Что такое болевые реакции
Избранные вопросы молекулярной патологии для клинических ординаторов 2020
1. Понятие боли
Международная ассоциация по изучению боли (IASP) дала следующее определение понятию боль:
Боль — неприятное сенсорное и эмоциональное переживание, связанное с истинным или потенциальным повреждением ткани или описываемое в терминах такого повреждения.
То есть боль, как правило, нечто большее, чем чистое ощущение, связанное с существующим или возможным органическим повреждением, поскольку обычно сопровождается эмоциональным переживанием.
Системная реакция проявляется комплексом реакций.
Как системная реакция организма боль состоит из 3-х процессов:
Ноцице́пция; ноциперце́пция; физиологи́ческая боль — это активность в афферентных (чувствительных) нервных волокнах периферической и центральной нервной системы, возбуждаемая разнообразными стимулами, обладающими пульсирующей интенсивностью. Данная активность генерируется ноцицепторами, или по-другому рецепторами боли, которые могут отслеживать механические, тепловые или химические воздействия, превышающие генетически установленный порог возбудимости. Получив повреждающий стимул, ноцицептор передаёт сигнал через спинной мозг и далее в головной. Ноцицепция сопровождается также самыми разнообразными проявлениями и может служить для возникновения опыта боли у живых существ.
Реакции, вызываемые ноцицепцией
Когда ноцицепторы стимулируются, они передают сигналы через сенсорные нейроны в спинном мозге. Эти нейроны высвобождают глютамат, главный нейромедиатор, который пересылает сигналы от одного нейрона к другому через синапсы. Если сигналы поступают в ретикулярную формацию и таламус, ощущение боли возникает в сознании в тупой, плохо локализуемой форме. Из таламуса сигнал может направляться в соматосенсорную кору головного мозга, и тогда боль локализуется более чётко и ощущается с более определёнными характеристиками. Ноцицепция может также вызывать менее определённые автоматические реакции, не зависимые от сознания, такие как бледность, потоотделение, брадикардию, гипотонию, головокружение, тошноту и обморок.
Термин «ноцицепция» был введен Чарльзом Скоттом Шеррингтоном, чтобы более чётко дифференцировать между физиологическим характером нервной активности при повреждении ткани и психологической реакцией на физиологическую боль. Слово «ноцицепция» происходит от латинских слов nocere — вредить и capere — брать, взять, принимать.
Четыре вида боли: причины возникновения и методы лечения
Мы все боимся боли. Она тревожит, приносит дискомфорт, выводит из строя, а порой причиняет невыносимые страдания. А вот врачи древности называли боль «цепным псом организма». Ведь именно она сигнализирует, что необходима срочная помощь. Но что делать, если «пес» сорвался с цепи?
Наш эксперт – врач-невролог, доцент кафедры нервных болезней лечебного факультета Первого МГМУ им. И. М. Сеченова, кандидат медицинских наук Наталья Вахнина.
Боль – это важный защитный механизм. Недаром люди, с рождения лишенные болевых ощущений, как правило, не доживают и до 3 лет. Но если боль долго игнорировать или лечиться неправильно, она станет хронической. В этом случае она перестает быть полезной, и от нее уже будет очень нелегко избавиться. К тому же у каждого 2-3-го пациента с хронической болью развиваются депрессия или тревожные расстройства.
Многоликая и загадочная
По времени боль бывает транзиторной (длится совсем недолго), острой (может беспокоить, пока больное место не заживет, но не свыше 1,5 месяца) и хронической (продолжается свыше 3 месяцев). Ее силу неврологи измеряют по особой шкале (от 0 до 10). Этот показатель субъективный и зависит только от ощущений пациента.
А вот найти место, где болит, не всегда легко, ведь боль бывает как местной, так и иррадиирующей (например, при стенокардии она может отдавать под лопатку или в руку, а при болезнях тазовых органов — в спину). А еще она бывает отраженной — в этом случае болит тот участок кожи, который иннервируется из того же участка спинного мозга, что и внутренний орган — истинный источник патологии. Кроме того, боль может различаться и по виду. Она бывает ноцицептивной, нейропатической и психогенной.
