Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ВригономСтрия простыми словами

ΠžΡ„ΠΈΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ объяснСниС Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π² ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ°Ρ… ΠΈΠ»ΠΈ Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΈΠ½Ρ‚Π΅Ρ€Π½Π΅Ρ‚ сайтах, Π° Π² этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ Ρ…ΠΎΡ‚ΠΈΠΌ ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ ΡΡƒΡ‚ΡŒ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ «Π½Π° ΠΏΠ°Π»ΡŒΡ†Π°Ρ…».

Для удобства Ρ€Π°Π±ΠΎΡ‚Ρ‹ с тригономСтричСскими функциями Π±Ρ‹Π» ΠΏΡ€ΠΈΠ΄ΡƒΠΌΠ°Π½ тригономСтричСский ΠΊΡ€ΡƒΠ³, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ прСдставляСт собой ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΌ радиусом (r = 1).

Π’ΠΎΠ³Π΄Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ радиуса Π½Π° оси X ΠΈ Y (OB ΠΈ OA’) Ρ€Π°Π²Π½Ρ‹ ΠΊΠ°Ρ‚Π΅Ρ‚Π°ΠΌ построСнного Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠžΠΠ’, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ Ρ€Π°Π²Π½Ρ‹ значСниям синуса ΠΈ косинуса Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ВангСнс ΠΈ котангСнс ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ΡΡ соотвСтстсвСнно ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² OCD ΠΈ OC’D’, построСнных ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ исходному Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ OAB.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Для упрощСния обучСния тригономСтричСским функциям Π² школС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠ΄ΠΎΠ±Π½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹ Π² 0Β°, 30Β°, 45Β°, 60Β° ΠΈ 90Β°.

ЗначСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‚ΡΡ ΠΊΠ°ΠΆΠ΄Ρ‹Π΅ 90Β° ΠΈ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях мСняя Π·Π½Π°ΠΊ Π½Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ.

Достаточно Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ значСния Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²Π°ΠΆΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ² ΠΈ ΠΏΠΎΠ½ΡΡ‚ΡŒ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ для Π±ΠžΠ»ΡŒΡˆΠΈΡ… ΡƒΠ³Π»ΠΎΠ².

ЗначСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ
для ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ ΠΊΡ€ΡƒΠ³Π° (0Β° – 90Β°)

ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π° Π·Π½Π°ΠΊΠΎΠ² тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π£Π³ΠΎΠ» ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Ρ‚Π°ΠΊ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠžΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» считаСтся ΡƒΠ³ΠΎΠ», ΠΎΡ‚ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡƒΡŽ сторону.

Π’ Π²ΠΈΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ полная ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ составляСт 360Β°, значСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΡƒΠ³Π»ΠΎΠ², ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΡ… ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ радиуса, РАВНЫ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Для Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ понимания ΠΈ запоминания Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ динамичСским ΠΌΠ°ΠΊΠ΅Ρ‚ΠΎΠΌ тригономСтричСского ΠΊΡ€ΡƒΠ³Π° Π½ΠΈΠΆΠ΅. НаТимая ΠΊΠ½ΠΎΠΏΠΊΠΈ Β«+Β» ΠΈ «–» значСния ΡƒΠ³Π»Π° Π±ΡƒΠ΄ΡƒΡ‚ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΈΠ»ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒΡΡ соотвСтствСнно.

ВригономСтричСский ΠΊΡ€ΡƒΠ³

Π£Π³Π»Ρ‹ Π² Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ…

Π§Ρ‚ΠΎΠ±Ρ‹ Π·Π°ΠΊΡ€Π΅ΠΏΠΈΡ‚ΡŒ свои знания ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ сСбя, Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ ΠΎΠ½Π»Π°ΠΉΠ½-Ρ‚Ρ€Π΅Π½Π°ΠΆΠ΅Ρ€ΠΎΠΌ для запоминания Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

13. ВригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ ядрС Maple ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

ВсС эти Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ пСриодичСскими (с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ 2Π», ΠΊΡ€ΠΎΠΌΠ΅ тангСнса ΠΈ котангСнса, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ€Π°Π²Π΅Π½ Π») ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ для Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ комплСксного Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ². ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ вычислСний:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

МногиС свойства тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ, рассматривая ΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ. Для построСния Ρ‚Π°ΠΊΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ pi ot. На рис. 6.1 свСрху ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ряда тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Рис. 6.1. Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ ряда тригономСтричСских ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Из Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (рис. 6.1, свСрху) Ρ…ΠΎΡ€ΠΎΡˆΠΎ Π²ΠΈΠ΄Π½Π° ΠΈΡ… ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ. Ѐункция тангСнса ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π°Π·Ρ€Ρ‹Π²Ρ‹, ΠΈ Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π² этих Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Π² ΠΏΡ€Π΅Π΄Π΅Π»Π΅ Ρ€Π°Π²Π½ΠΎ бСсконСчности. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для наглядного Π΅Π΅ прСдставлСния вмСстС с функциями синуса ΠΈ косинуса (ΠΈΡ… ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ значСния ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ Ρ€Π°Π²Π½Ρ‹ 1) приходится Π²Π²ΠΎΠ΄ΠΈΡ‚ΡŒ ограничСния Π½Π° ΠΌΠ°ΡΡˆΡ‚Π°Π± Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΏΠΎ оси Ρƒ.

