Что такое десятичная система вычисления

Десятичная система счисления

Система счисления — это способ записи (представление) чисел с помощью определённого набора письменных знаков.

Десятичная система счисления — это позиционная система счисления, в которой для записи чисел используют десять знаков:

1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

Знаки, употребляемые для записи чисел, называются цифрами.

В десятичной системе значение одной и той же цифры зависит от её позиции в записи числа. Для примера возьмём число 777, которое состоит из трёх одинаковых цифр. В этом числе первая слева цифра означает семь сотен, вторая — семь десятков, а третья — семь единиц. Так как значение цифры зависит от её позиции в записи числа, десятичную систему счисления также называют позиционной.

Позиционной называют такую систему счисления, в которой значение цифры зависит от её позиции в записи числа.

Числа, которые записаны с помощью одной цифры, называют однозначными, записанные с помощью двух — двузначными, так же по количеству цифр в числе дают названия и другим числам:

Однозначные числа: 1, 2, 4.

Двузначные числа: 14, 77, 92.

Трёхзначные числа: 122, 345.

Шестизначные числа: 537633, 987345.

Двузначные, трёхзначные, четырёхзначные, пятизначные и т. д. числа называют многозначными.

Следует помнить, что цифра и число не одно и то же.

Цифра – это только письменный знак, используемый для записи числа. Число может быть обозначено не одной, а несколькими цифрами (например, 75) или может быть выражено словами (семьдесят пять).

Источник

Системы счисления

Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).

Системы счисления бывают:

Непозиционные системы счисления

Примеры: унарная, римская, древнерусская и др.

Позиционные системы счисления

Основание системы счисления —

количество различных цифр, используемых в этой системе.

отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде

где i — номер разряда, а s — основание системы счисления.

Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

По определению веса разряда

где i — номер разряда, а s — основание системы счисления.

Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:

Например, для системы счисления с основанием 4:

Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =

= 64 + 48 + 2 + 0,5 = 114,5

Таким образом, для перевода числа из любой системы счисления в десятичную следует:

Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

Иначе это можно записать так:

114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024

Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно

Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

Источник

Перевод чисел из одной системы счисления в другую

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Перевод в десятичную систему счисления

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

Перевод из двоичной системы в восьмеричную

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Перевод из двоичной системы в шестнадцатеричную

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада0000000100100011010001010110011110001001101010111100110111101111
Цифра0123456789ABCDEF

Перевод из восьмеричной системы в двоичную

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Используем таблицу триад:

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

Перевод из шестнадцатеричной системы в двоичную

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Используем таблицу тетрад:

Цифра0123456789ABCDEF
Тетрада0000000100100011010001010110011110001001101010111100110111101111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

Перевод из восьмеричной системы в шестнадцатеричную и наоборот

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Источник

Десятичная система счисления

Что такое десятичная система вычисления. Смотреть фото Что такое десятичная система вычисления. Смотреть картинку Что такое десятичная система вычисления. Картинка про Что такое десятичная система вычисления. Фото Что такое десятичная система вычисления Что такое десятичная система вычисления. Смотреть фото Что такое десятичная система вычисления. Смотреть картинку Что такое десятичная система вычисления. Картинка про Что такое десятичная система вычисления. Фото Что такое десятичная система вычисления

Всего получено оценок: 202.

Всего получено оценок: 202.

Все вычисления в математике выполняются в позиционной десятичной системе счисления. Кратко об особенностях десятичной системы можно прочитать в данной статье.

Что такое десятичная система счисления

В десятичной системе для представления чисел использует десять арабских цифр от 0 до 9, соответственно основанием десятичной системы счисления является число 10.

Историки, изучающие культуру древнего востока, в Индии обнаружили плиту с начертанием числа в позиционной десятичной системе. Возраст найденного артефакта составляет порядка 1,5 тысяч лет. Здесь же в древней Индии впервые используется ноль, как самостоятельная цифра.

Развернутая форма представления десятичного числа

Важным понятием в позиционном подходе представления чисел является понятие разряда. Различают разряды единиц, десятков, сотен, тысяч и так далее. Любое десятичное число можно представить, в так называемом развернутом виде, когда число записывается в виде суммы разрядных слагаемых, представленных в виде произведения значащей цифры разряда и числа десять в степени соответствующего разряда.

Например, десятичное число 46758 в развернутом виде будет выглядеть следующим образом:

46758 = 4 * 10^4 + 6 * 10^3 + 7 * 10^2 + 5 * 10^1 + 8 * 10^0

46758 = 4 * 10000 + 6 * 1000 + 7 * 100 + 5 * 10 + 8 * 1

Прямой перевод числа из десятичной системы

Перевод целого десятичного числа в какую-либо систему счисления выполняется путем поочередного деления самого числового значения, а затем полученных частных на основание системы счисления, в которую производится перевод.