Ноцицептивная боль – самая частая (до 80% случаев)
Причины. Самые частые – это воспаление, механическая травма или ожог (термический и химический). Боль в спине, головные боли при похмелье или спазмы в животе при месячных также относятся к этой категории. Такую боль вызывает раздражение периферических болевых рецепторов, расположенных практически во всех органах и тканях.
Жалобы. Пациенты описывают эту боль словами «сжимающая», «ноющая», «пульсирующая», «режущая».
Чем лечить? Главное – исключить опасную боль, связанную с повреждением внутренних органов. Если же какой-то серьезной причины не предполагается, необходимо принять нестероидный противовоспалительный препарат или анальгетик. Но и чрезмерный прием лекарств опасен. Если пить обезболивающие при головной боли чаще 3 раз в неделю, это может вызвать лекарственно-индуцированную головную боль. С такой справиться гораздо сложнее.
Нейропатическая боль (до 8% случаев)
Причины. Травма нерва или хронические заболевания (сахарный диабет, алкоголизм, невралгия тройничного нерва, опоясывающий лишай и другие). Фантомную боль после ампутации конечности тоже можно отнести к нейропатической. Такая боль вызвана повреждением нервной системы, из-за которого повышается активация путей проведения боли.
Жалобы. На «жгучую», «режущую», «колющую», «стреляющую» боль. При этом повышается чувствительность к болевым стимулам, что медики называют гиперестезией. В таком случае человек может остро реагировать даже на соприкосновение тела с простыней или мягкой одеждой. Симптомы могут усиливаться во время отдыха (не дают спать), но уменьшаться при физической активности. Но может все происходить и наоборот.
Чем лечить? Противосудорожные препараты (габапентин, тебантин, прегабалин), антидепрессанты (амитриптилин, дулоксетин), витамины группы В.
Причины. Сильный стресс и психические расстройства. Депрессия, тревога, неврастения, шизофрения и другие. В этом случае никакой неврологической или соматической причины нет, а боль, тем не менее, есть.
Жалобы. Отличаются огромным разнообразием. Боли по описанию могут быть вычурными, ни на что не похожими. Больные используют необычные метафоры для описания своей боли («как будто черви ползают под кожей», «словно кто-то пальцами перебирает мозги» и т. п.)
Чем лечить? Антидепрессанты (амитриптилин, дулоксетин), транквилизаторы, нейролептики. Из немедикаментозных способов — психотерапия.
Неспецифические – скелетно-мышечные боли (СМБ) составляют примерно треть от всех острых и хронических болевых синдромов.
Причина. Остеохондроз. А среди триггеров — стрессы, переохлаждение, высокие нагрузки или, наоборот, гиподинамия.
Жалобы. На боли в поясничном и крестцовом отделах позвоночника, ягодице, шее и области над плечами. У половины пациентов болит сразу в нескольких областях одновременно. Но боль в нижней части спины (БНЧС) стоит на 1-м месте (имеется у 80% людей), а в шейном отделе позвоночника (цервикалгия) — на 4-м (ее хотя бы однажды испытывали 2 из 3 людей, а 30-50% взрослых людей сталкиваются с ней ежегодно).
Чем лечить? Приемом нестероидных противовоспалительных препаратов (НПВП) в местных формах или в таблетках и миорелаксантов (лекарств, снимающих мышечный спазм, который усиливает боль). Нередко можно обойтись только НПВП.
Среди 200 препаратов этой группы выделяются лекарства, содержащие диклофенак и другие активные вещества. Диклофенак при длительном или частом применении, особенно у людей с проблемами ЖКТ, может давать осложнения (язвы и прободение желудка, внутренние кровотечения), а также повышать артериальное давление, усиливать отеки. Более предпочтительны препараты на основе ацеклофенака (аэртал, ацеклагин, аленталь).
При недостаточной эффективности НПВП требуются миорелаксанты (мидокалм, калмирекс, сирдалуд). Они применяются курсом (1-2 недели). При выраженной боли лечение начинают с инъекций, затем переходят на таблетки.