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ color=black Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² plot. Он Π·Π°Π΄Π°Π΅Ρ‚ построСниС всСх Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ‡Π΅Ρ€Π½Ρ‹ΠΌ Ρ†Π²Π΅Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ сдСлано для Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅Ρ‚ΠΊΠΎΠΉ ΠΏΠ΅Ρ‡Π°Ρ‚ΠΈ ΠΈΡ… Π² ΠΊΠ½ΠΈΠ³Π΅. Если ΡƒΠ±Ρ€Π°Ρ‚ΡŒ этот ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€, Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ€Π°Π·Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π±ΡƒΠ΄ΡƒΡ‚ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒΡΡ с использованиСм Ρ€Π°Π·Π½Ρ‹Ρ… Ρ†Π²Π΅Ρ‚ΠΎΠ², Ρ‡Ρ‚ΠΎ ΠΎΠ±Π»Π΅Π³Ρ‡ΠΈΡ‚ ΠΈΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅. Π”Ρ€ΡƒΠ³ΠΈΠ΅ способы выдСлСния ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΡ€ΠΈΠ²Ρ‹Ρ… Π±ΡƒΠ΄ΡƒΡ‚ описаны Π² дальнСйшСм ΠΏΡ€ΠΈ описании графичСских возмоТностСй систСмы Maple 7.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ГСомСтрия. Π£Ρ€ΠΎΠΊ 1. ВригономСтрия

Π‘ΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ бСсплатныС Π²ΠΈΠ΄Π΅ΠΎ-ΡƒΡ€ΠΎΠΊΠΈ ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ β€œΠ’Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡβ€ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ЁТику ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π’ΠΈΠ΄Π΅ΠΎ-ΡƒΡ€ΠΎΠΊΠΈ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ЁТику ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ. Подпишись!

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ страницы:

ВригономСтрия Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅

Рассмотрим ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· острых ΡƒΠ³Π»ΠΎΠ² Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊ Π½Π΅ΠΌΡƒ ΠΊΠ°Ρ‚Π΅Ρ‚ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Бинус ΡƒΠ³Π»Π° – ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅.

sin Ξ± = ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°

ΠšΠΎΡΠΈΠ½ΡƒΡ ΡƒΠ³Π»Π° – ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅.

cos Ξ± = ΠŸΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°

ВангСнс ΡƒΠ³Π»Π° – ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ (ΠΈΠ»ΠΈ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ синуса ΠΊ косинусу).

tg Ξ± = ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚ ΠŸΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚

ΠšΠΎΡ‚Π°Π½Π³Π΅Π½Ρ ΡƒΠ³Π»Π° – ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ (ΠΈΠ»ΠΈ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ косинуса ΠΊ синусу).

ctg Ξ± = ΠŸΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚ ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

ВригономСтрия: ВригономСтричСский ΠΊΡ€ΡƒΠ³

ВригономСтрия Π½Π° окруТности – это довольно интСрСсная абстракция Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Если ΠΏΠΎΠ½ΡΡ‚ΡŒ основной ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ β€œΡ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ круга”, Ρ‚ΠΎ вся тригономСтрия Π±ΡƒΠ΄Π΅Ρ‚ Π²Π°ΠΌ подвластна. Π’ описании ΠΊ Π²ΠΈΠ΄Π΅ΠΎ Π΅ΡΡ‚ΡŒ динамичСская модСль тригономСтричСского ΠΊΡ€ΡƒΠ³Π°.

ВригономСтричСский ΠΊΡ€ΡƒΠ³ – это ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ³ΠΎ радиуса с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Рассмотрим ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A O B :

cos Ξ± = O B O A = O B 1 = O B

sin Ξ± = A B O A = A B 1 = A B

Π˜Ρ‚Π°ΠΊ, косинус ΡƒΠ³Π»Π° – ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΏΠΎ оси x (ось абсцисс), синус ΡƒΠ³Π»Π° – ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΏΠΎ оси y (ось ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚).

Π”Π°Π²Π°ΠΉΡ‚Π΅ рассмотрим Π΅Ρ‰Π΅ ΠΎΠ΄ΠΈΠ½ случай, ΠΊΠΎΠ³Π΄Π° ΡƒΠ³ΠΎΠ» Ξ± – Ρ‚ΡƒΠΏΠΎΠΉ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ большС 90 Β° :

Π•Ρ‰Ρ‘ ΠΎΠ΄Π½ΠΎ Π·Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅.

Бинус Ρ‚ΡƒΠΏΠΎΠ³ΠΎ ΡƒΠ³Π»Π° – ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, Π° косинус – ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ.

ОсновноС тригономСтричСскоС тоТдСство

sin 2 Ξ± + cos 2 Ξ± = 1

Π”Π°Π½Π½ΠΎΠ΅ тоТдСство – Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ O A B :

A B 2 + O B 2 = O A 2

sin 2 Ξ± + cos 2 Ξ± = R 2

sin 2 Ξ± + cos 2 Ξ± = 1

ВригономСтрия: Π’Π°Π±Π»ΠΈΡ†Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

0 Β°30 Β°45 Β°60 Β°90 Β°sin Ξ±01 22 23 21cos Ξ±13 22 21 20tg Ξ±03 313Π½Π΅Ρ‚ctg Ξ±Π½Π΅Ρ‚313 30

ВригономСтрия: градусы ΠΈ Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹

Как пСрСвСсти градусы Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹, Π° Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ Π² градусы? Как ΠΈ ΠΊΠΎΠ³Π΄Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ»Π° градусная ΠΌΠ΅Ρ€Π° ΡƒΠ³Π»Π°? Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ ΠΈ радианная ΠΌΠ΅Ρ€Π° ΡƒΠ³Π»Π°? Π˜Ρ‰ΠΈΡ‚Π΅ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ Π² этом Π²ΠΈΠ΄Π΅ΠΎ!

ВригономСтрия: Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ привСдСния

ВригономСтрия Π½Π° окруТности ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ закономСрности. Если Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π΄Π°Π½Π½Ρ‹ΠΉ рисунок,

ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ:

sin 180 Β° = sin ( 180 Β° βˆ’ 0 Β° ) = sin 0 Β°

sin 150 Β° = sin ( 180 Β° βˆ’ 30 Β° ) = sin 30 Β°

sin 135 Β° = sin ( 180 Β° βˆ’ 45 Β° ) = sin 45 Β°

sin 120 Β° = sin ( 180 Β° βˆ’ 60 Β° ) = sin 60 Β°

cos 180 Β° = cos ( 180 Β° βˆ’ 0 Β° ) = βˆ’ cos 0 Β°

cos 150 Β° = cos ( 180 Β° βˆ’ 30 Β° ) = βˆ’ cos 30 Β°

cos 135 Β° = cos ( 180 Β° βˆ’ 45 Β° ) = βˆ’ cos 45 Β°

cos 120 Β° = cos ( 180 Β° βˆ’ 60 Β° ) = βˆ’ cos 60 Β°

Рассмотрим Ρ‚ΡƒΠΏΠΎΠΉ ΡƒΠ³ΠΎΠ» Ξ² :

Для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚ΡƒΠΏΠΎΠ³ΠΎ ΡƒΠ³Π»Π° Ξ² = 180 Β° βˆ’ Ξ± всСгда Π±ΡƒΠ΄ΡƒΡ‚ справСдливы ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ равСнства:

sin ( 180 Β° βˆ’ Ξ± ) = sin Ξ±

cos ( 180 Β° βˆ’ Ξ± ) = βˆ’ cos Ξ±

tg ( 180 Β° βˆ’ Ξ± ) = βˆ’ tg Ξ±

ctg ( 180 Β° βˆ’ Ξ± ) = βˆ’ ctg Ξ±

ВригономСтрия: Π’Π΅ΠΎΡ€Π΅ΠΌΠ° синусов

Π’ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ стороны ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ синусам ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΡƒΠ³Π»ΠΎΠ².

a sin ∠ A = b sin ∠ B = c sin ∠ C

ВригономСтрия: Π Π°ΡΡˆΠΈΡ€Π΅Π½Π½Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° синусов

ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ стороны ΠΊ синусу ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΡƒΠ³Π»Π° Ρ€Π°Π²Π½ΠΎ Π΄Π²ΡƒΠΌ радиусам описанной Π²ΠΎΠΊΡ€ΡƒΠ³ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° окруТности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

ВригономСтрия: Π’Π΅ΠΎΡ€Π΅ΠΌΠ° косинусов

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ стороны Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π΅Π½ суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π΄Π²ΡƒΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… сторон минус ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ этих сторон Π½Π° косинус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.

a 2 = b 2 + c 2 βˆ’ 2 b c β‹… cos ∠ A

b 2 = a 2 + c 2 βˆ’ 2 a c β‹… cos ∠ B

c 2 = a 2 + b 2 βˆ’ 2 a b β‹… cos ∠ C

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΈΠ· ΠžΠ“Π­

ΠœΠΎΠ΄ΡƒΠ»ΡŒ гСомСтрия: задания, связанныС с Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ.