Например, для перевода десятичного числа в двоичную систему выполняют деление на два, в восьмеричную – на восемь, в шестнадцатеричную – на шестнадцать. В принципе, десятичное число можно перевести и в пятеричную и семеричную системы, выполнив деление на пять или семь.

Выполнив первый шаг деления на, например, два, остаток запоминают, а полученное частное снова делят на основание. Эту операцию выполняют до тех пор, пока последнее частное не будет меньше или равно делителю.

Записывать сформированное число в новой системе счисления необходимо начиная с итогового частного и затем друг за другом выписывая остатки от деления от последнего к первому.

Например, прямой перевод числа 27 из десятичной системы в двоичную выполняют так:

27 / 2 = 13 и остаток 1

13 / 2 = 6 и остаток 1

6 / 2 = 3 и остаток 0

3 / 2 = 1 и остаток 1

Таким образом, 27 в двоичном формате это число 11011.

Для перевода чисел в пределах можно пользоваться таблицей соответствия десятичных и двоичных чисел

Что такое десятичная система вычисления. Смотреть фото Что такое десятичная система вычисления. Смотреть картинку Что такое десятичная система вычисления. Картинка про Что такое десятичная система вычисления. Фото Что такое десятичная система вычисленияРис. 2. Таблица соответствия двоичных и десятичных чисел.

Обратный перевод числа в десятичную систему

Для перевода чисел в десятичную систему удобно пользоваться развернутой формой. При этом числовые значения записываются в виде суммы произведений цифр разрядов на основание текущей системы счисления в степени разряда.

Например, двоичное число 11011 можно представить так:

1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0 = 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 1 * 1 =27

Для упрощения вычислений удобно пользоваться таблицей степени двойки

Что такое десятичная система вычисления. Смотреть фото Что такое десятичная система вычисления. Смотреть картинку Что такое десятичная система вычисления. Картинка про Что такое десятичная система вычисления. Фото Что такое десятичная система вычисленияРис. 3. Степени двойки.

Что такое десятичная система вычисления. Смотреть фото Что такое десятичная система вычисления. Смотреть картинку Что такое десятичная система вычисления. Картинка про Что такое десятичная система вычисления. Фото Что такое десятичная система вычисления

Что мы узнали?

В десятичной позиционной системе для представления числовых значений используются десять арабских цифр. Числа в такой системе можно представлять в развернутом виде. Перевод десятичных чисел в другую систему выполняется путем поочередного деления на основание новой системы счисления. Обратный перевод удобно выполнять с использованием развернутой формы записи числа.

Источник

Основные сведения о десятичной системе счисления

Системы счисления. Основные понятия

Система счисления — это набор правил записи чисел посредством конечного набора цифр.

Системы счисления разделяются на:

Основание системы счисления — это количество цифр, используемых в данной системе.

Вес разряда — это отношение количественного эквивалента цифры в данном разряде к количественному эквиваленту такой же цифры в нулевом разряде:

Разряды числа нумеруются справа налево. Младший разряд имеет номер ноль. Разряды дробной части нумеруются отрицательными числами:

Что такое десятичная система счисления

Десятичная система счисления — это система счисления по целочисленному основанию 10 (0,1,2,3,4,5,6,7,8,9 арабские цифры). Она является позиционной системой счисления и наиболее распространенной.

Ученые утверждают, что использование такой распространенной системы связана с количеством пальцев на руках у человека.

Десятичные цифры используют в двоично-десятичном кодировании в двоичных компьютерах.

Алгоритм перевода чисел из любой системы счисления в десятичную

Перевести целое число с основанием q в десятичное можно с помощью следующего алгоритма:

Также можно переводить дроби с основанием q в десятичную систему счисления. Воспользуемся следующей формулой:

Примеры решения задач

Дано число в двоичной система 10011. Перевести число в десятичную систему счисления.

10011 2 = 1 ∙ 2 4 + 0 ∙ 2 3 + 0 ∙ 2 2 + 1 ∙ 2 1 + 1 ∙ 2 0 = 1 ∙ 16 + 0 ∙ 8 + 0 ∙ 4 + 1 ∙ 2 + 1 ∙ 1 = 16 + 0 + 0 + 2 + 1 = 19 10

Перевести в десятичную систему счисления число 17 из восьмеричной системы.

17 8 = 1 ∙ 8 1 + 7 ∙ 8 0 = 1 ∙ 8 + 7 ∙ 1 = 8 + 7 = 15 10

Перевести из пятеричной системы счисления число 20341 в десятичную систему.

20341 5 = 2 ∙ 5 4 + 0 ∙ 5 3 + 3 ∙ 5 2 + 4 ∙ 5 1 + 1 ∙ 5 0 = 2 ∙ 625 + 0 ∙ 125 + 3 ∙ 25 + 4 ∙ 5 + 1 ∙ 1 = 1250 + 0 + 75 + 20 + 1 = 1346 10

Число 0,F3D0 из шестнадцатеричной системы счисления перевести в десятичную систему.

Перевести в десятичную систему счисления двоичное число 101,11.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *