Что такое детектирование в физике
ДЕТЕКТИРОВАНИЕ
Смотреть что такое «ДЕТЕКТИРОВАНИЕ» в других словарях:
ДЕТЕКТИРОВАНИЕ — (от лат. detectio обнаружение) (радио) преобразование электрических колебаний, в результате которого обычно получаются колебания другой (как правило, более низкой) частоты. Наиболее важный случай детектирования, используемого в радиоприемных… … Большой Энциклопедический словарь
детектирование — Преобразование электромагнитного колебания для получения напряжения или тока, величина которого определяется параметрами колебания, с целью извлечения информации, содержащейся в изменениях этих параметров. [ГОСТ 24375 80] детектирование… … Справочник технического переводчика
ДЕТЕКТИРОВАНИЕ — выделение с помощью детектора из модулированных колебаний высокой частоты содержащихся в них колебаний низкой частоты, воспринимаемых в телефон. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР,… … Морской словарь
детектирование — сущ., кол во синонимов: 2 • видеодетектирование (1) • преобразование (41) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
ДЕТЕКТИРОВАНИЕ — (1) обнаружение сигнала; (2) выделение колебаний низкой частоты из высокочастотных модулированных колебаний (см. ), иногда называемое демодуляцией. Д. широко применяют в радиоприёмном устройстве для получения колебаний звуковой частоты, сигналов… … Большая политехническая энциклопедия
детектирование — (от лат. detectio обнаружение) (радио), преобразование электрических колебаний, в результате которого обычно получаются колебания другой (как правило, более низкой) частоты. Наиболее важный случай детектирования, используемого в радиоприёмных… … Энциклопедический словарь
Детектирование — (от лат. detectio открытие, обнаружение) преобразование электрических колебаний, в результате которого получаются колебания более низкой частоты или постоянный ток. Наиболее распространённый случай Д. демодуляция состоит в выделении… … Большая советская энциклопедия
детектирование — detektavimas statusas T sritis automatika atitikmenys: angl. detection vok. Demodulation, f; Gleichrichtung, f; Rückmodulation, f rus. детектирование, n pranc. détection, f … Automatikos terminų žodynas
детектирование — detekcija statusas T sritis automatika atitikmenys: angl. detection vok. Gleichrichtung, f rus. детектирование, n; детекция, f pranc. détection, f … Automatikos terminų žodynas
Детектирование
Полезное
Смотреть что такое «Детектирование» в других словарях:
ДЕТЕКТИРОВАНИЕ — (от лат. detectio обнаружение) (радио) преобразование электрических колебаний, в результате которого обычно получаются колебания другой (как правило, более низкой) частоты. Наиболее важный случай детектирования, используемого в радиоприемных… … Большой Энциклопедический словарь
детектирование — Преобразование электромагнитного колебания для получения напряжения или тока, величина которого определяется параметрами колебания, с целью извлечения информации, содержащейся в изменениях этих параметров. [ГОСТ 24375 80] детектирование… … Справочник технического переводчика
ДЕТЕКТИРОВАНИЕ — (демодуляция) (от лат. detectio открытие, обнаружение), преобразование электрич. колебаний, в результате к рого получаются колебания более низкой частоты (или пост. ток). В радиотехнике Д. выделение НЧ модулирующего сигнала из модулиров. ВЧ… … Физическая энциклопедия
ДЕТЕКТИРОВАНИЕ — выделение с помощью детектора из модулированных колебаний высокой частоты содержащихся в них колебаний низкой частоты, воспринимаемых в телефон. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР,… … Морской словарь
детектирование — сущ., кол во синонимов: 2 • видеодетектирование (1) • преобразование (41) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
ДЕТЕКТИРОВАНИЕ — (1) обнаружение сигнала; (2) выделение колебаний низкой частоты из высокочастотных модулированных колебаний (см. ), иногда называемое демодуляцией. Д. широко применяют в радиоприёмном устройстве для получения колебаний звуковой частоты, сигналов… … Большая политехническая энциклопедия
детектирование — (от лат. detectio обнаружение) (радио), преобразование электрических колебаний, в результате которого обычно получаются колебания другой (как правило, более низкой) частоты. Наиболее важный случай детектирования, используемого в радиоприёмных… … Энциклопедический словарь
детектирование — detektavimas statusas T sritis automatika atitikmenys: angl. detection vok. Demodulation, f; Gleichrichtung, f; Rückmodulation, f rus. детектирование, n pranc. détection, f … Automatikos terminų žodynas
детектирование — detekcija statusas T sritis automatika atitikmenys: angl. detection vok. Gleichrichtung, f rus. детектирование, n; детекция, f pranc. détection, f … Automatikos terminų žodynas
Модуляция и детектирование
Амплитудная модуляция высокочастотных колебаний требует применения специальных устройств. Чтобы создать этот эффект, придётся обеспечить воздействие высокочастотных затухающих колебаний на генератор. Для этого в цепь генератора включают вторичную обмотку трансформатора так, как это показано на рисунке ниже.