Спешить нельзя помедлить
У пациентов с болью есть два крайних подхода: сразу же бежать к доктору или длительно игнорировать ее. Вторая реакция, конечно, опаснее.
По мнению врачей, действовать надо так: если где-то заболело не очень сильно и причина очевидна и неопасна, достаточно принять анальгетик или нестероидный противовоспалительный препарат и, если через 1-2 дня не полегчало, идти к врачу (терапевту или неврологу).
Исключение – острая боль в животе или грудной клетке. При таких симптомах надо немедленно вызывать скорую помощь, так как это может быть симптомом очень опасного заболевания (аппендицит, инфаркт, разрыв аневризмы и прочее). Особенно опасно принимать анальгетики при боли в животе. Ведь так можно «смазать» картину заболевания и дотянуть до развития смертельных осложнений, таких как перитонит или прободение язвы.
К неврологу не нужно сразу нести никаких результатов исследования. Ведь для каждого из них есть свои показания, и врач сам назначит, что нужно: рентген, МРТ, КТ или другие исследования. Однако в 90% случаев ничего этого и не понадобится. Опытному врачу часто достаточно осмотреть и опросить пациента, выяснив локализацию, иррадиацию, давность, интенсивность и характер боли, чтобы определиться с причиной боли и назначить лечение.
Иногда неврологу приходится направлять больного на дообследование или консультацию к другим специалистам (психиатру, хирургу, ревматологу, гинекологу, онкологу и др.). Это происходит нечасто — опасные причины боли встречаются не чаще чем в 5% случаев. Тем не менее это бывает, и хороший невролог знает, на что обратить внимание.
Например, нетипично, когда на сильную боль в спине, возникшую без явной причины, жалуется пожилой человек или пациент, с наличием онкологического заболевания в анамнезе – в этом случае лучше перестраховаться и отправить его на КТ или МРТ, чтобы исключить рак или его рецидив. Необходимо также исключить остеопороз, лечением которого занимаются эндокринологи. Кстати, врач обязательно задаст вопрос и о постоянно принимаемых лекарствах: ведь, например, кортикостероиды ведут к развитию остеопороза.
У молодых людей до 20 лет сильные скелетно-мышечные боли, возникшие без травм, тоже редкость – в этом случае не помешает консультация ревматолога. Наличие резкого похудения, повышенной температуры и других тревожных симптомов также нельзя обойти вниманием. А еще подозрительно, когда боль в спине не утихает в покое (что нехарактерно для обычного «прострела»).
Ощущение боли очень субъективно. Есть факторы, которые усиливают это переживание или, наоборот, снижают. Чем сильнее ощущается боль, тем выше риск ее перехода в хроническую форму. Боль усиливают:
Молекулярная биология боли
Они знают, что такое боль.
Автор
Редакторы
Конкурс «био/мол/текст»-2019
Эта работа опубликована в номинации «Свободная тема» конкурса «био/мол/текст»-2019.
Генеральный спонсор конкурса и партнер номинации «Сколтех» — Центр наук о жизни Сколтеха.
Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.
Спонсором приза зрительских симпатий выступила компания BioVitrum.
Какая бывает боль?
Ни для кого не секрет, что за ощущение боли отвечает нервная система. В общем виде работу этой системы можно представить так: рецепторы улавливают внешний сигнал и преобразуют его в нервный импульс (трансдукция), передают информацию по нерву (кондукция), а далее она обрабатывается в спинном мозге и «отсылается» в головной мозг (проекция) для генерации болезненных ощущений (восприятие) (рис. 1). Почти все помнят, что боль — это реакция на внешний раздражитель, но на самом деле это не всегда так: она может возникать и при поломке самой нервной системы.
Рисунок 1. Схема работы болевого импульса. В простейшем пути передачи сигнала участвуют три группы нейронов, чьи волокна обозначены на схеме разными цветами. За трансдукцию боли отвечает ноцицептор (обозначен на схеме фиолетовым), трансдукция происходит по нервным волокнам, обозначенным красным цветом, в спинном мозге происходит проекция боли на «зеленый» участок схемы, восприятие же боли начинается тогда, когда нейроны третьего порядка передадут нервный импульс от таламуса к коре больших полушарий.
