Что такое борелевская функция
БОРЕЛЕВСКАЯ ФУНКЦИЯ
Понятие Б. ф. обобщается на функции со значениями в любом метрич. пространстве (см. [3]). В этом случае говорят также о B-измеримых отображениях. Б. ф., помимо теории множеств и теории функций, находят применение в теории вероятностей (см. [1], [4]).
Лит.:[1] X а лмош П., Теория меры, пер. с англ., М., 1953; [2]Хаусдорф Ф., Теория множеств, пер. с нем., М.- Л., 1937; [3] Куратовский К., Топология, т. 1, М., 1966; [4] Колмогоров А. Н., Основные понятия теории вероятностей, 2 изд.,М., 1974. В. А. Скворцов.
Полезное
Смотреть что такое «БОРЕЛЕВСКАЯ ФУНКЦИЯ» в других словарях:
Борелевская функция — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевская алгебра — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевская сигма-алгебра — это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (также она содержит и все замкнутые). Эти подмножества также называются Борелевыми. Если не оговорено противное, в качестве топологического… … Википедия
Борелева функция — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
ГАРМОНИЧЕСКАЯ ФУНКЦИЯ — действительная функция заданная в области Dевклидова пространства имеющая в Dнепрерывные частные производные 1 го и 2 го порядков и являющаяся решением Лапласа уравнения где декартовы прямоугольные координаты точки х. Иногда это определение… … Математическая энциклопедия
СПЕКТРАЛЬНАЯ ФУНКЦИЯ — разложение единицы, монотонное непрерывное слева в сильной операторной топологии отображение действительной прямой во множество ортогональных проекторов в гильбертовом пространстве, удовлетворяющее условиям Всякая самосопряженная (т. е.… … Математическая энциклопедия
Борелевское поле — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевы функции — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Булева сигма-алгебра — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевская функция
Борелевская сигма-алгебра — это минимальная сигма-алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые).
Если не оговорено противное, в качестве топологического пространства выступает множество вещественных чисел.
Борелевская сигма-алгебра обычно выступает в роли сигма-алгебры случайных событий вероятностного пространства. В борелевской сигма-алгебре на прямой или на отрезке содержатся многие «простые» множества: все интервалы, полуинтервалы, отрезки и их счётные объединения.
Алгебра была названа по имени Бореля.
Связанные понятия
Свойства
Пример измеримого по Лебегу, но не борелевского множества
Полезное
Смотреть что такое «Борелевская функция» в других словарях:
БОРЕЛЕВСКАЯ ФУНКЦИЯ — В функция, функция, для к рой все подмножества вида ) из области ее определения являются борелевскими множествами. Другие назв. Б. ф.: функции, измеримые по Борелю, В измеримые функции. Операции сложения, умножения и предельного перехода, как и в … Математическая энциклопедия
Борелевская алгебра — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевская сигма-алгебра — это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (также она содержит и все замкнутые). Эти подмножества также называются Борелевыми. Если не оговорено противное, в качестве топологического… … Википедия
Борелева функция — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
ГАРМОНИЧЕСКАЯ ФУНКЦИЯ — действительная функция заданная в области Dевклидова пространства имеющая в Dнепрерывные частные производные 1 го и 2 го порядков и являющаяся решением Лапласа уравнения где декартовы прямоугольные координаты точки х. Иногда это определение… … Математическая энциклопедия
СПЕКТРАЛЬНАЯ ФУНКЦИЯ — разложение единицы, монотонное непрерывное слева в сильной операторной топологии отображение действительной прямой во множество ортогональных проекторов в гильбертовом пространстве, удовлетворяющее условиям Всякая самосопряженная (т. е.… … Математическая энциклопедия
Борелевское поле — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевы функции — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Булева сигма-алгебра — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевская алгебра
Борелевская сигма-алгебра — это минимальная сигма-алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые).
Если не оговорено противное, в качестве топологического пространства выступает множество вещественных чисел.
Борелевская сигма-алгебра обычно выступает в роли сигма-алгебры случайных событий вероятностного пространства. В борелевской сигма-алгебре на прямой или на отрезке содержатся многие «простые» множества: все интервалы, полуинтервалы, отрезки и их счётные объединения.
Алгебра была названа по имени Бореля.
