Что такое дефект массы ядра
Что такое дефект массы ядра
Ядра атомов представляют собой сильно связанные системы из большого числа нуклонов.
Для полного расщепления ядра на составные части и удаление их на большие расстояния друг от друга необходимо затратить определенную работу А.
Энергией связи называют энергию, равную работе, которую надо совершить, чтобы расщепить ядро на свободные нуклоны.
По закону сохранения энергия связи одновременно равна энергии, которая выделяется при образовании ядра из отдельных свободных нуклонов.
Удельная энергия связи
— это энергия связи, приходящаяся на один нуклон.
Если не считать самых легких ядер, удельная энергия связи примерно постоянна и равна 8 МэВ/нуклон. Максимальную удельную энергию связи (8,6МэВ/нуклон) имеют элементы с массовыми числами от 50 до 60. Ядра этих элементов наиболее устойчивы.
По мере перегрузки ядер нейтронами удельная энергия связи убывает.
Для элементов в конце таблицы Менделеева она равна 7,6 МэВ/нуклон (например для урана).
Выделение энергии в результате расщепления или синтеза ядра
Для того, чтобы расщепить ядро надо затратить определенную энергию для преодоления ядерных сил.
Для того, чтобы синтезировать ядро из отдельных частиц надо преодолеть кулоновские силы отталкивания (для этого надо затратить энергию, чтобы разогнать эти частицы до больших скоростей).
То есть, чтобы провести расщепление ядра или синтез ядра надо затратить какую-то энергию.
При синтезе ядра на малых расстояниях на нуклоны начинают действовать ядерные силы, которые побуждают их двигаться с ускорением.
Ускоренные нуклоны излучают гамма-кванты, которые и обладают энергией, равной энергии связи.
На выходе реакции расщепления ядра или синтеза энергия выделяется.
Есть смысл проводить расщепление ядра или синтез ядра, если получаемая, т.е. выделенная энергия в результате расщепления или синтеза, будет больше, чем затраченная.
Согласно графику, выйгрыш в энергии можно получить или при делении (расщеплении) тяжелых ядер, или при при слиянии легких ядер, что и делается на практике.
Измерения масс ядер показывают, что масса ядра (Мя) всегда меньше суммы масс покоя слагающих его свободных нейтронов и протонов.
При делении ядра: масса ядра всегда меньше суммы масс покоя образовавшихся свободных частиц.
При синтезе ядра: масса образовавшегося ядра всегда меньше суммы масс покоя свободных частиц, его образовавших.
Дефект масс является мерой энергии связи атомного ядра.
Дефект масс равен разности между суммарной массой всех нуклонов ядра в свободном состоянии и массой ядра:
где Мя – масса ядра ( из справочника)
Z – число протонов в ядре
mp – масса покоя свободного протона (из справочника)
N – число нейтронов в ядре
mn – масса покоя свободного нейтрона (из справочника)
Уменьшение массы при образовании ядра означает, что при этом уменьшается энергия системы нуклонов.
Расчет энергии связи ядра
Энергия связи ядра численно равна работе, которую нужно затратить для расщепления ядра на отдельные нуклоны, или энергии, выделяющейся при синтезе ядер из нуклонов.
Мерой энергии связи ядра является дефект массы.
Здесь энергия связи ядра выражена произведением дефекта масс на квадрат скорости света.
В ядерной физике массу частиц выражают в атомных единицах массы (а.е.м.)
Энергию связи можно рассчитать в Джоулях, подставляя в расчетную формулу массу в килограммах.
в ядерной физике принято выражать энергию в электронвольтах (эВ):
Просчитаем соответствие 1 а.е.м. электронвольтам:
Теперь расчетная формула энергии связи (в электронвольтах) будет выглядеть так:
ПРИМЕР РАСЧЕТА энергии связи ядра атома гелия (Не)
Считаем энергию связи ядра в электронвольтах (дефект масс в а.е.м.) по преобразованной формуле
1. Расчет дефекта масс
В ядре атома гелия содержится 2 протона и 2 нейтрона, значение массы ядра гелия и масс покоя протона и нейтрона берем из справочника.
Удельная энергия связи ядра атома гелия:
где 4 соответствует числу нуклонов в ядре атома гелия.
Что такое дефект массы ядра
Нуклоны в ядрах находятся в состояниях, существенно отличающихся от их свободных состояний. За исключением ядра обычного водорода, во всех ядрах имеется не менее двух нуклонов, между которыми существует особое ядерное сильное взаимодействие– притяжение, обеспечивающее устойчивость ядер несмотря на отталкивание одноименно заряженных протонов.
· Энергией связи нуклона в ядре называется физическая величина, равная той работе, которую нужно совершить для удаления нуклона из ядра без сообщения ему кинетической энергии.
· Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии.
Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая энергия, которую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.
При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если Wсв – величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса
называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов.
Если ядро массой Мяд образовано из Z протонов с массой mp и из (A – Z) нейтронов с массой mn, то:
Вместо массы ядра Мяд величину ∆m можно выразить через атомную массу Мат:
где mН – масса водородного атома. При практическом вычислении ∆m массы всех частиц и атомов выражаются в атомных единицах массы (а.е.м.). Одной атомной единице массы соответствует атомная единица энергии (a.e.э.): 1 а.е.э. = 931,5016 МэВ.
Дефект массы служит мерой энергии связи ядра:
Удельной энергией связи ядраωсв называется энергия связи, приходящаяся на один нуклон:
Величина ωсв составляет в среднем 8 МэВ/нуклон. На рис. 9.2 приведена кривая зависимости удельной энергии связи от массового числа A, характеризующая различную прочность связей нуклонов в ядрах разных химических элементов. Ядра элементов в средней части периодической системы ( ), т.е. от
до
, наиболее прочны.
В этих ядрах ωсв близка к 8,7 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает. Ядра атомов химических элементов, расположенных в конце периодической системы (например ядро урана), имеют ωсв ≈ 7,6 МэВ/нуклон. Это объясняет возможность выделения энергии при делении тяжелых ядер. В области малых массовых чисел имеются острые «пики» удельной энергии связи. Максимумы характерны для ядер с четными числами протонов и нейтронов ( ,
,
), минимумы – для ядер с нечетными количествами протонов и нейтронов (
,
,
).
Если ядро имеет наименьшую возможную энергию , то оно находится в основном энергетическом состоянии. Если ядро имеет энергию
, то оно находится в возбужденном энергетическом состоянии. Случай
соответствует расщеплению ядра на составляющие его нуклоны. В отличие от энергетических уровней атома, раздвинутых на единицы электронвольтов, энергетические уровни ядра отстоят друг от друга на мегаэлектронвольт (МэВ). Этим объясняется происхождение и свойства гамма-излучения.
Данные об энергии связи ядер и использование капельной модели ядра позволили установить некоторые закономерности строения атомных ядер.
Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров ( ). Условие минимума энергии ядра приводит к следующему соотношению между Zуст и А:
При малых и средних значениях А числа нейтронов и протонов в устойчивых ядрах примерно одинаковы: Z ≈ А – Z.
С ростом Z силы кулоновского отталкивания протонов растут пропорционально Z·(Z – 1)
Z 2 (парное взаимодействие протонов), и для компенсации этого отталкивания ядерным притяжением число нейтронов должно возрастать быстрее числа протонов.
Для просмотра демонстраций щелкните по соответствующей гиперссылке:
Деление ядер. Радиоактивность. Атомная электростанция.
Дефект массы
Всего получено оценок: 175.
Всего получено оценок: 175.
Энергия, излучаемая звездами, выделяется в ходе термоядерных реакций, идущих в их центрах. Ключевую роль в образовании энергии при этом играет дефект масс. Рассмотрим это понятие более подробно.
Ядерные силы
Заряд атомного ядра равен номеру элемента в таблице Менделеева и складывается из зарядов протонов, входящих в его состав. Каждый протон имеет одинаковый положительный заряд, равный по модулю заряду электрона. Одноименные заряды отталкиваются, протоны должны разлетаться в разные стороны, все вещество (кроме водорода, ядро которого состоит из одного протона) должно очень быстро распадаться. Однако, многие атомы являются стабильными, несмотря на то, что в них больше одного протона.
Следовательно, внутри ядра существуют некоторые силы, более мощные, чем кулоновские силы отталкивания. Эти силы называют ядерными силами. Их природа отличается как от природы электрических сил, так и от природы гравитационных. Взаимодействие, которым они обеспечиваются, называется Сильным, поскольку это самые мощные силы в Природе.
Рис. 1. Ядерные силы.
Особенность Сильного взаимодействия в том, что оно короткодействующее. Ядерные силы действуют лишь на коротких расстояниях, не превышающих размеров атомных ядер. Происходит это потому, что, в отличие от кулоновских сил, передаваемых безмассовыми фотонами, переносчики Сильного взаимодействия имеют массу. Они действуют на протоны и нейтроны (общее название – нуклоны), удерживая их на близком расстоянии в ядрах атомов.
Энергия связи. Дефект масс.
Для расщепления ядра на отдельные нуклоны требуется затратить энергию, которая называется энергией связи ядра. Количественная теория ядерных сил в настоящее время не разработана, однако, энергию связи можно оценить, исходя из формулы связи массы и энергии:
Прямые измерения показывают, что для легких элементов масса покоя ядра всегда меньше, чем массы покоя входящих в него частиц:
$$М_я Рис. 2. Дефект массы.