Стоит отметить, что эволюционно боль появилась в качестве полезной адаптации, и на самом деле, до сих пор продолжает играть важную роль в нашей жизни. Задумайтесь, какой бы была жизнь без боли — мы не могли бы отдергивать руку, касаясь горячей поверхности, не замечали бы наносимых ран, а уж как осложнилась бы жизнь врачей, ставящих диагноз — сложно представить. Однако это не вся польза, которую приносит нам наша система восприятия боли. Рука об руку с ощущением боли идут ощущения давления, холода и тепла (то есть осязание) — и возможность организма в ответ на стимул из внешней среды изменить свои параметры. Существует ряд болезней (в основном генетически обусловленных), при которых восприятие боли нарушается. Их тяжесть варьирует в зависимости от того, какой именно рецептор или канал «поломан». Самые тяжелые формы (например, наследственная сенсорно-вегетативная невропатия IV типа) характеризуются полной потерей болевой чувствительности в конечностях и нарушением способности организма регулировать температуру тела. Но обо всем по порядку.
Классификация боли, предложенная Клиффордом Вульфом [1], включает в себя четыре типа: ноцицептивная, воспалительная, невропатическая и функциональная. Кроме того, стоит отметить и психогенную боль.
Поскольку мы решили остановиться на «нормальной» ноцицептивной боли, давайте разберемся поподробнее с каждым из этапов ее появления.
Эпизод I: Пойманная угроза
Чтобы определить любой сигнал, наш организм использует внушительный арсенал белков-рецепторов. Их задача заключается в том, что они реагируют на строго определенный внешний фактор и передают сигнал об этом связывании при помощи конформационных изменений [2], влекущих за собой и изменение биохимических свойств этого рецептора. Переданные от рецептора сигналы усиливаются каскадом белковых взаимодействий в клетке, могут передаваться с помощью нервной или эндокринной систем и, в конечном итоге, приводят к физиологическому ответу.
Нейроны, работающие в ноцицептивной системе, различаются по набору рецепторов. Среди этих нейронов выделяются четыре группы: несущие рецепторы температуры, химического воздействия, механического воздействия и полимодальные (с рецепторами всех раздражителей).
Одни из важнейших рецепторов, реагирующих на тепло, — белки группы TRP. Это ионные каналы, неспецифичные к катиону, — при открытии они пропускают в клетку натрий, магний и кальций, в результате чего в клетке возникает потенциал действия, необходимый для передачи нервного импульса. Этих доблестных воинов термочувствительности несколько: TRPV1–TRPV4 и TRPM8. Первые активируются при повышенной температуре, второй же реагирует на холод. Эти каналы обладают интересной особенностью — помимо температуры, они могут активироваться химическими стимулами.
Биохимические механизмы этой активации отличаются от температурной, но в мозге возникают в ответ на эти химические стимулы практически те же ощущения, что и на изменение температуры. А теперь вспомните, какие продукты питания вызывают ощущение обжигания, а какие — холода? Думаю, почти каждый читатель сталкивался с этими продуктами. Острота перца чили обусловлена тем, что содержащийся в нем капсаицин активирует рецептор TRPV1 (такие вещества называются агонистами) [3]. А ментол, содержащийся в мяте, — агонист TRPM8, и вызывает чувство прохлады (рис. 2) [4].
Рисунок 2. Связывание рецепторами TRP капсаицина и ментола приводит к активации «температурной» ноцицепции. Интересно, что при определенных условиях капсаицин может не только вызывать боль, но и ослаблять ее — он десенсибилизирует (то есть делает менее чувствительными к стимулам) другие каналы семейства TRP, кроме того, провоцирует выброс эндорфинов, а вкупе с другими лекарственными средствами может оказаться. перспективным обезболивающим.
