Что такое декартовая плоскость
Прямоугольная система координат
Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат. Очень легко и прямо обобщается для пространств любой размерности, что также способствует ее широкому применению.
Содержание
Прямоугольная система координат на плоскости
Прямоугольная система координат на плоскости образуется двумя взаимно перпендикулярными осями координат и
. Оси координат пересекаются в точке
, которая называется началом координат, на каждой оси выбрано положительное направление.
Положение точки на плоскости определяется двумя координатами
и
. Координата
равна длине отрезка
, координата
— длине отрезка
в выбранных единицах измерения. Отрезки
и
определяются линиями, проведёнными из точки
параллельно осям
и
соответственно.
При этом координате приписывается знак минус, если точка
лежит на луче
(а не на луче
, как на рисунке). Координате
приписывается знак минус, если точка
лежит на луче
. Таким образом,
и
являются отрицательными направлениями осей координат (каждая ось координат рассматривается как числовая ось).
Координата называется абсциссой точки
, координата
— ординатой точки
.
Символически это записывают так:
или указывают принадлежность координат конкретной точке с помощью индекса:
Прямоугольная система координат в пространстве
Прямоугольная система координат в пространстве (в этом параграфе имеется в виду трехмерное пространство, о более многомерных пространствах — см. ниже) образуется тремя взаимно перпендикулярными осями координат ,
и
. Оси координат пересекаются в точке
, которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно (не обязательно [2] ) одинаковы для всех осей.
— ось абсцисс,
— ось ординат,
— ось аппликат.
Положение точки в пространстве определяется тремя координатами
,
и
. Координата
равна длине отрезка
, координата
— длине отрезка
, координата
— длине отрезка
в выбранных единицах измерения. Отрезки
,
и
определяются плоскостями, проведёнными из точки
параллельно плоскостям
,
и
соответственно.
Координата называется абсциссой точки
, координата
— ординатой точки
, координата
— аппликатой точки
.
Символически это записывают так:
или привязывают запись координат к конкретной точке с помощью индекса:
Каждая ось рассматривается как числовая прямая, т. е. имеет положительное направление, а точкам, лежащим на отрицательном луче приписываются отрицательные значения координаты (расстояние берется со знаком минус). То есть, если бы, например, точка лежала не как на рисунке — на луче
, а на его продолжении в обратную сторону от точки
(на отрицательной части оси
), то абсцисса
точки
была бы отрицательной (минус расстоянию
). Аналогично и для двух других осей.
Прямоугольные все системы координат в трехмерном пространстве делятся на два класса — правые (также используются термины положительные, стандартные) и левые. Обычно по умолчанию стараются использовать правые координатные системы, а при их графическом изображении еще и располагать их если можно, в одном из нескольких обычных (традиционных) положений. (На рис. 2 изображена правая координатная система). Правую и левую системы координат невозможно поворотами [3] совместить так, чтобы совпали соответствующие оси (и их направления). Определить, к какому классу относится какая-либо конкретно взятая система координат можно используя правило правой руки, правило винта итп (положительное направление осей выбирают так, чтобы при повороте оси против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси
, если этот поворот наблюдать со стороны положительного направления оси
).
Прямоугольная система координат в многомерном пространстве
Прямоугольная система координат может быть использована и в пространстве любой конечной размерности аналогично тому, как это делается для трехмерного пространства. Количество координатных осей при этом равно размерности пространства (в этом параграфе будем обозначать ее n).
Для обозначения координат обычно [4] применяют не разные буквы, а одну и ту же букву с числовым индексом. Чаще всего это:
Для обозначения произвольной i-ой координаты из этого набора используют буквенный индекс:
а нередко обозначение используют и для обозначения всего набора, подразумевая, что индекс пробегает весь набор значений:
.
Прямоугольные координаты вектора
Для векторов (направленных отрезков), начало которых не совпадает с началом координат, прямоугольные координаты можно определить одним из двух способов:
2. Вместо этого можно просто вычесть из координат конца вектора (направленного отрезка) координаты его начала.
В прямоугольных координатах очень просто записываются все операции над векторами:
а отсюда и вычитание и деление:
(Это верно для любой размерности n и даже, наравне с прямоугольными, для косоугольных координат).
(Только в прямоугольных координатах с единичным масштабом по всем осям).
для любой размерности пространства,
Очевидно, всё это позволяет, если надо, свести все операции над векторами к достаточно простым операциям над числами.
В трёхмерном случае такие орты обычно обозначаются
,
и
,
и
.
Могут также применяться обозначения со стрелками (,
и
или
,
и
) или другие в соответствии с обычным способом обозначения векторов в той или иной литературе.