Если подать на первичную обмотку переменное напряжение звуковой частоты, то амплитуда колебаний силы тока будет изменяться аналогично переменам напряжения на транзисторе. Важно отметить, что эти колебания будут сконцентрированы в колебательном контуре генератора. Проще говоря, высокочастотные колебания будут меняться по амплитуде за счёт низкочастотного сигнала.
Существует специальное устройство, которое помогает визуализировать временную развёртку модулированных колебаний. Этот прибор называется осциллографом.
Как уже упоминалось ранее, помимо амплитудной модуляции используют и частотную модуляцию. Такой вид модуляции даже предпочтительнее из-за устойчивости к помехам.
Что такое детектирование
Приёмник может принять только модулированный высокочастотный сигнал, который провоцирует в нём идентичные колебания. Чтобы услышать такой сигнал, необходимо преобразовать высокочастотные колебания, то есть провести процедуру детектирования.
Процесс детектирования осуществляется прибором, который содержит элемент односторонней проводимости, т.е. детектор. Для этих целей часто используют полупроводниковый диод.
Теперь соберём установку на основе полупроводникового детектора. Последовательно с источником модулированных колебаний включим прибор в цепь. Подсоединим нагрузку.
Заметим, что направление тока будет одинаковым на всех участках. Это объясняется тем, что сопротивление диода по прямой траектории намного меньше, чем в обратном. Опустим факт существования двусторонней проводимости. Вольт-амперная характеристика диода выглядит как ломаная линия, которую можно визуально разделить на два отрезка.
Отметим, что ток в такой цепи будет непостоянным, т.е. он будет пульсирующим. Изменение силы тока можно представить в виде синусоидальных положительных волн.
Чтобы сгладить эту пульсацию, необходимо воспользоваться фильтром, который представляет собой конденсатор, прикреплённый к нагрузке.
Зачем нужен фильтр в детектировании
Зачем это нужно? Когда мы подаём ток на диод, то одна его часть проходит через нагрузку, а другая отдаляется в полость конденсатора, тем самым заряжая его. Такое разветвление тока уменьшает пульсации тока, которые пересекают нагрузку.
В то же время, когда через диод ток не проходит, конденсатор разряжается через сопротивление. Именно поэтому в промежутке между импульсами ток движется в одном направлении, который указан на рисунке стрелкой.
Каждый импульс – это своеобразный толчок, который влияет на заряд конденсатора. Благодаря совокупности импульсов через нагрузку проходит ток звуковой частоты, форма колебаний которого совпадает с низкочастотным сигналом на первичном устройстве.
Фильтр нужен для того, чтобы сглаживать высокочастотные импульсы для получения более плавной картины колебаний.
Простейший радиоприёмник: что это?
Простейший радиоприёмник представляет собой колебательный контур, который состоит из антенны, детектора, конденсатора и приёмника. Сначала в колебательном контуре генерируются модулированные колебания посредством радиоволны. Роль детектора выполняет полупроводниковый диод, который улавливает сигнал со всеми помехами. Для смягчения этих помех используется фильтр, который сглаживает пульсации. Далее через сопротивление сигнал поступает в динамик.