ВригономСтрия: ВригономСтричСскиС уравнСния

Π­Ρ‚ΠΎ Ρ‚Π΅ΠΌΠ° 10-11 классов.

Из сСрии Π²ΠΈΠ΄Π΅ΠΎ Π½ΠΈΠΆΠ΅ Π²Ρ‹ ΡƒΠ·Π½Π°Π΅Ρ‚Π΅, ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅ тригономСтричСскиС уравнСния, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π·Π°Ρ‡Π΅ΠΌ ΠΎΠ½ΠΈ Π½ΡƒΠΆΠ½Ρ‹ ΠΈ ΠΊΠ°ΠΊ ΠΈΡ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ. Если Π²Ρ‹ ΠΏΠΎΠΉΠΌΡ‘Ρ‚Π΅ эти Π±Π°Π·ΠΎΠ²Ρ‹Π΅ Ρ‚Π΅ΠΌΡ‹, Ρ‚ΠΎ вскорС смоТСтС Π±Π΅Π· ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π»ΡŽΠ±Ρ‹Π΅ тригономСтричСскиС уравнСния любого уровня слоТности!

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ sin cos ΠΈ tan Π½Π° ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π΅?

НайдитС синус, косинус ΠΈΠ»ΠΈ тангСнс ΡƒΠ³Π»Π°. ΠŸΡ€ΠΎΡΡ‚ΠΎ Π²Π²Π΅Π΄ΠΈΡ‚Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π° Π² градусах ΠΈ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ ΠΊΠ½ΠΎΠΏΠΊΡƒ Β«Π±Π΅Π·, Β»,Β« Cos Β»ΠΈΠ»ΠΈΒ« tan Β». ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠΉΡ‚Π΅ синус ΡƒΠ³Π»Π° Π² ΠΌΠ΅Ρ€Ρƒ ΡƒΠ³Π»Π°. Π’Π²Π΅Π΄ΠΈΡ‚Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ синуса, Π·Π°Ρ‚Π΅ΠΌ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ ΠΊΠ½ΠΎΠΏΠΊΡƒ с надписью Β«arcsinΒ» ΠΈΠ»ΠΈ Β«sin-1Β».

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ€Π°Π²Π΅Π½ Π»ΠΈ tan YX?

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΊΡ€ΡƒΠ³Π°: tan (theta) = y / x ΠΈΠ»ΠΈ tan (theta) = sin (theta) / cos (theta). Ѐункция тангСнса ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°, Ссли синус ΠΈΠ»ΠΈ косинус, Π½ΠΎ Π½Π΅ ΠΎΠ±Π°, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹: Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Π½Ρ‚Ρ‹. ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π²Π½ΠΎ Π½Π°ΠΊΠ»ΠΎΠ½ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ стороны. … Как Ρƒ синуса ΠΈ косинуса.

Π’ΠΎΠ³Π΄Π° Ρ‡Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ SOH CAH TOA?

ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² ΠΊΠ°ΠΊΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΌΠΎΠΉ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ для sin ΠΈ cos?

Для графичСских ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠ² Π½Π°ΠΆΠΌΠΈΡ‚Π΅ Β«Π Π΅ΠΆΠΈΠΌΒ». Β» Если Π²Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚Π΅ градусы (ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Ссли Π²Ρ‹ Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ‚Π΅ΡΡŒ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ), ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ установлСн Π½Π° градусы ΠΈΠ»ΠΈ «градусы». Если Π²Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚Π΅ Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ (ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ вычислСниС ΠΈΠ»ΠΈ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ), Π΅Π³ΠΎ слСдуСт ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ ΠΈΠ»ΠΈ Β«Ρ€Π°Π΄Β». НаТмитС ΠΊΠ½ΠΎΠΏΠΊΡƒ Β«CosΒ», которая ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ находится Π² Ρ†Π΅Π½Ρ‚Ρ€Π΅ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π°.

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ, ΠΊΠΎΠ³Π΄Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Sin Cos ΠΈΠ»ΠΈ Π·Π°Π³Π°Ρ€?

Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° сСк Ρ‚Π΅Ρ‚Π°?

Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½ΠΎ sec?

ΠŸΠΎΡ‡Π΅ΠΌΡƒ Π·Π°Π³Π°Ρ€ 30?

ΠœΠΎΠΆΠ΅Ρ‚Π΅ Π»ΠΈ Π²Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ любой Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ SOH CAH TOA?

Π’: Π‘ΠΎΡ…Ρ‡Π°Ρ‚ΠΎΠ° Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²? А: Π”Π°, это относится Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌ. … A: Π£ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π° всСгда ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Π° ΡƒΠ³Π»Ρƒ 90 градусов ΠΈ являСтся самой Π΄Π»ΠΈΠ½Π½ΠΎΠΉ стороной.

Как Π²Ρ‹ рассчитываСтС Π³Ρ€Π΅Ρ…?