Связанные понятия
Свойства
Пример измеримого по Лебегу, но не борелевского множества
Полезное
Смотреть что такое «Борелевская алгебра» в других словарях:
Борелевская сигма-алгебра — это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (также она содержит и все замкнутые). Эти подмножества также называются Борелевыми. Если не оговорено противное, в качестве топологического… … Википедия
Борелевская функция — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Алгебра (значения) — Алгебра раздел математики либо математическая структура специального вида (см. Алгебраическая система) Как раздел математики Абстрактная алгебра Алгебра логики раздел математической логики. Коммутативная алгебра Линейная алгебра… … Википедия
Булева сигма-алгебра — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Сигма-алгебра — σ алгебра (сигма алгебра) алгебра множеств, замкнутая относительно операции счётного объединения. Сигма алгебры играют важнейшую роль в теории меры и интегралов Лебега, а также в теории вероятностей. Содержание 1 Определение 2 Замечания … Википедия
Σ-алгебра — (сигма алгебра) это алгебра множеств, замкнутая относительно операции счётного объединения. Сигма алгебры играют важнейшую роль в теории меры и интегралов Лебега, а также в теории вероятностей. Содержание 1 Определение 2 Замечания 3 … Википедия
СХОДИМОСТЬ МЕР — понятие теории меры, задаваемое той или иной топологией в пространстве мер, определенных на нек рой алгебре подмножеств пространства Xили, более общо, в пространстве зарядов, т. е. счетно аддитивных действительных или комплексных функций… … Математическая энциклопедия
БОРЕЛЕВСКОЕ ПОЛЕ СОБЫТИЙ — s поле, борелевская алгебра, алгебра событий, нек рый фиксированный класс Аподмножеств (событий) непустого множества (пространства элементарных событий), образующий борелевское поле множеств. В. В. Сазонов … Математическая энциклопедия
Борелевская сигма-алгебра
Борелевская сигма-алгебра — это минимальная сигма-алгебра, содержащая все открытые подмножества топологического пространства (также она содержит и все замкнутые). Эти подмножества также называются Борелевыми.
Если не оговорено противное, в качестве топологического пространства выступает множество вещественных чисел.
Борелевская сигма-алгебра обычно выступает в роли сигма-алгебры случайных событий вероятностного пространства. В борелевской сигма-алгебре на прямой или на отрезке содержатся многие «простые» множества: все интервалы, полуинтервалы, отрезки и их счётные объединения.
Связанные понятия
Свойства
Пример измеримого по Лебегу, но не борелевского множества
Любое подмножество множества нулевой меры автоматически измеримо по Лебегу, но такое может не быть борелевским.
Рассмотрим функцию на отрезке
, где
— канторова лестница. Эта функция монотонна и непрерывна, как следствие — измерима. Мера образа канторова множества равна
, а значит, мера образа его дополнения также равна
. Поскольку мера образа канторова множества ненулевая, в нём можно найти неизмеримое множество
. Тогда его прообраз
будет измеримым (так как он лежит в канторовом множестве, мера которого нулевая), но не будет борелевским (поскольку иначе
было бы измеримо как образ борелевского множества при измеримом отображении).
Полезное
Смотреть что такое «Борелевская сигма-алгебра» в других словарях:
Сигма-алгебра — σ алгебра (сигма алгебра) алгебра множеств, замкнутая относительно операции счётного объединения. Сигма алгебры играют важнейшую роль в теории меры и интегралов Лебега, а также в теории вероятностей. Содержание 1 Определение 2 Замечания … Википедия
Булева сигма-алгебра — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевская алгебра — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевская функция — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Алгебра (значения) — Алгебра раздел математики либо математическая структура специального вида (см. Алгебраическая система) Как раздел математики Абстрактная алгебра Алгебра логики раздел математической логики. Коммутативная алгебра Линейная алгебра… … Википедия
Σ-алгебра — (сигма алгебра) это алгебра множеств, замкнутая относительно операции счётного объединения. Сигма алгебры играют важнейшую роль в теории меры и интегралов Лебега, а также в теории вероятностей. Содержание 1 Определение 2 Замечания 3 … Википедия
Борелева функция — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевское поле — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевы функции — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Измеримое пространство — σ алгебра (сигма алгебра) это алгебра множеств, замкнутая относительно операции счётного объединения. Сигма алгебры играют важнейшую роль в теории меры и интегралов Лебега, а также в теории вероятностей. Содержание 1 Определение 2 Замечания 3 … Википедия
Борелева функция
Борелевская сигма-алгебра — это минимальная сигма-алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые).
Если не оговорено противное, в качестве топологического пространства выступает множество вещественных чисел.
Борелевская сигма-алгебра обычно выступает в роли сигма-алгебры случайных событий вероятностного пространства. В борелевской сигма-алгебре на прямой или на отрезке содержатся многие «простые» множества: все интервалы, полуинтервалы, отрезки и их счётные объединения.
Алгебра была названа по имени Бореля.
Связанные понятия
Свойства
Пример измеримого по Лебегу, но не борелевского множества
Полезное
Смотреть что такое «Борелева функция» в других словарях:
Борелевская функция — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевское поле — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевская алгебра — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Борелевы функции — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
Булева сигма-алгебра — Борелевская сигма алгебра это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Если не оговорено противное, в качестве топологического пространства выступает… … Википедия
1 − 2 + 3 − 4 + … — Первые 15000 частичных сумм ряда 0 + 1 − 2 + 3 − 4 + … В математике, 1 − 2 + 3 − 4 + … это числовой ряд, слагаемые которого по модулю представляют собой последовательные натуральные … Википедия
Борелевская сигма-алгебра — это минимальная сигма алгебра, содержащая все открытые подмножества топологического пространства (также она содержит и все замкнутые). Эти подмножества также называются Борелевыми. Если не оговорено противное, в качестве топологического… … Википедия