Если внимательно рассмотреть вышеприведённую схему детекторного радиоприёмника, то возникнет логичный вопрос: а откуда приёмник берёт энергию? Ответ прост: из этих же электромагнитных волн! То есть детекторный радиоприёмник не требует дополнительных источников питания.
Но что делать, если установку мы собрали, но звука так и не услышали? Скорее всего, дело в длине антенны. Если она слишком короткая, то и приёмный сигнал будет невелик. Точнее, энергия этого сигнала.
Детектирование модулированных сигналов
Методы детектирования и характеристики детекторов
Детектирование — процесс выделения модулирующего сигнала из модулированного колебания или сигнала.
Детектирование может осуществляться при когерентном и некогерентном приеме сигналов.
При когерентном приеме, при детектировании, используются данные о начальной фазе сигнала.
При некогерентном приеме, при детектировании, не используются данные о начальной фазе сигнала.
Детектирование осуществляется в устройствах — детекторах. Условное графическое обозначение детектора имеет вид:
Характеристиками детектора являются: детекторная, частотная характеристики и коэффициент передачи.
Детекторная характеристика представляет собой зависимость постоянной составляющей напряжения на выходе детектора от изменения информационного параметра несущей, подводимой к нему. При АМ информационным параметром является амплитуда, при ЧМ частота, при ФМ фаза.
Идеальная характеристика является линейной проходя через начало координат под углом a к оси абсцисс (рисунок 39). Реальная характеристика имеет отклонение, которые приводят к нелинейным искажениям модулирующего сигнала.
Частотная характеристика представляет собой зависимость амплитуды выходного напряжения Umu детектора от частоты модулирующего гармонического сигнала. Реальная характеристика имеет линейный характер и постоянна для Umu на всех частотах (рисунок 40). Отклонение реальной характеристики от идеальной приводит к частотным искажениям модулирующего сигнала. Также как и для модуляторов, по частотной характеристике определяют полосу пропускания детектора.
Коэффициент передачи детектора определяется для гармонического модулирующего сигнала и равен отношению амплитуды гармонического сигнала Umu к амплитуде приращения информационного параметра несущей
Коэффициент передачи детектора можно определить из детекторной характеристики:
где k — масштабный коэффициент пропорциональности.
Детектирование амплитудно-модулированных сигналов
Некогерентный амплитудный детектор на диоде
Принципиальная электрическая схема некогерентного амплитудного детектора представлена на рисунке 41. В состав детектора включен нелинейный элемент — диод VD. Необходимость нелинейного элемента вызвана тем, что процесс детектирования связан с трансформацией спектра сигнала. Диаграммы поясняющие принцип работы модулятора представлены на рисунке 42.
На диод поступает АМ сигнал SАМ(t), в спектре которого имеются составляющая несущего сигнала и боковые составляющие (рисунок 42, а). В спектре отклика диода uд(t) появляются новые составляющие: постоянная, составляющая модулирующего сигнала и высшие гармоники модулированного сигнала (рисунок 42, б). Элементы R1 C1 образуют фильтр низких частот, который шунтирует высокочастотные составляющие спектра отклика и тем самым выделяют составляющую модулирующего сигнала и постоянную составляющую uФНЧ(t) (рисунок 42, в). Разделительный конденсатор C2 задерживает постоянную составляющую спектра и в спектре выходного сигнала присутствует только составляющая модулирующего сигнала u(t) (рисунок 42, г).
Эффективное подавление высокочастотных составляющих фильтром низких частот детектора возможно при выполнении условия
1/?0С1 uд2. Выходное напряжение каждого из однотактных детекторов будет определяться:
где Кд — коэффициент передачи детектора.
Поскольку эти напряжения противоположны, то выходное напряжения балансного детектора определяется:
Детекторная характеристика балансного детектора представлена на рисунке 57.
Детектирование манипулированных сигналов
Детектирование амплитудно-манипулированных сигналов.
Детектирование данных сигналов может осуществляется рассмотренным выше амплитудным детектором на диоде (рисунок 39).
Детектирование частотно-манипулированных сигналов.
Структурная электрическая схема детектора ЧМн сигналов и диаграммы, поясняющие его работу приведены на рисунках 58 и 59.
На вход детектора поступает ЧМн сигнал (рисунок 59, а). Это сигнал поступает на полосовые фильтры ПФ1 и ПФ2, каждый из ПФ выделяет свою полосу частот (рисунок 59, б, в). Полученные сигналы детектируются амплитудными детекторами АД1 и АД2 (рисунок 59, г, д). Полученные сигналы поступают в вычитающее устройство, причем сигнал uАД2(t) поступает в негативной полярности. В вычитающем устройстве происходит формирование выходного сигнала (рисунок 59, е):
Детектирование фазо-манипулированных сигналов.
Детектирование данных сигналов осуществляется при когерентном приеме. Структурная электрическая схема приемника ФМ сигналов представлена на рисунке 60.
На вход полосового фильтра подается входное колебание Z(t). ПФ производит додетекторную обработку сигнала, т. е. ограничивает уровень помех на входе приемника. ФМн сигнал с выхода ПФ поступает в фазовый детектор ФД, на второй вход которого поступает опорное колебание от генератора. Подстройка частоты и фазы опорных колебаний осуществляется системой фазовой автоподстройки частоты ФАПЧ. Частота и фаза опорных колебаний должна совпадать с частотой и фазой одного из сигналов S1(t) или S2(t). Сигнал, полученный на выходе ФД поступает в решающее устройство, которое определяет какой сигнал принят u1 или u2. Определение сигнала осуществляется путем сравнения амплитуды дискретного элемента поступающего с ФД с нулевым уровнем, который снимается с корпуса: если амплитуда дискретного элемента поступающего с ФД больше нуля, то принят элемент положительной полярности u2 («1»), если меньше нуля, то принят элемент отрицательной полярности u1 («0»).
Основным недостатком данной схемы и соответственно системы с ФМн является необходимость передачи вместе с информационным сигналом сигнала фазовой синхронизации, что приводит к дополнительным затратам мощности и, соответственно, снижению эффективности ФМн. Необходимость передачи сигналов синхронизации связана с тем, что фаза колебаний опорного генератора должна с высокой точностью совпадать с фазой одного из сигналов S1 или S2. Использование для целей фазовой синхронизации входного сигнала Z(t) приводит к эффекту обратной работы. Обратная работа заключается в замене, пи детектировании, сигнала u1 сигналом u2 и наоборот. Обратная работа возникает тогда, когда фаза опорных колебаний генератора меняется на противоположную. Это возникает из-за того, что при равновероятных сигнала S1 и S2, отличающихся друг от друга по фазе на 180°, на приеме нет ни каких признаков по которым можно определить, фаза какого сигнала была принята в качестве опорного. Генератор, подстраиваемый системой ФАПЧ, может генерировать колебания с двумя устойчивыми состояниями фазы 0 или 180°. В канале связи под воздействием помех фаза сигнала используемого для синхронизации изменяется. Если она не соответствует 0 или 180°, то генератор подстраивается под ближайшую фазу, т. е. если фаза изменяется менее чем на 90°, то генератор будет подстраиваться под верную фазу сигнала (обратная работа отсутствует), если более чем на 90°, то генератор подстраивается под противоположную фазу и возникает обратная работа. Из вышесказанного можно сделать вывод, что источником обратной работы в приемнике является генератор с ФАПЧ.
Детектирование относительно-фазо-модулированных сигналов.
Детектирование ОФМн сигналов может осуществляться двумя методами: методом сравнения фаз (обеспечивает некогерентный прием) и метод сравнения полярностей (обеспечивает когерентный прием).