Π’ любом ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ для любого ΡƒΠ³Π»Π°:

Какова Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° SOH CAH TOA?

Вак…Бинус = ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ / Π“ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°
… ΠΡƒβ€¦ΠšΠΎΡΠΈΠ½ΡƒΡ = БосСдний / Π“ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°
… Π’ΠΎΠ°
ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ = Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ² / рядом

Π’ ΠΊΠ°ΠΊΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΌΠΎΠΉ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€?

ΠŸΠΎΡ‡Ρ‚ΠΈ всС ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹ ΠΏΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ΡΡ с ΠΎΠ±Π° Ρ€Π΅ΠΆΠΈΠΌΠ° DEG ΠΈ RAD. Π’Ρ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΠΆΠΈΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ соотвСтствуСт Π΄Π°Π½Π½Ρ‹ΠΌ Π² вопросС. НапримСр: Ссли Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ cos (v) ΠΈ v = 60 Β°, Ρ‚ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ Ρ€Π΅ΠΆΠΈΠΌ градусов, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ Π² градусах. Если Π·Π°Π΄Π°Π½Π½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ Π² Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ…, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ Ρ€Π΅ΠΆΠΈΠΌ RAD.

Как Π½Π°ΠΉΡ‚ΠΈ cos 1 Π½Π° ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π΅?

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ, ΠΊΠΎΠ³Π΄Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΠΆΠΈΠΌ Π² Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ… ΠΈΠ»ΠΈ градусах?

Π’Ρ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹, ΠΊΠΎΠ³Π΄Π° Π²Ρ‹ смотритС Π½Π° ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹, двиТущиСся ΠΏΠΎ ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΈΠ»ΠΈ части ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ. Π’ частности, уравнСния Π²Ρ€Π°Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ двиТСния ΠΏΠΎΡ‡Ρ‚ΠΈ всСгда Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ΡΡ Π² Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ…. ΠŸΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π² градусах, Π½ΠΎ Π²Ρ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ эти ΡƒΠ³Π»Ρ‹ Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ ΠΏΠ΅Ρ€Π΅Π΄ ΠΈΡ… использованиСм.

Какова Π΄Π»ΠΈΠ½Π° стороны 30 60 90?

Π Π°Π·ΠΌΠ΅Ρ€Ρ‹ сторон x, x√3 ΠΈ 2x. Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ 30 Β° –60 Β° –90 Β° Π΄Π»ΠΈΠ½Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹ Π² Π΄Π²Π° Ρ€Π°Π·Π° большС Π΄Π»ΠΈΠ½Ρ‹ Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ ΠΏΠ»Π΅Ρ‡Π°, Π° Π΄Π»ΠΈΠ½Π° Π±ΠΎΠ»Π΅Π΅ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ»Π΅Ρ‡Π° Π² √3 Ρ€Π°Π·Π° большС Π΄Π»ΠΈΠ½Ρ‹ Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ ΠΏΠ»Π΅Ρ‡Π°.

Как Π²Ρ‹ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚Π΅ Π³Ρ€Π΅Ρ…, Π΄Π°Π½Π½Ρ‹ΠΉ Cos?


ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Π΄Π²Π°: синус ΠΈ косинус

ΠšΠ°ΠΊΠΎΠ²Ρ‹ основы Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ?

Π’ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π΅ΡΡ‚ΡŒ Ρ‚Ρ€ΠΈ основныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, каТдая ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… являСтся ΠΎΠ΄Π½ΠΎΠΉ стороной ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ Π½Π° Π΄Ρ€ΡƒΠ³ΠΎΠΉ. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Π²Π°ΠΌ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ синус, косинус ΠΈ тангСнс ΠΊΠ°ΠΊ SOH CAH TOA.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Ρ‚Π°Π½-Ρ‚Π΅Ρ‚Π°?

Π§Ρ‚ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Cos?

сСкущий являСтся ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ косинуса. Π­Ρ‚ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹ ΠΊ сторонС, ΠΏΡ€ΠΈΠ»Π΅Π³Π°ΡŽΡ‰Π΅ΠΉ ΠΊ Π·Π°Π΄Π°Π½Π½ΠΎΠΌΡƒ ΡƒΠ³Π»Ρƒ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅.

Π‘Π΅ΠΊΡƒΠ½Π΄Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Π° Cos?

БСканс (сСк ⁑) (сСк) (сСк)

БСканс являСтся ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ косинуса. Π­Ρ‚ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹ ΠΊ сторонС, ΠΏΡ€ΠΈΠ»Π΅Π³Π°ΡŽΡ‰Π΅ΠΉ ΠΊ Π·Π°Π΄Π°Π½Π½ΠΎΠΌΡƒ ΡƒΠ³Π»Ρƒ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСк Π½Π° ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π΅?