Дефект масс при образовании ядра выделяется в виде γ-квантов с энергией:
Что мы узнали?
Протоны и нейтроны в ядрах удерживаются силами ядерного взаимодействия. Это самые мощные силы в Природе. Масса легкого ядра, как правило, меньше суммы масс отдельных входящих в него частиц. Разница в массе называется дефектом массы ядра. При образовании ядра дефект массы выделяется в виде энергии. Именно эта энергия поддерживает «горение» звезд, именно эта энергия выделяется при ядерных взрывах.
Что такое дефект массы ядра
Дефект массы ядра. Возникновение дефекта массы, энергии связи, ядерных сил. Солнечные нейтрино.
В данной работе представлен механизм возникновения дефекта массы нейтрона, наличие которого является непременным условием для появления энергии связи и ядерных сил.
а) наличия кулоновских сил отталкивания между однозарядными протонами;
б) отсутствия нейтрона, который обязан быть в наличии;
в) отсутствия энергии связи, которая связывала бы протон и нейтрон.
Анализ этих требований (условий) приводит к очень простому выводу: образование дейтрона возможно только при контакте протона и «готового» нейтрона и при наличии дефекта массы у одного из них.
Процессы превращения протона в нейтрон с одновременным образованием дефекта массы приводятся ниже.
Часть 2. Исходные данные.
2.3. Бета—плюс—распад. Процесс превращения протона в нейтрон энергозатратный, поэтому в зону реакции требуется подвод энергии в размере 2,48 МэВ. Указанная подводимая энергия затрачивается на перестройку кварка(u) в кварк(d), которая сопровождается увеличением массы частицы. Итого: протон (938,27) + энергия (2,48 МэВ) = нейтрон (939,57) + позитрон (0,51) + нейтрино (0,68).
2.4. Электронный захват. Процесс также энергозатратный, поэтому кроме «готового» электрона в зону реакции требуется подвод энергии в размере 1,46 МэВ. Указанная подводимая энергия затрачивается на увеличение массы частицы. Итого: протон (938,27) + электрон (0,51) + энергия (1,46 МэВ) = нейтрон (939,57) + нейтрино (0,68).
Примечание-2.2:
а) оба процесса энергозатратные и требуют подвода энергии. Однако в то же время они сопровождаются «встречным» выбросом энергии 0,68 МэВ в виде нейтрино, которые образуются в результате частичной аннигиляции дробной частицы (+2/3) и электрона (—3/3);
б) схемы, материальные балансы и описание процессов превращения протона в нейтрон при бета-процессах приведены в работе «Появление видимой материи. Раздел 3. Бета-распад. Пункты 3.2.1. и 3.2.2.».
Часть 3. Возникновение дефекта массы.
3.1. Механизм возникновения дефекта массы представлен на примере реакции образования дейтрона. Эта реакция начинает цепочку протон-протонного цикла, который является одним из наиболее вероятных механизмов освобождения энергии, в ходе происходящих в недрах звезд (и Солнца) термоядерных реакций при которых водород превращается в гелий.
3.2. При таких параметрах расстояние между частицами составляет около 50 пикометров (без учета электронов). Несмотря на чудовищное давление, дальнейшему сжатию вещества и сближению частиц противодействуют кулоновские силы отталкивания протонов. В таких условиях классическое броуновское движение частиц (с распределением по скоростям) отсутствует, и все частицы находятся в состоянии относительного динамического равновесия, которое обусловлено балансом сил давления и отталкивания. Но даже в этих условиях все частицы испытывают непрерывные колебания, при которых они отклоняются от равновесного положения. При этом в некоторых случаях, преодолевая кулоновские силы отталкивания, происходят весьма значительные сближения двух протонов, что приводит к существенным напряжениям (и деформациям?) в их оболочках.
По-видимому, такие сближения происходят не при перемещении отдельных протонов, а при «подвижке» относительно друг друга отдельных групп из многих частиц, в результате чего на один протон одновременно (и суммарно) действуют кулоновские силы нескольких частиц.
3.3. В создавшейся ситуации эти два «напряженных» протона вынуждены адекватно реагировать, и они находят весьма простое и единственное решение, а именно: для снятия «невыносимых» напряжений в оболочках, кулоновское поле одного протона должно «исчезнуть». Поскольку это возможно только при смене заряда, то один из протонов (заряд +1) вынужден перестроиться в электронейтральный нейтрон. Превращение протона в нейтрон может происходить в двух случаях: при бета-плюс-распаде и при электронном захвате.
3.4. Образование дефекта массы у нейтрона при бета-плюс-распаде.
3.5. Образование дефекта массы у нейтрона при электронном захвате.