При методе сравнения фаз источники обратной работы генератор и ФАПЧ заменяются линией задержки, которая осуществляет задержку сигнала на длительность одного дискретного элемента (рисунок 61). В фазовом детекторе осуществляется сравнение фаз принятого сигнала и предыдущего. Формирование выходного сигнала РУ осуществляется также как и в приемнике ФМн сигналов. Поскольку в данной схеме в качестве опорного колебания используется принятый сигнал, то появление обратной работы исключено.
При методе сравнения полярностей приемник состоит из двух частей: приемника ФМн сигналов и относительного декодера (рисунок 62). При детектировании сигналов в приемнике ФМн сигналов возникает обратная работа. Сигнал с выхода приемника поступает в сравнивающее устройство СУ относительного декодера. На второй вход СУ поступает предыдущий выходной сигнал приемника. Задержку сигнала на один дискретный элемент осуществляет линия задержки. В СУ происходит сравнение полярностей двух элементов и формируется выходной сигнал. Формирование дискретного элемента выходного сигнала осуществляется по правилу: если полярности обоих сигналов совпадают, то формируется сигнал положительной полярности u2 («1»), если полярности не совпадают, то сигнал отрицательной полярности u1 («0»). Так как обратная работа изменяет полярность как текущей, так и предыдущей посылок, то она на работе СУ не сказывается.
Детектирование импульсно-модулированных сигналов
Особенностью ИМ сигналов является наличие в их спектре низкочастотных составляющих модулирующего сигнала. Поэтому для детектирования данных сигналов нелинейный элемент не используется. Детектирование осуществляется фильтром, с помощью которого выделяются составляющие модулирующего сигнала. Для этого граничные частоты фильтра должны быть равны наименьшей Fmin и наибольшей Fmax частоте спектра модулирующего сигнала. Детектирование первичных (низкочастотных) сигналов осуществляется ФНЧ.
А) Детектирование АИМ сигналов. Если скважность импульсов АИМ сигнала велика q>>1, то детектирование осуществляется пиковым детектором.
Пиковым детектором — называется амплитудный детектор, выходное напряжение которого пропорционально амплитуде импульсов и сохраняется приблизительно постоянным на интервале периода следования импульсов Т.
В спектре ФИМ сигналов уровень составляющих частоты модуляции незначителен, а также он зависит от частоты модуляции. Поэтому непосредственно ФИМ сигналы детектировать ФНЧ нельзя. Предварительно эти сигналы преобразуются в ШИМ или ЧИМ сигналы, а затем детектируются ФНЧ. Однако, для преобразования ФИМ сигнала необходимо вместе с ним передавать синхронизирующие тактовые импульсы, а это усложняет схему детектора.
Для увеличения помехоустойчивости в приемнике принятые импульсно модулированные сигналы подвергают регенерации.
Регенерация — процесс восстановление формы импульсов.
На рисунке 63 представлены временные диаграммы, поясняющие регенерацию импульсно модулированного сигнала. На рисунке 63, а представлен передаваемый импульсно-модулированный сигнал Sмпер(t). На рисунке 63, б представлен принятый сигнал Zпр(t). Форма этого сигнала искажена вследствие воздействия флуктуационных и импульсных помех в канале связи. Регенерация осуществляется путем ограничения амплитуды импульсов по максимуму и минимуму на уровне близком к половине пикового значения импульсов (рисунок 63, в). При регенерации возможно искажение принятого сигнала вызванное большой амплитудой импульсной помехи, однако, большая часть помех подавляется.
Поскольку при регенерации осуществляется ограничение амплитуды импульсов, то регенерации не могут подвергаться АИМ сигналы, т. к. амплитуда этих сигналов является информационным параметром.
Детектирование
Передача по радио звуков (речи, музыки и т. д.) осуществляется с помощью радиоволн. Для этого звуковыми колебаниями, преобразованными в электрические, воздействуют на высокочастотные колебания радиопередатчика. Высокочастотные колебания, подвергшиеся воздействию передаваемых звуковых колебаний, называются модулированными.