ОписаниС. БСкущая функция. SEC (x) Π²ΠΎΠ·Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ сСканс x. АргумСнт x Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ Π² Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ….

Π§Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ дСтская ΠΊΡ€ΠΎΠ²Π°Ρ‚ΠΊΠ° Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ?

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ опрСдСлСния Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡΠΠ±Π±Ρ€Π΅Π²ΠΈΠ°Ρ‚ΡƒΡ€Π°ΠžΠΏΠΈΡΠ°Π½ΠΈΠ΅
котангСнсдСтская ΠΊΡ€ΠΎΠ²Π°Ρ‚ΠΊΠ° (ΠΈΠ»ΠΈ ΠΊΠΎΡ‚Π°Π½ ΠΈΠ»ΠΈ ΠΊΠΎΡ‚Π³ ΠΈΠ»ΠΈ ctg ΠΈΠ»ΠΈ ctn)Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ²
сСкущийсСкгипотСнуза
косСкансcsc (ΠΈΠ»ΠΈ cosec)Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ дСтская ΠΊΡ€ΠΎΠ²Π°Ρ‚ΠΊΠ° 30 градусов?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ косинус 30 градусов Π² Π΄Ρ€ΠΎΠ±Π½ΠΎΠΉ части?

ΠšΠΎΡΠΈΠ½ΡƒΡ ΡƒΠ³Π»Π° 30 градусов Π² ΡˆΠ΅ΡΡ‚ΠΈΠ΄Π΅ΡΡΡ‚Π΅Ρ€ΠΈΡ‡Π½ΠΎΠΉ систСмС измСрСния ΡƒΠ³Π»ΠΎΠ² записываСтся ΠΈΠ»ΠΈ выраТаСтся ΠΊΠ°ΠΊ cos (30 Β°). Π’ Π΄Ρ€ΠΎΠ±Π½ΠΎΠΌ Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos (30 Β°) Ρ€Π°Π²Π½ΠΎ √3 / 2.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ CSC 30?

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ОсновноС тригономСтричСскоС тоТдСство

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

9 класс, 10 класс, Π•Π“Π­/ΠžΠ“Π­

Π‘Ρ‚Π°Ρ‚ΡŒΡ находится Π½Π° ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ΅ Ρƒ мСтодистов Skysmart.
Если Π²Ρ‹ Π·Π°ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ ΠΎΡˆΠΈΠ±ΠΊΡƒ, сообщитС ΠΎΠ± этом Π² ΠΎΠ½Π»Π°ΠΉΠ½-Ρ‡Π°Ρ‚
(Π² ΠΏΡ€Π°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡƒΠ³Π»Ρƒ экрана).

Бвязь ΠΌΠ΅ΠΆΠ΄Ρƒ sin ΠΈ cos ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°

Π’Ρ‹ ΡƒΠΆΠ΅ навСрняка Π·Π½Π°Π΅Ρ‚Π΅, Ρ‡Ρ‚ΠΎ тоТдСствСнный β€” это Ρ€Π°Π²Π½Ρ‹ΠΉ.

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ тригономСтричСскиС тоТдСства β€” это равСнства, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‚ связь ΠΌΠ΅ΠΆΠ΄Ρƒ синусом, косинусом, тангСнсом ΠΈ котангСнсом ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°. Π­Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ Π»ΡŽΠ±ΡƒΡŽ ΠΈΠ· этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ, Ссли извСстна другая функция.

ΠšΠ»ΡŽΡ‡ ΠΊ сСрдцу Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ β€” основноС тригономСтричСскоС тоТдСство. Π—Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚Π΅ ΠΈ ΠΏΠΎΠ»ΡŽΠ±ΠΈΡ‚Π΅ Π΅Π³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ с Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ слоТились самым Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

sin 2 Ξ± + cos 2 Ξ± = 1

Из основного тоТдСства Π²Ρ‹Ρ‚Π΅ΠΊΠ°ΡŽΡ‚ равСнства тангСнса ΠΈ котангСнса, поэтому ΠΎΠ½ΠΎ β€” ΠΊΠ»ΡŽΡ‡Π΅Π²ΠΎΠ΅.

РавСнство tg 2 Ξ± + 1 = 1/cos 2 Ξ± ΠΈ равСнство 1 + сtg 2 Ξ± + 1 = 1/sin 2 Ξ± выводят ΠΈΠ· основного тоТдСства, Ρ€Π°Π·Π΄Π΅Π»ΠΈΠ² ΠΎΠ±Π΅ части Π½Π° sin 2 Ξ± ΠΈ cos 2 Ξ±.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ дСлСния ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ основному тригономСтричСскому тоТдСству удСляСтся максимум внимания. Но какая ΠΆΠ΅ «мСтрия» ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠ±ΠΎΠΉΡ‚ΠΈΡΡŒ Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π². Π’ΠΈΠ΄ΠΈΡ‚Π΅ тоТдСство β€” Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΠΉΡ‚Π΅, Π½Π΅ раздумывая.

sin 2 Ξ± + cos 2 Ξ± = 1

Π‘ΡƒΠΌΠΌΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² синуса ΠΈ косинуса ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° тоТдСствСнно Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅.