При этом в случае правой системы координат действительны следующие формулы с векторными произведениями ортов:
Для более высоких, чем 3, размерностей (или для общего случая, когда размерность может быть любой) обычно для ортов применяют вместо этого обозначения с числовыми индексами, достаточно часто [10] это
Вектор любой размерности раскладывается по базису (координаты служат коэффициентами разложения):
а для ортонормированного базиса координаты еще и очень легко найти через скалярные произведения с ортами:
История
Впервые прямоугольную систему координат ввел Рене Декарт в своей работе «Рассуждение о методе» в 1637 году. Поэтому прямоугольную систему координат называют также — Декартова система координат. Координатный метод описания геометрических объектов положил начало аналитической геометрии. Вклад в развитие координатного метода внес также Пьер Ферма, однако его работы были впервые опубликованы уже после его смерти. Декарт и Ферма применяли координатный метод только на плоскости.
Координатный метод для трёхмерного пространства впервые применил Леонард Эйлер уже в XVIII веке.
Использование ортов восходит, по-видимому, к Гамильтону и Максвеллу.
Декартовы координаты на плоскости и в пространстве
Декартовы координаты — это (декартова система координат) система координат на плоскости или в пространстве, обычно с взаимно перпендикулярными осями и одинаковыми масштабами по осям прямоугольные декартовы координаты.
Содержание:
Декартовы координаты на прямой
В курсе алгебры постоянно приходится пользоваться прямоугольной системой координат. Рассмотрим прямоугольную систему координат на прямой. Хорошей иллюстрацией этой системы координат является термометр.
Стрелка показывает положительное направление отсчета координат. Прямую с установленной на ней системой координат называют координатной прямой. Точку О называют началом координат. Кроме этого, на координатной прямой вводится единичный отрезок ОЕ, его иногда называют масштабом.
Декартовы координаты на плоскости
Положение точки на плоскости может быть определено ее расстоянием до двух фиксированных взаимно перпендикулярных прямых — осей. В этом случае каждой точке плоскости будет соответствовать не одно число, а пара чисел. Соответствие между точками и парами чисел задается на плоскости: выбирают прямую, называемую осью Ох, вводят на ней систему координат. На оси Ох рисуют стрелку, чтобы указать ее положительное направление. Эта ось называется также осью абсцисс.
Проводят прямую Оу, перпендикулярную оси Ох и проходящую через точку О прямой Ох, имеющую координату 0, и вводят на прямой Оу систему координат так, чтобы точка с координатой 0 совпадала с точкой О. Прямая Оу называется осью Оу или осью ординат. Положительное направление на оси Оу также указывается стрелкой. Точка О пересечения прямых Ох и Оу (осей координат) называется началом координат (рис. 2.445).
На рисунке 2.446 изображена построенная прямоугольная система координат. Если дана точка Р, то из нее опускают перпендикуляр на ось Ох. Пусть основанием перпендикуляра будет точка М и х — координата точки М на прямой Ох (рис. 2.446). Тогда число х называют абсциссой точки Р. На рисунке 2.446 .
Затем опускают из точки Р перпендикуляр на ось Оу. Пусть основанием этого перпендикуляра будет точка N и у — координата точки N на прямой Оу. Тогда число у называют ординатой точки Р. На рисунке 2.446 . Для краткости указываем, что точка Р имеет координаты х и у, так: Р(х, у). В нашем случае
.
Порядок, в котором записываются координаты точки, очень существенен. Координаты (1, 3) имеет точка , а координаты (3, 1) — отличная от нее точка
(рис. 2.447). Нельзя сказать, где находится точка, если неизвестно, какое число в паре чисел (х, у) стоит первым.
Ниже приводится определение координат точки на плоскости.
Определение. Абсциссой точки Р называют координату основания перпендикуляра, опущенного из точки Р на ось Ох; ординатой точки Р называют координату основания перпендикуляра, опущенного из точки Р на ось Оу.
Если прямая разбивает плоскость на две полуплоскости, то две оси координат разбивают плоскость на четыре части, называемые четвертями. Четыре четверти нумеруются в порядке, изображенном на рисунке 2.448.
Таким образом, между точками плоскости и упорядоченными парами действительных чисел имеется взаимооднозначное соответствие. Такое соответствие называют прямоугольной системой координат.
Декартовы координаты в пространстве
Построим горизонтальную плоскость и введем на ней декартову систему координат хОу (рис. 2.449).
Если ввести также координатную прямую Oz, перпендикулярную плоскости хОу в точке О, то тем самым будет введена система координат в пространстве. Точка О будет началом этой системы координат.
Стрелки осей Ох, Оу и Oz на рисунках указывают положительное направление каждой оси.
В декартовой системе координат в пространстве мы имеем три оси: Ох — ось абсцисс, Оу — ось ординат, Oz — ось аппликат. Плоскости, проходящие через оси Ох и Оу, Оу и Oz, Ох и Oz — координатные плоскости. Их обозначают соответственно: ху, yz, xz (рис. 2.450). Координатные плоскости разбивают все пространство на восемь частей — октантов.
Если задана такая система координат, то каждой точке пространства можно поставить в соответствие упорядоченную тройку действительных чисел, а каждой тройке чисел — единственную точку.
На рисунке 2.452: точка Р лежит в плоскости хОу, так что ее проекция на ось Ог есть 0. Ее проекция на ось Ох совпадает с точкой, имеющей координату 2, а на ось Оу — с точкой, имеющей координату 3. Поэтому пишут Р(2, 3, 0).
Таким образом, нахождение координат точки в пространстве сводится к построению соответствующего прямоугольного параллелепипеда (иногда его воспроизводят частично, чтобы были видны координаты точки (рис. 2.453)).
Порядок записи этих трех чисел также существенен. На рисунке 2.452 изображены точки имеющие своими координатами числа 2, 3 и 0, записанные в разном порядке.
Можно иначе находить координаты точки пространства. Пусть дана точка М. Спроектируем точку М на оси Ох, Оу, Ог в точки соответственно (рис. 2.454). Координаты точек
на осях сопоставляются точке М как ее координаты х, у, г. Таким образом, координатами точки в пространстве называют координаты ее проекций на оси координат.
Если есть три координаты — три числа то для них найдется соответствующая точка пространства. На рисунке 2.455 три числа на осях координат отмечены тремя точками
Пусть отрезки
— ребра прямоугольного параллелепипеда с вершиной в точке О (рис. 2.456). Получили точку Р с координатами
—
Прямоугольная система координат носит имя Рене Декарта (1596—1650). В 1637 г. вышла книга с длинным по обычаю времен названием «Рассуждение о методе, позволяющем направлять разум и отыскивать истину в науках. Кроме того, Диоптрика, Метеоры и Геометрия, которые являются приложениями этого метода», с ней в науку вошел метод координат. Со времен Декарта алгебра и геометрия стали сотрудничать между собой к выгоде обеих дисциплин. Введенную систему координат с тех пор стали называть декартовой.
Координаты середины отрезка
Рассмотрим отрезок , принадлежащий оси Ох. Пусть Р — середина этого отрезка и пусть наши три точки имеют соответственно координаты
(рис. 2.457). Выразим х через
и
.
1. (дано) (рис. 2.457).
2. (запись отрезка в координатах на прямой).
3. (1, 2).
Эта формула годится и в случае, когда
Рассмотрим случай, когда отрезок произвольно расположен на плоскости (рис. 2.458).
1. Точка Р является серединой отрезка (дано) (рис. 2.458).
2. Построим проекции точек на ось Ох, получим точки
(построение).
3. Точка М является серединой отрезка .
4. (3, формула середины отрезка на прямой).
Аналогично можно получить, что . Все это можно сформулировать в виде теоремы.
Теорема 1. Даны точки Серединой отрезка
является точка
Формула расстояния между точками
Пусть мы знаем координаты двух точек на плоскости (рис. 2.459). Имеет место следующая теорема.
Теорема 2. Расстояние между точками находится по формуле
Например, если то из полученной формулы следует, что
Формула расстояния между точками верна и в пространстве. Пусть даны две точки и
Расстояние между точками Р и Q находится по формуле
Пример:
Докажите, что середина гипотенузы прямоугольного треугольника равноудалена от его вершин.
Решение:
Из условия задачи имеем:
1. , его стороны обозначим через
3. CD = AD (требуется доказать).
Мы хотим применить для решения задачи декартову систему координат, а значит, надо удачно выбрать расположение этой системы.
4. Для данной задачи удачный выбор системы координат показан на рисунке 2.460. Начало координат помещено в точку А, а оси проведены через точки Б и С так, чтобы эти точки лежали на положительных лучах осей (построение).
5. Точка В имеет координаты (, 0), точка С — (0,
) (1, 4).
6. Середина отрезка СВ точка D имеет координаты (1, формула середины отрезка).
7. (4, 6 формула расстояния между точками).
8. (5, 6, формула расстояния между точками).
Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
Смотрите также дополнительные лекции по предмету «Математика»:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.