Достигнув приёмной антенны, радиоволны возбуждают в ней колебания, модулированные так же, как и те, которые излучаются антенной передатчика. Для того, чтобы воспроизвести передаваемые сигналы, из поступивших в приёмник модулированных колебаний должны быть получены низкочастотные колебания, соответствующие передаваемому звуку. Процесс получения последних называется детектированием, а устройства, в которых этот процесс осуществляется,- детекторами.
Для передачи сигналов можно воздействовать на высокочастотные колебания так, чтобы эти сигналы изменяли либо амплитуду высокочастотных колебаний (амплитудная модуляция), либо их частоту (частотная модуляция), или применением ещё какого-нибудь более сложного вида модуляции. Процесс детектирования различно модулированных высокочастотных колебаний протекает по-разному. Поскольку для целей радиовещания пока наиболее широко применяется амплитудная модуляция, и процесс детектирования мы будем рассматривать только для случая колебаний, модулированных по амплитуде.
В своих первых приёмниках изобретатель радио А. С. Попов для детектирования высокочастотных колебаний применял так называемый когерер. Однако когерер обладает рядом недостатков, и А. С.Попов вынужден был поэтому заменить его кристаллическим детектором. В дальнейшем П. Н. Рыбкин (ближайший сотрудник А. С. Попова) предложил метод непосредственного преобразования принимаемых затухающих высокочастотных колебаний в звуковые сигналы при помощи кристаллического детектора и телефона. Это позволило производить приём на слух телеграфных сигналов и послужило первым и наиболее важным шагом в осуществлении радиотелефонии.
«ИДЕАЛЬНЫЙ» ДЕТЕКТОР
Для того, чтобы форма «огибающей» модулированных колебаний (рис. 1), подводимых к детектору приёмника, была такой же, как и форма «огибающей» колебаний, излучаемых передающей антенной, необходимо, чтобы приёмник «пропускал» всю передаваемую полосу частот.
Рис. 1. Кривая, проходящая через «вершины» модулированных колебаний, называется «огибающей» этих модулированных колебаний.
Низкочастотный ток, имеющий форму этой огибающей, может быть получен с помощью цепи, пропускающей ток только в одном направлении (полное выпрямление) или пропускающей ток в одном направлении лучше, чем в другом (частичное выпрямление).
Рассмотрим сначала случай полного выпрямления.
Представим себе проводник, который обладает следующими свойствами: если к его концам приложено напряжение U одного направления, по этому проводнику течёт ток I, пропорциональный этому напряжению, как и в обычном проводнике; но при перемене знаков напряжения ток в проводнике вовсе не возникает. Такой проводник называют идеальным детектором.
Посмотрим теперь, какой ток течёт в цепи идеального детектора, когда на него действуют немодулированные колебания.
Рис. 2. Вольтамперная характеристика идеального детектора.
Для этого поступаем следующим образом: под характеристикой детектора вдоль её вертикальной оси изобразим графически зависимость приложенного напряжения от времени t (рис. 3). Каждому значению приложенного напряжения соответствует определённое значение силы тока в цепи детектора, которое можно найти по его характеристике (для нахождения этих значений тока служат вертикальные пунктирные линии на рис, 3). Так как приложенное напряжение всё время изменяется, то изменяется и ток. Откладывая различные значения тока вправо в такой же последовательности, как соответствующие изменения напряжения (для этого служат горизонтальные пунктирные линии на рис. 3), мы получим графическое изображение изменения тока в цепи детектора от времени t.
Рис. 3. Графическое построение кривой изменения тока в цепи идеального детектора при приложенном к нему синусоидальном напряжении.
Сила тока в цепи изображается «половинками синусоид» одного направления. Иначе говоря, в цепи детектора получаются лишь отдельные импульсы тока, текущего только в одном направлении. Такой ток называется пульсирующим.
ПОСТОЯННАЯ И ПЕРЕМЕННАЯ СОСТАВЛЯЮЩИЕ
Так как количество электричества, протекающего в цепи за какое-либо время, равно произведению силы тока на время, в течение которого этот ток протекает, то, следовательно, оно выражается площадью, заключённой между кривой, изображающей изменения силы тока, и осью времени. Поэтому постоянная составляющая данного пульсирующего тока, т. е. его среднее значение, изображается такой прямой, для которой площадь между ней и осью времени (заштрихованная площадь на рис. 4, Б), равна площади, ограниченной импульсами пульсирующего тока (заштрихованная площадь на рис. 4, А).
Постоянная составляющая пульсирующего тока будет тем большей, чем больше высота импульсов, т. е. в конечном счёте, чем больше амплитуда подводимого к детектору напряжения.
Рис. 4. График А представляет собой сумму постоянного тока, показанного на графике Б, и переменного тока, показанного на графике В.
Переменная составляющая пульсирующего тока в сумме с постоянной составляющей должна дать рассматриваемый пульсирующий ток. Как видно из рис. 4, В, эта переменная составляющая имеет ту же частоту, что и подводимое к детектору напряжение, но её кривая по форме не является синусоидальной. В то же время площади, ограниченные участками этой кривой, лежащими выше и ниже оси времени (штриховка с разным наклоном), равны, а следовательно, количества электричества, протекающего за период в том и другом направлении, одинаковы. Следовательно, количество электричества, протекающее в цепи, в среднем за период равно нулю, как и в случае обычного переменного тока. Величина переменной составляющей пульсирующего тока тем больше, чем больше «высота» импульсов.
Рис. 5. Схема простейшего детекторного приёмника.
Рассмотренный нами способ разложения пульсирующего тока на постоянную и переменную составляющие может показаться искусственным и чисто формальным. Однако в действительности такое разложение и происходит в цепи детектора и телефона. Рассмотрим простейшую схему приёмника с кристаллическим детектором (рис. 5). Здесь к концам катушки L1 колебательного контура присоединяется цепь, состоящая из последовательно включённых детектора Д и обмотки телефона Т. Параллельно обмоткам телефона обычно включается блокировочный конденсатор Сб. При наличии колебаний в контуре на катушке L1 возникает высокочастотное напряжение, которое должно быть подано на детектор. Включённые последовательно с детектором обмотки телефона обладают значительным активным сопротивлением и, кроме того, большим индуктивным сопротивлением для токов высокой частоты. Поэтому, если бы напряжение высокой частоты подавалось на детектор через эти обмотки, то на них падала бы значительная часть этого напряжения. Следовательно, на детекторе падала бы лишь малая доля всего высокочастотного напряжения, возникающего в колебательном контуре. Чтобы избежать этого и служит блокировочный конденсатор Сб ёмкостью от нескольких сот до тысячи пикофарад. Такой конденсатор обладает малым сопротивлением для токов высокой частоты и поэтому высокочастотное напряжение с контура почти полностью поступает на детектор (Между витками обмотки телефона и проводами, с помощью которых они соединяются со схемой приёмника, всегда существует ёмкость, которая как бы включена параллельно обмоткам. Она играет такую же роль, как и блокировочный конденсатор Сб; поэтому и при отсутствии в приёмнике блокировочного конденсатора схема цепи детектора и телефона практически остаётся такой же, как изображённая на рис. 5.).
Итак, в цепи детектора под действием синусоидального напряжения возникают как постоянная составляющая тока, так и переменная. При этом постоянная составляющая будет тем большей, чем больше амплитуда напряжения, подаваемого на детектор.
ДЕТЕКТИРОВАНИЕ МОДУЛИРОВАННЫХ КОЛЕБАНИЙ
Теперь рассмотрим случай, когда на детектор действуют модулированные колебания. Так как величина постоянной составляющей зависит от амплитуды подводимого к детектору напряжения, то в данном случае «постоянная» составляющая будет изменяться в соответствии с изменением амплитуды этих модулированных колебаний (рис. 6, В). Иначе говоря, в случае детектирования модулированных колебаний в цепи детектора возникает ещё и переменная составляющая напряжения низкой частоты, кривая изменения которого по форме подобна огибающей модулированных колебаний, подаваемых на детектор.
Переменная составляющая низкой частоты, проходя через обмотки телефона (Ёмкость конденсатора подбирается так, чтобы его сопротивление для составляющей низкой частоты было значительно больше сопротивления обмоток телефона.), заставляет его воспроизводить те звуки, которые воздействуют на микрофон передатчика. Так же как и в случае, когда на детектор подаётся немодулированное напряжение, высокочастотная переменная составляющая пройдёт через блокировочный конденсатор.
Реальный детектор пропускает ток в обратном направлении, т. е. обладает несимметричной проводимостью. Его вольтамперная характеристика имеет различную крутизну при различных направлениях приложенного напряжения. Предположив, что она имеет вид, изображённый на рис. 7, повторим и для этого случая построение, аналогичное рис. 3. В этом случае мы получаем импульсы двух направлений. Можно считать, что импульсы каждого из них дают постоянную составляющую, определяемую их высотой. А поскольку высота импульсов тока различных направлений неодинакова, то и их постоянные составляющие также различны. Так как эти постоянные составляющие текут в разные стороны (поскольку импульсы направлены в разные стороны), то результирующее значение постоянной составляющей в цепи равно разности этих двух постоянных составляющих. Величина результирующей постоянной составляющей будет очевидно меньше, чем в случае идеального детектора, но она и в этом случае будет зависеть от амплитуды подводимого напряжения. Поэтому реальный детектор, так же как и идеальный, в случае модулированных колебаний будет давать низкочастотную составляющую, по форме подобную огибающей модулированных колебаний, но амплитуда её будет меньше, чем в случае идеального детектора.
Рис. 7. Графическое построение кривой изменения тока в цепи реального детектора при приложенном к нему синусоидальном напряжении.
КОНСТРУКЦИИ КРИСТАЛЛИЧЕСКИХ ДЕТЕКТОРОВ
Наиболее простым является контактный или кристаллический детектор, в котором несимметричной проводимостью обладает, контакт между кристаллом и металлом или двумя различными кристаллами.
Большинство таких детекторов довоенных выпусков обладали одинаковыми недостатками: для того, чтобы они детектировали, нужно было переставлением конца спиральки отыскивать та поверхности кристалла чувствительную (детектирующую) точку и регулировать степень нажима спиральки на кристалл; при малейшем толчке спиралька смещалась и детектор переставал работать. Только детектор с кристаллом карборунда был свободен от этого недостатка, но зато он отличался низкой чувствительностью.
Современные детекторы обладают постоянной рабочей точкой и поэтому не требуют настройки и регулировки. К наиболее распространённым современным детекторам относятся купроксный и кремниевый детекторы.
Первый из них представляет собой миниатюрный купроксный выпрямитель. Такой детектор обладает не очень высокой чувствительностью и поэтому применяется главным образом при приёме местных радиостанций.
Описанный детектор обладает хорошей чувствительностью; он дёшев, прост и удобен в обращении.
Группа советских специалистов под руководством инженера А. Пужай разработала конструкцию германиевого детектора.
Такой детектор по внешнему виду напоминает маленький круглый конденсатор постоянной ёмкости. Германиевый детектор обладает высокой чувствительностью и «весьма устойчив в работе.
В заключение отметим, что до появления электронной лампы кристаллический детектор был единственным типом детектора, применявшимся в радиоприёмниках. Однако после появления электронной лампы положение изменилось. Электронная лампа, способная не только детектировать, но также усиливать и генерировать колебания, стала вытеснять кристаллический детектор.
Но в будущем положение, повидимому, снова должно измениться. Дело в том, что, как показал ещё в 1922 году советский изобретатель О. В. Лосев, кристаллический детектор также может служить для усиления и генерирования колебаний. Это изобретение Лосева в своём дальнейшем развитии привело к созданию кристаллического триода, в котором имеются не один, а два металлических проводника, образующих контакт с кристаллом. Кристаллический триод может служить усилителем колебаний.