3.5.1. В солнечном веществе соотношение электронов и протонов составляет 1:1. Тем не менее, бета-превращения протона с захватом электрона происходят в незначительных количествах и их доля в цепочке протон-протонного цикла оценивается в размере около 0,23%. Это, по-видимому, связано с тем, что броуновское движение в Солнечном ядре практически отсутствует, а для классической реакции электронного захвата электрон должен обладать кинетической энергией.
3.5.2. Происходящий в недрах звезд процесс превращения протона в нейтрон при электронном захвате аналогичен классическому процессу, но происходит без подвода энергии извне. См. рис.2.
Рис. 2. Схема превращения протона в нейтрон при электронном захвате и образование дефекта массы у нейтрона.
3.5.3. Процесс также сопровождается появлением нейтрона с начальным дефектом массы и происходит в следующей последовательности:
а) электрон сближается с протоном;
б) электрон «вдавливается» вовнутрь протона. Дальнейшая перестройка протона в нейтрон происходит без образования электрон-позитронной пары;
в) «готовый» электрон (-1) вступает во взаимодействие с дробной частицей (+2/3) кварка u. В результате частичной аннигиляции выделяется нейтрино (0,68 МэВ) практически монохромного спектра и появляется новая дробная частица (-1/3). Формируется кварк d. На увеличение массы кварка используется материя оболочки протона в количестве 1,46 МэВ. На схеме эта затраченная материя условно показана в виде овала белого цвета (поз.1).
г) перестройка комбинации кварков uud в комбинацию udd завершена. Образуется «дефектный» нейтрон, у которого масса на 1,46 МэВ меньше, чем у «обычного» нейтрона. На рисунке эта недостающая масса нейтрона (образовавшийся дефект массы) условно изображен в виде выреза (поз.2).
3.5.4. Таким образом, при электронном захвате образовавшийся нейтрон уже «при рождении» имеет строго фиксированный начальный дефект массы в размере 1,46 МэВ.
3.6. При бета-перестройке протона в нейтрон одновременно происходят три важнейших события:
а) появляется нейтрон с «готовым» начальным дефектом массы ;
в) резко меняется время жизни нейтрона. Свободный нейтрон является энергоизбыточной частицей, поэтому он в течение 880сек распадается с выделением энергии. Однако поскольку появившиеся в недрах звезд «дефектные» нейтроны имеют недостачу массы, то такие нейтроны автоматически становятся энергонедостаточными и излишков энергии для перестройки кварка (d) в кварк (u) у них попросту нет. Поэтому их самопроизвольный распад становится весьма затруднительным и время жизни таких «дефектных» нейтронов становится несоизмеримо больше, чем время жизни одиночных нейтронов.
а) в недрах звезд при бета-перестройке протонов в нейтроны используется собственная материя оболочки (тела) протона, в результате чего все образовавшиеся нейтроны имеют строго фиксированный начальный дефект массы в размере 2,48 МэВ или 1,46 МэВ;
Часть 4. Образование дейтрона.
4.2. Однако образовавшиеся в недрах звезд нейтроны имеют строго фиксированный начальный дефект массы (энергию связи) в размере 2,48 МэВ (или 1,46 МэВ). Но в каждом атоме энергия связи между его частицами является строго индивидуальной величиной и для дейтерия она составляет 2,22 МэВ. Поэтому при образовании дейтрона возникает следующая ситуация:
а) энергия связи дейтрона точно определена и составляет 2,22 МэВ;
Рис. 3. Схема—1 образования дейтрона.
Процесс образования дейтрона происходит в следующей последовательности:
б) во всех источниках (например: Протон-протонный цикл. Википедия) указанная закономерность не учитывается и фигурирует рассчитанная по материальному балансу энергия в размере 0,42 МэВ. И только в Википедия-Deutsch просматривается попытка разобраться в существующей ситуации: в расчете появилась цифра 0,26 и дополнительно приведена (для сравнения?) довольно правильная схема цикла. К сожалению, сам расчет некорректен, но, тем не менее, прецедент имеется и попытка засчитана.
4.4. Образование дейтрона при начальном дефект массы у нейтрона в размере 1,46 МэВ происходит по примерно аналогичной схеме:
Рис. 4. Схема—2 образования дейтрона.
В этом случае процесс образования дейтрона происходит в следующей последовательности:
а) в недрах звезд образование дейтрона происходит только при контакте протона и «готового» нейтрона, у которого имеется начальный дефект массы ;
б) образование дейтрона происходит в два этапа:
Этап—1. Образование нейтрона с фиксированным начальным дефектом массы в размере 2,48МэВ или 1,46МэВ.
Этап—2. Объединение с протоном с одновременной корректировкой начального дефекта массы до «требуемых» 2,22МэВ;