поражение может возникнуть во время лечения большого количества опухолей, облучения которых составляют более 50 бэр.
Хроническая лучевая болезнь появляется при повторном облучении организма в сравнительно малых дозах, которые суммарно превышают 100 рад. В данном случае большое значение имеет как общая доза облучения, так и ее мощность. Имеется в виду время, на протяжении которого происходило поглощение организмом радиологического излучения.
Чаще всего лучевая болезнь, имеющая хронический характер, развивается у людей, деятельность которых связана с радиологическими и рентгенологическими технологиями и оборудованием.
Эти виды лучевой болезни могут быть вызваны как внешним, так и внутренним облучением. Внутреннее облучение происходит тогда, когда радиоактивные элементы попадают в организм человека через слизистые оболочки и кожу, через пищеварительную систему, а также вместе с вдыхаемым воздухом. Известны случаи, когда радиоактивные источники излучения попадали в организм человека инъекционным путем.
№19. Нормы радиационной безопасности
1.3. Нормы распространяются на следующие виды воздействия ионизирующего излучения на человека:
— в условиях нормальной эксплуатации техногенных источников излучения;
— в результате радиационной аварии;
— от природных источников излучения;
— при медицинском облучении.
Требования по обеспечению радиационной безопасности сформулированы для каждого вида облучения. Суммарная доза от всех видов облучения используется для оценки радиационной обстановки и ожидаемых медицинских последствий, а также для обоснования защитных мероприятий и оценки их эффективности.
1.4. Требования Норм и Правил не распространяются на источники излучения, создающие при любых условиях обращения с ними:
— индивидуальную годовую эффективную дозу не более 10 мкЗв;
— индивидуальную годовую эквивалентную дозу в коже не более 50 мЗв и в хрусталике не более 15 мЗв;
— коллективную эффективную годовую дозу не более 1 чел-Зв, либо когда при коллективной дозе более 1 чел-Зв оценка по принципу оптимизации показывает нецелесообразность снижения коллективной дозы.
Требования Норм и Правил не распространяются также на космическое излучение на поверхности Земли и внутреннее облучение человека, создаваемое природным калием, на которые практически невозможно влиять.
Перечень и порядок освобождения источников излучения от радиационного контроля устанавливается санитарными правилами.
Вопрос 20. Требования к ограничению облучения.
Население подвергается внешнему и внутреннему облучению ионизирующим излучением природных и искусственных источников. К природным источникам относятся космическое излучение и природные радионуклиды, содержащиеся в окружающей среде и поступающие в организм человека с воздухом, водой и пищей. Искусственные источники излучения разделяются на медицинские (диагностические и радиотерапевтические процедуры) и техногенные (искусственные и специально сконцентрированные человеком природные радионуклиды, генераторы ионизирующего излучения и др.).
В отношении всех источников облучения населения следует принимать меры как по снижению дозы излучения у отдельных лиц, так и по уменьшению числа лиц, подвергающихся облучению.
Следует различать техногенные источники, находящиеся под контролем или в процессе нормальной эксплуатации, и источники, находящиеся вне контроля (утерянные, рассеянные в окружающей среде в результате радиационной аварии и др.).
Ограничение облучения техногенными источниками.
Годовая доза облучения у населения от всех техногенных источников и условиях их нормальной эксплуатации не должна превышать основные дозовые пределы.
Ограничение облучения населения природными источниками
Допустимое значение эффективной дозы, обусловленной суммарным воздействием природных источников ионизирующего излучения, для населения не устанавливается. Снижение облучения населения достигается путем установления системы ограничений на облучение населения от отдельных природных источников.
Удельная эффективная активность (Аэфф)естественных радионуклидов в строительных материалах, добываемых на их месторождениях (щебень, гравий, песок, бутовый и пилонный камень, цементное и кирпичное сырье и пр.) или являющихся побочным продуктом промышленности, а также отходы промышленного производства, используемые для изготовления строительных материалов (золы, шлаки и пр.), не должна превышать:
• для материалов, используемых во вновь строящихся жилых и общественных зданиях (I класс) Аэфф 370 Бк/кг
• для материалов, используемых в дорожном строительстве в пределах территории населенных пунктов и зон перспективной застройки, а также при возведении производственных сооружений (II класс): Аэфф 740 Бк/кг;
• для материалов, используемых в дорожном строительстве вне населенных пунктов (III класс): Аэфф 2,8 кБк/кг.
При Аэфф > 2,8 кБк/кг вопрос об использовании материалов решается в каждом случае отдельно по согласованию с федеральным органом Госсанэпиднадзора.
Эффективная доза за счет естественных радионуклидов в питьевой воде не должна превышать 0,2 мЗв/год.
Ограничение медицинского облучения населения
Принципы контроля и ограничения радиационных воздействий в медицине основаны на получении необходимой и полезной для больного диагностической информации или терапевтического эффекта при минимально возможных уровнях облучения. При этом не устанавливаются предельные дозовые значения и используются принципы обоснования по показаниям радиологических медицинских процедур и оптимизации мер защиты.
Вопрос 21.Радиоактивное загрязнение местности РБ после аварии на ЧАЭС.Краткая хар-ка радионуклидов чернобыльского выброса( 131 I, 137 Cs, 90 Sr, 239 Pu, 241 Am)
Цезий 137-загрязнил 23% территории,строонций 90-загрязнил 10%,плутоний 238,239,240-загрязнили 2%.
Полностью оказались радиоактивно загрязненными Гомельская и Могилевская области.
Цезий-137 закрепляется в бедных калием почвах.В организм человека поступает через желудочно-кишечный тракт и накапливается в мышцах(80%)и в костях(8%).Период полураспада =30 лет.
Стронций-90 накапливается в костях;конкурирует с Ca.Некоторое накопление происходит в почках,слюнной и щитовидной железах,в легких.Период полураспада 29 лет.
Плутоний-239 поглощается кровью,опасен при попадании в органы дыхания,желудочно-кишечный тракт и на поврежденную кожу.Также попадает в костный мозг,подавляя систему кроветворения.Период полураспада-24065 лет.
Америций-241 хорошо растворим в воде,значит,что будет активно поступать в организм чел-ка с водой,растительной пищей,животными продуктами.Период полураспада 432 года.
Горизонтальная миграция радионуклидов означает распространение радионуклидов вместе с пылью засчет ветра.Частично радионуклиды смываются дождевыми и паводковыми водами.
Вертикальная миграция радионуклидов происходит засчет адсобции и адгезии.Адсорбция-увеличение концентрации растворенного вещества у поверхности почвы.Адгезия-возникновение связи между поверхностыми слоями двух инородных тел.
Что такое детерминированные эффекты почему они называются пороговыми и как они проявляются
В настоящее время все биологические эффекты и последствия действия ионизирующих излучений на человека принято разделять на два класса: детерминированные и стохастические.
Детерминированные эффекты это клинически значимые эффекты, которые проявляются в виде явной патологии, например острая или хроническая лучевая болезнь, лучевые ожоги (так называемые местные лучевые поражения), катаракты хрусталика глаз, клинически регистрируемые нарушения гемопоэза, временная или постоянная стерильность и др.
В подавляющем большинстве случаев эти эффекты возникают при кратковременном действии больших доз и больших мощностей доз радиации. Например, при атомных взрывах в Хиросиме и Нагасаки поражающие дозы γ-нейтронного облучения людей (несколько грей) были реализованы в течение миллионных долей секунды.
Главной отличительной особенностью детерминированных эффектов является их пороговый характер. Иными словами, для возникновения той или иной болезни необходимо достижение неких пороговых уровней доз облучения человека, ниже которых эти эффекты клинически не проявляются. Степень тяжести детерминированных эффектов напрямую зависит от поглощенной дозы облучения: чем больше доза, тем глубже тяжесть поражения. Например, для кожных покровов порог эритемы и сухого шелушения составляет примерно 35 Гр; гибель клеток в эпидермальном и дермальном слоях, приводящая к некрозу тканей, наступает после острого облучения в дозе около 50 Гр.
При остром, кратковременном облучении могут возникать различные формы острой лучевой болезни. Так при общем облучении всего тела человека в дозе порядка 1 Гр острая лучевая болезнь не возникает и смертельные исходы исключены; при дозах 35 Гр в результате повреждения стволовых клеток костного мозга 50 % облученных могут погибнуть (без лечения) в течение 60 сут. При дозах 515 Гр вследствие поражения клеточного пула желудочно-кишечного тракта возникает так называемая кишечная форма острой лучевой болезни, и гибель возможна через 1020 сут, а при дозах свыше 15 Гр (церебральная форма острой лучевой болезни) летальный исход у всех облученных наступает в течение 5 сут.
В настоящее время спектр детерминированных эффектов и зависимость их от уровней облучения человека достаточно изучены, однако еще нет окончательных суждений относительно количественных различий в порогах облучения за счет индивидуальной радиочувствительности отдельных представителей гетерогенных групп населения.
В качестве примера в таблице 1 приведены пороговые дозы некоторых детерминированных эффектов в наиболее радиочувствительных тканях и органах человека. Диапазон пороговых доз для различных радиочувствительных органов и тканей неодинаков. В то же время важно отметить, что пороги доз облучения для острого, кратковременного радиационного воздействия и для протяженного во времени облучения существенно различаются. Следовательно, облучение (в аналогичных суммарных дозах), растянутое во времени, в общем повышает уровень порога. Несомненно, что эта закономерность, определяемая прежде всего процессами репарации повреждений в целостном организме, характерна и для воздействия так называемых малых доз облучения (под малыми дозами понимают уровни воздействия в диапазонах менее 0,2 Гр и мощности дозы менее 0,1 Гр/ч), особенно если учесть, что системы клеточного восстановления в организме функционируют более эффективно после облучения дозой малой мощности, чем после воздействия дозы большой мощности. Иными словами, при прочих равных условиях острое воздействие ионизирующего излучения всегда опаснее хронического, длительного облучения в эквивалентных дозах. Так, Международная комиссия по радиационной защите (МКРЗ) подчеркивает, что « протяженные (малая мощность дозы) и фракционированные облучения менее эффективны в отношении многих биологических последствий, включая индуцирование опухолей, чем однократные с большой мощностью дозы».
Оценки порогов детерминированных эффектов у взрослых людей в семенниках, яичниках, хрусталиках глаз
и в красном костном мозге [МКРЗ, 1990. Публикация № 60]
Следующий класс последствий радиационного облучения получил название стохастических (вероятностных, случайных) эффектов, которые иногда называют отдаленными последствиями облучения. В отличие от детерминированных эффектов, для которых доказан и существует дозовый порог проявления и которые, как правило, возникают при значительных дозах облучения в основном за счет гибели большей части клеток в поврежденных органах или тканях, для стохастических последствий, по современным представлениям, не существует дозового порога. Это в свою очередь означает, что реализация стохастических эффектов теоретически возможна при сколь угодно малой дозе облучения, при этом вероятность их возникновения тем меньше, чем ниже доза. Вопрос о том, какова же эта вероятность, является ключевым вопросом для объективного понимания всей проблемы.
Научный комитет по действию атомной радиации (НКДАР) ООН и Международная комиссия по радиационной защите (МКРЗ) пришли к выводу, что доказано только два основных вида стохастических эффектов облучения. Первый возникает в соматических клетках и может быть причиной развития рака у облученного индивида. Второй вид, появляющийся в зародышевой ткани половых желез, может привести к наследуемым нарушениям у потомства облученных людей. Важно подчеркнуть, что если возможность индукции злокачественных опухолей у облученных людей является фактом, доказанным мировой наукой, то до настоящего времени прямых научных подтверждений генетически обусловленных эффектов облучения человека не получено. Тем не менее, располагая прямыми данными о наличии таких эффектов на других биологических объектах (растениях, клеточных культурах, микроорганизмах, мелких лабораторных животных), МКРЗ в целях исключения возможной недооценки их значимости признала необходимым включить наследственные эффекты в перечень стохастических последствий облучения человека. В этом контексте необходимо обратить внимание на следующее принципиальное обстоятельство.
Нередко многие ученые и врачи, недостаточно знакомые с современными представлениями о патогенезе стохастических эффектов облучения, наряду со злокачественными опухолями и генетическими дефектами к этой категории последствий облучения относят различные соматические заболевания у облученных людей, не имеющие радиационного генеза и патогенетически не обусловленные ионизирующим излучением. Например, в свое время к этому классу эффектов относили так называемый синдром преждевременного старения (преждевременной смерти). Впоследствии после тщательного анализа научной информации этот синдром был исключен из класса стохастических эффектов облучения, так как было установлено, что любое сокращение продолжительности жизни у облученных людей или экспериментальных животных связано с избыточной смертностью от вызванного излучением рака. Таким образом, при прогностических оценках последствий радиоактивного облучения человека, уточнения регламентов облучения и т.п. необходимо исходить из положения о том, что радиологически обусловленными стохастическими последствиями облучения являются только злокачественные опухоли (в том числе доброкачественные опухоли в некоторых органах) и генетические (наследственные) дефекты у потомства облученных людей.