Но если можно с помощью небольших молекул заставить нас чувствовать эффект ноцицепции, то, может, с помощью других молекул можно этот рецептор заблокировать? Да! Разработка антагонистов TRPV1 [3], которые, блокируя рецептор, могут снижать болевые ощущения, например, от капсаицина, ведется с 1990-х годов, однако большинство препаратов пока не достигли рынка (рис. 3). Интересно, что эти препараты предлагается применять для лечения невропатической боли, то есть той, когда рецепторы активируются без внешней причины. Достигнут ли фармкомпании успеха — покажет время.
Рисунок 3. Один из первых разработанных антагонистов TPRV1 — капсазепин. Этот препарат находится сейчас на стадии клинических испытаний. Вообще, успех подобного рода лекарств может стать новой вехой в истории фармакологии анальгетиков — блокирование ноцицепторов вместо ослабления болевого импульса на более поздних стадиях.
Механоноцицепторы — куда более разнородная и многообразная группа рецепторов, чем терморецепторы. Среди них стоит отдельно выделить рецепторы, активируемые, помимо давления, сигнальным олигопептидом брадикинином. Его рецептор В-1 синтезируется в поврежденных клетках — например, при получении травмы. Связывая брадикинин, он активирует сигнальный каскад, приводящий к возникновению боли. Интересно, что в число прямых эффектов от связывания рецептора входит усиление воспаления — то есть поддержание стимула для дальнейшей активации болевых рецепторов: чем больше боли, тем больше боли. Поэтому частая активация В-1 (например, постоянным воспалением при аутоиммунных заболеваниях) может стать причиной развития хронической боли [5].
Рецепторы, воспринимающие различные химические раздражители (ирританты), тоже разнообразная, а местами малоизученная группа. Среди них особо примечателен член уже знакомого нам семейства TRP — TRPA1. Этот рецептор активируется совершенно разными молекулами, зачастую, вступая с ними в реакцию, что приводит к необратимости эффекта. В числе широко известных ирринантов, активирующих TRPA1, — аллилизоцианат, содержащийся в знаменитой японской приправе васаби, и аллицин, содержащийся в чесноке (рис. 4).
Рисунок 4. Вкус васаби сильно отличается от чесночного, однако за восприятие остроты этих приправ отвечает один рецептор — TRPA1. Серосодержащие летучие вещества этих растений способны активировать рецептор и дальнейшую ноцицептивную передачу. Эти агенты пригождаются ученым при изучении химических основ работы рецепторов.
Отдельно стоит упомянуть боль, возникающую при воспалении. Ключевое вещество, на которое реагируют ноцицепторы, — гистамин, который некоторые клетки нашей иммунной системы (например тучные) выбрасывают в кровь в ответ на стимулы к воспалению. Гистамин связывается со своими рецепторами (из семейства GPCR). Активация гистаминового рецептора 1 типа (H1) приводит к активации фосфолипазы С (PLC) и гидролизу фосфатидилинозитолбисфосфата (PIP2) с образованием инозитолтрифосфата (IP3), который затем запускает высвобождение Ca 2+ из эндоплазматической сети. Кальций, связавшись с кальмодулином, активирует протеинкиназу С, которая, при помощи дальнейшего фосфорилирования регуляторных киназ, подавляет экспрессию потенциал-зависимых калиевых каналов 7 типа (Kv1.7), что приводит к деполяризации мембраны и проведению болевого импульса [7]. Интересно, что гистаминовые рецепторы 3 типа, которые локализованы в ЦНС, могут ингибировать проведение определенных ноцицептивных импульсов [8].
Стоит отметить, что другие активные игроки воспалительного процесса — простагландины — действуют похоже: в результате связывания простагландина Е2 с рецептором PTGER2 активируется протеинкиназа А, которая, в свою очередь, увеличивает экспрессию уже знакомого нам TRPV1 [9].
Эпизод II: Атака нервных волокон | Кондукция
На примерах мы разобрались, как работают ноцицептивные рецепторы, но ведь они расположены «на переднем крае», близко к раздражителю, а приказ о болевых ощущениях отдается из мозга. Значит, необходимо донести сигнал до верховных инстанций. Для этого только что полученный потенциал действия рецептора активирует множество потенциал-управляемых ионных каналов. Натриевые и калиевые каналы необходимы для генерации потенциалов действия, которые передают ноцицепторные сигналы синапсам в дорсальном роге спинного мозга. Они — еще одна потенциальная терапевтическая мишень для новых групп анальгетиков. Кальциевые же каналы играют ключевую роль в высвобождении нейромедиаторов из центральных или периферических ноцицепторных синапсов, вызывая боль или воспаление соответственно.
В этом месте важно отметить, что нервные волокна, по которым ноцицепторный сигнал идет до спинного мозга, бывают трех типов — Aδ (а-дельта), Aβ (а-бета) и C. Эти волокна отличаются друг от друга по толщине, наличию или отсутствию «изолирующей» миелиновой оболочки и, как следствие, по скорости проведения нервного импульса и типу импульса, который по ним проводится.
Аδ-волокна проводят импульс быстро (10–30 м/с) и «специализируются» на сигналах о сильной механической боли и изменении температуры.
Aβ-волокна работают еще быстрее (30–100 м/с) и сильно миелинизированы. Механорецепторы, расположенные в этих волокнах, крайне чувствительны, поэтому функция этих волокон — проведение сигналов о слабых раздражителях. Избыточная активация волокон Aβ вызывает аллодинию — боль, возникающую от причин, обычно ее не вызывающих, — например, от сидения на стуле.
Волокна типа C проводят нервный импульс медленно (0,5–2 м/с); в основном это сигналы от высокочувствительных механорецепторов и хеморецепторов.
Волокна C и Aδ работают синергично, обеспечивая основную массу болевых ощущений.
Эпизод III: Месть эндорфинов
Сигнал о боли достиг нейронов задних рогов спинного мозга, и уже очень скоро будет жарко. Хотя постойте, может, можно что-нибудь сделать? Может, сигнал несет организму чрезмерные страдания, превышающие пользу? А может, наоборот, сигнал недостаточен для осознания всей беды? В спинном мозге происходит модуляция ноцицептивного сигнала. Это поле для нейрохимической битвы двух сил — тормозящей и усиливающей.
По своей природе опиоидные рецепторы тоже являются GPCR, однако — ингибиторными. Будучи активированными, они подавляют работу аденилатциклазы, снижают уровень внутриклеточного цАМФ и, через киназных посредников активируют работу калиевых каналов, которая приводит к реполяризации клеточной мембраны. В конечном итоге эти меры замедляют проведение нервного импульса.
Кроме описанной системы, в ослаблении боли принимают участие всем известные тормозные нейромедиаторы — гамма-аминомаслянная кислота (ГАМК) [11] и глицин [12]; а опосредованно — многие другие сигнальные молекулы.
Помимо «голубей», тормозящих проведение импульса, есть в спинном мозге и «ястребы», его усиливающие. Самый известный из них — глутамат [13]. В случае проведения ноцицептивного импульса, работа глутамата осуществляется через рецепторы NMDA и AMPA.
Глутамат действует хитро: связываясь с рецепторами АMPA, он вызывает в нейроне активацию уже знакомой нам протеинкиназы С, которая, в свою очередь, приводит к возрастанию уровня внутриклеточного кальция и поляризации мембраны. Помимо того, что это ускоряет проведение болевого импульса, это влияет на NMDA-рецепторы. В норме потенциал-зависимый канал закрыт магниевой «пробкой» и не открывается даже при связанном глутамате. Когда мембрана деполяризируется, магниевая пробка вылетает, и NMDA-рецептор запускает внутрь клетки катионы натрия и кальция, а наружу — калия, что способствует дальнейшей деполяризации мембраны. Самый известный антагонист NDMA-рецепторов — кетамин. Он нашел обширное применение в качестве операционного анестетика, но в последние годы из-за многочисленных нежелательных эффектов (в том числе наркотических), его применяют все реже. В ветеринарной же медицине кетамин, напротив, один из самых широко применяемых анестетиков.
То, в каком виде сигнал дойдет до головного мозга, определяется балансом между противоборствующими сторонами и силой изначального сигнала.
Часть IV: Новая проекция
В сером веществе спинного мозга различают 10 слоев (пластин Рекседа), каждый из которых отличается от других функционалом входящих в его состав нейронов, и, как следствие, — выполняемыми функциями. Чтобы нервный импульс попал на кору больших полушарий, сначала он должен пройти по восходящим путям этих пластин.
Синапс волокон Aδ и C со вторичными афферентными нейронами находится в дорсальном роге спинного мозга. Волокна Aδ и C передают информацию ноцицептивно-специфическим нейронам в I и II пластинах. Кроме того, импульс проецируется и на нейроны других пластин. Это нужно для того, чтобы впоследствии задействовать вторичные системы реакции мозга на боль (благодаря этому боль запоминается).
После того, как импульс проходит модуляцию в задних рогах, он передается нейронам восходящих трактов спинного мозга, каждый из которых имеет определенную функцию в распознавании боли.
Наиболее важны среди них спиноталамический тракт, участвующий в узнавании боли, спинопарабрахиальный тракт, участвующий в вегетативной и мотивационной регуляции реакции на боль, и спиномезенцефалический тракт, участвующий в активации нисходящих анальгетических путей, о действии которых мы говорили раньше.
Часть V: Головной мозг наносит ответный удар
Обработка информации о боли в головном мозге — самая разнообразная и индивидуальная для каждого человека часть работы ноцицепторной системы.
Сначала таламус и парабрахиальное ядро получают информацию от проекционных нейронов в различных пластинах, а затем передают эту сенсорную информацию в корковые и миндалевидные области, где информация расшифровывается как «болезненный стимул».
Стоит отметить, что у боли есть два разных компонента, за восприятие которых отвечают разные области мозга. Сенсорно-дискриминационные аспекты включают силу боли и ее локализацию, в то время как аффективно-эмоциональный компонент боли включает неприятный характер восприятия.
Для того чтобы мозг правильно локализовал источник боли, нервный импульс затем обрабатывается соматосенсорной корой.
Аффективно-мотивационный аспект боли опосредуется медиальным болевым путем, включающим внутриламинарные ядра таламуса, которые проецируются на соматосенсорные структуры коры и лимбической системы. Пластина V же передает ноцицептивные сообщения парабрахиальному внутреннему латеральному ядру. Нервные волокна этого ядра связаны с областями коры, отвечающими за когнитивные функции (например, поведенческую реакцию на боль) и агрессивное поведение [16].
Помимо «осознания боли» ответом часто является реакция «бей или беги», связанная с активацией норадреналинергических нейронов в голубом пятне. Кроме того, после «обработки» болевого сигнала соматосенсорной корой, информация о болевом сигнале передается в гиппокамп — чтобы затем отправиться в долговременную память.
На данный момент мы не можем с точностью сказать, какие молекулярные процессы, происходящие в мозге, отвечают за «субъективное восприятие» боли, поэтому вмешиваться с помощью лекарств на этом уровне восприятия боли никто не решается — слишком опасно.
Часть VI: Возвращение к наболевшему
С помощью одних и вопреки другим нейробиохимическим механизмам, болевой импульс дошел до мозга. На некоторое время организм ждут ощущения от неприятных до ужасающих. Сейчас кажется, что человечество овладело огромным количеством фармакологических методов для остановки боли — однако это лишь иллюзия, и как только противовоспалительные средства — ингибиторы циклооксигеназы — перестают снимать боль, врачам приходится применять «тяжелую артиллерию» опиоидных анальгетиков.
Как мы уже выяснили, сейчас выявлено очень много рецепторов, которые вовлечены в процесс передачи боли, но еще большее количество факторов пока ускользает от всевидящего взгляда ученых. Другой печальный факт заключается в том, что у многих из известных нам болевых рецепторов есть и другие физиологические функции, блокировка которых приведет к значительным побочным эффектам. Разработка антагонистов TRP, а также «опиоидов нового поколения», не вызывающих зависимость, может оказаться настоящим прорывом — но может и повлечь новые невзгоды. Сегодня нам ясно одно — в борьбе за повышение качества жизни боль рано или поздно должна быть взята под контроль, а для того чтобы оседлать этого страшного зверя, его нужно узнать.