Π§Ρ‚ΠΎΠ±Ρ‹ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ тоТдСство, обратимся ΠΊ Ρ‚Π΅ΠΌΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности.

Единичная ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ β€” это ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Радиус Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности Ρ€Π°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ тоТдСство sin 2 Ξ± + cos 2 Ξ± = 1

ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Π»ΡΡ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ OA1B.

ОсновноС тригономСтричСскоС тоТдСство связываСт синус ΡƒΠ³Π»Π° ΠΈ косинус ΡƒΠ³Π»Π°. Зная ΠΎΠ΄Π½ΠΎ, Π²Ρ‹ Π»Π΅Π³ΠΊΠΎ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π½Π°ΠΉΡ‚ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠ΅. НуТно лишь ΠΈΠ·Π²Π»Π΅Ρ‡ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ:

Как Π²ΠΈΠ΄ΠΈΡ‚Π΅, ΠΏΠ΅Ρ€Π΅Π΄ ΠΊΠΎΡ€Π½Π΅ΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚ΠΎΡΡ‚ΡŒ ΠΈ минус, ΠΈ плюс. ОсновноС тригономСтричСскоС тоТдСство Π½Π΅ Π΄Π°Π΅Ρ‚ ΠΏΠΎΠ½ΡΡ‚ΡŒ, ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ»ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π±Ρ‹Π» исходный синус/косинус ΡƒΠ³Π»Π°.

Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Π² Π·Π°Π΄Π°Ρ‡ΠΊΠ°Ρ… с ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ ΡƒΠΆΠ΅ Π΅ΡΡ‚ΡŒ условия, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠΌΠΎΠ³Π°ΡŽΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒΡΡ со Π·Π½Π°ΠΊΠΎΠΌ. ΠžΠ±Ρ‹Ρ‡Π½ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ условиС β€” ΡƒΠΊΠ°Π·Π°Π½ΠΈΠ΅ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π±Π΅Π· Ρ‚Ρ€ΡƒΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊΠΎΠΉ Π·Π½Π°ΠΊ Π½Π°ΠΌ трСбуСтся.

ВангСнс ΠΈ котангСнс Ρ‡Π΅Ρ€Π΅Π· синус ΠΈ косинус

Из всСго этого мноТСства красивых, Π½ΠΎ Π½Π΅ сильно понятных слов, ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ зависимости ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ. Вакая связь ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Π½ΡƒΠΆΠ½Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹.

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ:

Π­Ρ‚ΠΎ позволяСт ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ тригономСтричСскиС тоТдСства

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π·Π°Π΄Π°ΡŽΡ‚ΡΡ sin ΠΈ cos ΡƒΠ³Π»ΠΎΠ².

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ тангСнс ΡƒΠ³Π»Π° β€” это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ синуса ΡƒΠ³Π»Π° ΠΊ косинусу. А котангСнс ΡƒΠ³Π»Π° β€” это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ косинуса ΠΊ синусу.

ΠžΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ стоит ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ тригономСтричСскиС тоТдСства

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π²Π΅Ρ€Π½Ρ‹ для всСх ΡƒΠ³Π»ΠΎΠ² Ξ±, значСния ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ для любого ΡƒΠ³Π»Π° Ξ±, Π½Π΅ Ρ€Π°Π²Π½ΠΎΠ³ΠΎ Ο€ * z, Π³Π΄Π΅ z β€” это любоС Ρ†Π΅Π»ΠΎΠ΅ число.

ΠšΡƒΡ€ΡΡ‹ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΊ ΠžΠ“Π­ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΎΡ‚ Skysmart ΠΏΡ€ΠΈΠ΄Π°Π΄ΡƒΡ‚ увСрСнности Π² сСбС ΠΈ ΠΏΠΎΠΌΠΎΠ³ΡƒΡ‚ ΠΎΡΠ²Π΅ΠΆΠΈΡ‚ΡŒ знания ΠΏΠ΅Ρ€Π΅Π΄ экзамСном.

Бвязь ΠΌΠ΅ΠΆΠ΄Ρƒ тангСнсом ΠΈ котангСнсом

Π£ΠΆ насколько ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎΠΉ каТСтся связь ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π°Π½Π΅Π΅ рассмотрСнными тоТдСствами, Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠΊΠΎ Π΅Ρ‰Π΅ Π±ΠΎΠ»Π΅Π΅ наглядна связь ΠΌΠ΅ΠΆΠ΄Ρƒ тангСнсом ΠΈ котангСнсом ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°.

Π’Π°ΠΊΠΎΠ΅ тоТдСство ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ ΠΈ справСдливо ΠΏΡ€ΠΈ Π»ΡŽΠ±Ρ‹Ρ… ΡƒΠ³Π»Π°Ρ… Ξ±, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π΅ Ρ€Π°Π²Π½ΡΡŽΡ‚ΡΡ Ο€/2 * z, Π³Π΄Π΅ z β€” это любоС Ρ†Π΅Π»ΠΎΠ΅ число. Π’ ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹.

Как ΠΈ любоС Π΄Ρ€ΡƒΠ³ΠΎΠ΅, Π΄Π°Π½Π½ΠΎΠ΅ тригономСтричСскоС тоТдСство ΠΏΠΎΠ΄Π»Π΅ΠΆΠΈΡ‚ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ. Π”ΠΎΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ Π΅Π³ΠΎ ΠΎΡ‡Π΅Π½ΡŒ просто.

tg Ξ± * ctg Ξ± = 1.

ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ тангСнс ΠΈ котангСнс ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ смысл β€” это Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ числа.

Если числа a ΠΈ b Π²Π·Π°ΠΈΠΌΠ½ΠΎ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ β€” это Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ число a β€” это число, ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ числу b, Π° число b β€” это число, ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ числу a. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, это Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ числу a ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ число b, Π° числу b ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ число a. ΠšΠΎΡ€ΠΎΡ‡Π΅, ΠΈ Ρ‚Π°ΠΊ, ΠΈ эдак.

ВангСнс ΠΈ косинус, котангСнс ΠΈ синус

ВсС тоТдСства Π²Ρ‹ΡˆΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ тангСнс ΡƒΠ³Π»Π° связан с косинусом ΡƒΠ³Π»Π°, Π° котангСнс ΡƒΠ³Π»Π° β€” с синусом.

Π­Ρ‚Π° связь становится ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Π°, Ссли Π²Π·Π³Π»ΡΠ½ΡƒΡ‚ΡŒ Π½Π° тоТдСства:

Π‘ΡƒΠΌΠΌΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° тангСнса ΡƒΠ³Π»Π° ΠΈ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ Ρ€Π°Π²Π½Π° числу, ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρƒ косинуса этого ΡƒΠ³Π»Π°.

Π‘ΡƒΠΌΠΌΠ° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° котангСнса ΡƒΠ³Π»Π° Ρ€Π°Π²Π½Π° числу, ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρƒ синуса этого ΡƒΠ³Π»Π°.

ВывСсти ΠΎΠ±Π° этих тоТдСства ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ· основного тригономСтричСского тоТдСства:
sin 2 Ξ± + cos 2 Ξ± = 1.

Π₯ΠΎΡ€ΠΎΡˆΠΎ Π±Ρ‹ Π²Ρ‹ΡƒΡ‡ΠΈΡ‚ΡŒ всС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠΈ тоТдСств Π½Π°ΠΈΠ·ΡƒΡΡ‚ΡŒ. Π§Ρ‚ΠΎΠ±Ρ‹ это ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ, сохраняйтС сСбС Ρ‚Π°Π±Π»ΠΈΡ‡ΠΊΡƒ с основными Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ.

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ тригономСтричСскиС тоТдСства

sin 2 Ξ± + cos 2 Ξ± = 1

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

tg 2 Ξ± + 1 = Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

1 + ctg 2 Ξ± = Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π§Ρ‚ΠΎΠ±Ρ‹ Ρ‚Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ Π΅Ρ‰Π΅ мСньшС Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡, сохраняйтС Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡƒΠ³Π»ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ‡Π°Ρ‰Π΅ всСго Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ….

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡

Π Π°Π·Π±Π΅Ρ€Π΅ΠΌ ΠΏΠ°Ρ€Ρƒ Π·Π°Π΄Π°Ρ‡Π΅ΠΊ, для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ основныС тоТдСства. РассмотритС Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΈ ΠΏΠΎΡ‚Ρ€Π΅Π½ΠΈΡ€ΡƒΠΉΡ‚Π΅ΡΡŒ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ.

Π—Π°Π΄Π°Ρ‡ΠΊΠ° 1. НайдитС cos Ξ±, tg Ξ±, ctg Ξ± ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ sin Ξ± = 12/13.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Π—Π°Π΄Π°Ρ‡ΠΊΠ° 2. НайдитС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ cos Ξ±,
Ссли:
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ значСния sin Ξ±:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ csc Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Как Π²ΠΈΠ΄ΠΈΡ‚Π΅, Π·Π°Π΄Π°Ρ‡ΠΈ Ρ€Π΅ΡˆΠ°ΡŽΡ‚ΡΡ достаточно просто, Π½ΡƒΠΆΠ½ΠΎ лишь Π²Π΅Ρ€Π½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ основных тоТдСств.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *