Что такое блуждающие токи в водопроводных трубах
Что такое блуждающие токи и как от них избавиться?
Последние 10-20 лет во многих мегаполисах наблюдается резкое снижение срока службы подземных металлических сооружений (трубопроводов горячего и холодного водоснабжения, системы отопления и т.д.). После проведения ряда экспертиз было установлено, что основная причина разрушения металла — электрохимическая коррозия, которую вызывают блуждающие токи. Из данной статьи Вы узнаете о природе этого явления, а также получите представление о способах защиты подземных сооружений и инженерных коммуникаций от гальванической коррозии.
Что такое блуждающий ток?
Как известно, земля является проводником электрического тока, что позволяет применять это свойство для создания заземляющих устройств. Но в тоже время, когда почва выступает в качестве токопроводящей среды, в ней образуются утечки. Поскольку нельзя спрогнозировать в какое время начнется процесс, и где он будет протекать, то такие проявления получили термин «блуждающие».
Причины и источники возникновения
Как мы помним из школьного курса физики, для образования электрического тока необходимо, чтобы возникла разность потенциалов между двумя участками цепи. Принцип возникновения блуждающих токов – аналогичный. Только роль проводника в данном случае исполняет земля.
На территории современных городов и населенных пунктов находится множество электрифицированных объектов, начиная от ЛЭП и заканчивая рельсовым транспортом, включая оборудование тяговых подстанций. Их объединяет один фактор – расположение на земле. Это приводит к довольно специфичному взаимодействию с последней, проявляющемуся в виде появления блуждающих токов. Ниже представлена таблица, которой приводятся их потенциальные источники и условия образования электросвязи связи с почвой.
Таблица 1. Потенциальные источники.
Название объекта | Взаимосвязь с землей |
Различные виды распределительных устройств, оборудование подстанций, ВЛ с нулевым проводником (глухозаземленная нейтраль), подключенным к повторным заземлителям. | При наличии на объекте ЗУ. |
ВЛ сетей с изолированной нейтралью, кабельные магистрали. | Возникает при повреждении изоляционного покрытия токонесущих элементов кабелей. |
Рельсовый электротранспорт, системы с заземленной нейтралью. | Наличие технологической связи между одним из проводников и землей. |
Механизм образования блуждающих токов
В таблице мы привели в качестве примера несколько источников, теперь рассмотрим подробно, как в них образуется интересующий нас процесс. Как уже упоминалось выше, чтобы он появился, между двумя точками на земле должно произойти возникновение разности потенциалов. Такие условия создаются контурами ЗУ систем с глухоизолированной нейтралью.
Нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта. Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи. Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.
Образование блуждающих токов между ЗУ нулевого провода
Практически аналогичные условия образуются, когда возникают проблемы с изоляцией проводов (разрушение оболочек) кабельных магистралей или ВЛ. При возникновении КЗ на землю, в этой точке потенциал равный или близкий к фазе. Это вызывает образование тока утечки к ближайшему ЗУ с потенциалом PEN-провода.
В приведенном примере о постоянной утечке переменных токов речь не идет, поскольку согласно действующим нормам на поиск и устранение повреждения отводится два часа. При этом, в большинстве случаев, отключение поврежденной линии или локализация участка с КЗ производится автоматически. Процесс может существенно затянуться, если сила тока КЗ ниже аварийного порога.
Как показывает практика, наибольшая доля источников токов постоянной утечки приходится на городской и пригородный рельсовый электротранспорт. Механизм их образования продемонстрирован ниже.
Рельсовый электротранспорт в качестве источника блуждающих токов
Обозначения:
Как видно из рисунка, постоянное напряжение в тяговую сеть поступает с подстанции и по рельсам возвращается обратно. При недостаточном сопротивлении рельсовых путей относительно земли, в грунте возникают электрические блуждающие токи. Если на пути распространения утечки блуждающих токов находится трубопровод или другая металлическая конструкция, то она становится проводником электричества.
Это связано с тем, что ток распространяется по пути наименьшего сопротивления. Соответственно, как только появляется проводник, ток будет распространяться по металлу, поскольку его электрическое сопротивление меньше, чем у земли. В результате участок трубопровода, через который проходит электроток, будет в большей степени подвержен коррозии металла. О причинах этого рассказано ниже.
Связь блуждающего тока и коррозии на металле
Ввиду наличия в земле воды и растворенных в ней солей любая металлическая конструкция в почве подвержена коррозии. Но если металл помимо этого подвергается воздействию блуждающих токов, то процесс приобретает электролитическую природу. Согласно закону Фарадея скорость электрохимической реакции напрямую зависит от тока, протекающего между анодом и катодом. Следовательно, на скорость коррозии металлической трубы (уложенной в грунте) будет влиять электрическое сопротивление почвы, а также сложная природа процессов, протекающих в катодной и анодной зоне.
В результате металлическая конструкция помимо обычной коррозии подвергается воздействию токов утечки. Это может стать причиной образования гальванической пары, что существенно ускорит процесс коррозии. На практике отмечались случаи, когда участок трубопровода системы водоснабжения, подвергавшийся гальванической коррозии выходил из строя через два года, при расчетном сроке эксплуатации 20 лет. Пример такого воздействия представлен ниже.
Труба после воздействия блуждающих токов
Способы защиты от блуждающих токов
Для предотвращения пагубного воздействия электрохимического потенциала применяются методы защиты, которые могут отличаться в зависимости от особенностей металлических конструкций. Рассмотрим в качестве примера способы защиты водопроводных труб, полотенцесушителей и газопроводов, начнем в порядке данной очередности.
Видео про различные защиты от блуждающих токов
Защита водопроводных труб
Для проложенных в земле металлоконструкций, в частности водопроводных труб, применяются две методики защиты: пассивная и активная. Подробно опишем каждую из них.
Пассивная защита
Данная методика предусматривает нанесение на поверхность металлоконструкций специального изолирующего слоя, образующего защитный барьер между землей и металлической оболочкой. В качестве изоляционного материала используются полимеры, различные виды эпоксидных смол, битумное покрытие и т.д.
Пример защитного покрытия трубы для подземной укладки
К сожалению, современная технология не позволяет создать защитный барьер, обеспечивающий полную изоляцию. Любое покрытие обладает определенной диффузионной проницаемостью, поэтому при данном способе возможна только частичная изоляция от грунта. Помимо этого следует учитывать, что в процессе транспортировки и монтажа может быть нанесено повреждение защитному слою. В результате на нем образуются различные дефекты изоляции в виде микротрещин, царапин, вмятин и сквозных повреждений.
Поскольку рассмотренный метод не обладает достаточной эффективностью, он применяется в качестве дополнения активной защиты, о которой пойдет речь далее.
Активная защита
Под данным термином подразумевается управление механизмами электрохимических процессов, которые протекают в местах контакта металлических конструкций с образующимся в грунте электролитом. Для этой цели применяется катодная поляризация, при которой отрицательный потенциал смещает естественный.
Реализовать такую защиту можно гальваническим методом или используя источник постоянного тока. В первом случае применяется эффект гальванической пары, в которой анод, подвергается разрушению (жертвенный анод), защищая при этом металлоконструкцию, у которой потенциал несколько ниже (см. 1 на рис.5). Описанный способ эффективен для грунтов с низким сопротивлением (не более 50,0 Ом*м), при более низком уровне проводимости данный метод не применяется.
Применение источника постоянного тока в катодной защите позволяет не зависеть от сопротивления грунта. Как правило, источник изготовлен на базе преобразователя, запитанного от электрической цепи переменного тока. Конструктивное исполнение источника позволяет задать уровень защитных токов в соответствии со сложившимися условиями.
Рисунок 5. Варианты реализации катодной защиты
Обозначения:
Защита полотенцесушителей
Полотенцесушителям и другим оконечным металлическим устройствам на водопроводных трубах (смесителям) коррозия, вызванная блуждающими токами, не угрожала до тех пор, пока в быту не стали широко применяться пластиковые трубы. Даже, если в Вашем стояке установлены металлические трубы, не факт, что у соседа снизу они не пластиковые, да и для отводов в ванную и кухню наверняка используется пластик.
Чтобы обеспечить защиту от аварийных утечек тока и не допустить электрокоррозии, необходимо выровнять потенциалы, заземлив полотенцесушитель, водопроводные трубы в стояке, а также батарею отопления.
Защита газопроводов
Защита подземных газопроводов от блуждающих токов, которые вызывают коррозию, осуществляется точно так же, как и для водопроводных труб. То есть применяется один из двух вариантов активной катодной защиты, принцип работы которой рассматривался выше.
Как измерить блуждающие токи?
Для оценки опасности от токов утечки производится комплекс измерительных работ, куда входит:
Измерения величины блуждающих токов производятся специальными приборами. При этом выбирается время, на которое приходится максимальный трафик рельсового электротранспорта.
Процесс измерения блуждающих токов выполняется в трансформаторных и тяговых подстанциях расположенных рядом с рельсовыми путями. При этом один из электродов, подключенных к измерительному прибору, соединяют с ЗУ, а второй, втыкается в землю в 10-и метрах от тяговой подстанции. Если между потенциалами на электродах появляется разность, она фиксируется прибором.
Рекомендуем также почитать:
Блуждающие токи
Блуждающие токи — электрический ток, возникающий в толще грунта, при использовании его в качестве токопроводящей среды. Простейший пример, при пробое изоляции электрических силовых кабелей происходит утечка на землю. Грунт обладает высоким удельным сопротивлением, поэтому, если в процессе растекания заряда на его пути встречается металлический трубопровод, возникает электрический ток, который начинает двигаться по пути наименьшего сопротивления.
Опасность связана с тем, что в месте выхода блуждающего тока из металлического проводника активизируются коррозионные процессы. Причём ущерб, получаемый в данном случае, достигает такой величины, что приходится продумывать и реализовать системы защиты от воздействия.
Виды и появления блуждающих токов
Одна из причин связана с массовым применением рельсового электротранспорта. Электрифицированные ЖД магистрали, трамваи и метро, рудничная локомотивная контактная откатка становятся причиной появления блуждающих токов и наносят ущерб газовым трубопроводам, водопроводным линиям, бронированным кабельным сетям, металлоконструкциям.
Общая схема происходящего в этом случае следующая:
В результате таких процессов в анодных зонах, участки выхода токов из рельсов и трубопровода, возникает процесс электрохимической коррозии. При этом скорость разрушения металлов может достигать десятка миллиметров в год. Для рельсового пути такие повреждения несущественны из-за большой толщины стали, хотя также снижают срок службы конструкции.
А вот для труб с небольшой стенкой такие повреждения становятся критичными. Выглядят они как сквозные отверстия небольшого диаметра. Если трубопровод находится в зоне длительного воздействия блуждающих токов без надлежащей защиты, может возникнуть ситуация, когда его поверхность напоминает решето.
Среди двух других потенциальных источников возникновения блуждающих токов выделяют:
Объяснение схемы выше: нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта. Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи. Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.
Понятно, что в большинстве случаев разрушающее воздействие в таких условиях будет меньше, чем в зонах расположения рельсовых путей электротранспорта, но оно также оказывает своё влияние.
Причина появления тока в домашнем быту
Существует ещё один вид блуждающего тока, который правда не связан с процессами, происходящими в земле. Речь идёт о появлении аналогичных повреждений на стальных полотенцесушителях, радиаторов отопления, установленных в обычных зданиях. Основной причиной становится разница потенциалов на этих устройствах и заземлённых участках водопровода или системы отопления.
Раньше все эти сети монтировались из металлических труб и обязательно заземлялись. Поэтому в пределах одного здания разницы потенциалов на отдельных участках или элементах системы не существовало или она была настолько минимальной, что не приносила никакого вреда.
Сейчас ситуация кардинально изменилась, и причиной этого стало массовое применение полипропиленовых и металлопластиковых труб. Полимерные материалы обладают высоким удельным сопротивлением, поэтому их можно считать хорошими диэлектриками. В результате получают изолированные друг от друга участки сети. При этом вода остаётся хорошим проводником, она отлично переносит скапливающийся статический заряд.
Поэтому и происходит появление эффекта блуждающих токов, вызванного разницей потенциалов на заземлённом участке сети и отдельных полотенцесушителях или батареях. В этом случае электрохимическая коррозия быстро разрушает тонкостенные металлические устройства.
Как измерить величину блуждающего тока
Наличие потенциальной опасности в обязательном порядке проверяют при проектировании новых трубопроводов в зоне их предполагаемой укладки. Для этого используют мультиметры высокого класса точности, внутренне сопротивление которых должно быть не менее 1 МОм, и специальные электроды, с минимальной паспортной разницей потенциалов.
Измерения проводят по следующей схеме:
Основная задача — определить существующую разницу потенциалов между точками. Если этот показатель превышает 0,04 В, на участке действуют блуждающие токи.
В районе расположения действующих рельсовых путей электротранспортной системы контроль выполняют за счёт следующих замеров:
Весь комплекс измерений выполняют при помощи специального оборудования.
Более подробно про измерения можете прочитать в инструкции(откроется в новой вкладке): Читать инструкцию
Коррозия от блуждающих токов
Под воздействием блуждающих токов происходит процесс электрохимической коррозии. Его интенсивность зависит от состава почвы, степени обводнённости и характеристик грунтовых вод. Разрушение металла происходит из-за разности окислительно-восстановительных потенциалов, присущих стали и окружающей её почвы.
Под воздействием проходящего через трубу тока происходит образование гальванической пары в месте его выхода в почву. При этом железо, которое обладает меньшим окислительно-восстановительным потенциалом в результате процесса разрушается. И чем больше вокруг аварийного участка образуется солей, тем быстрее проходят все эти химические процессы.
В отличие от обычной коррозии, связанной с окислительными свойствами кислорода, интенсивность появления ржавчины зависит от величины разницы потенциалов. Поэтому бороться с электрохимической коррозией можно только путём устранения предпосылок, способствующих её появлению.
Способы устранения
Единственный способ предотвращения появления блуждающих токов — убрать возможность утечки из проводников, в качестве которых выступают те же рельсы, в землю. Для этого и устраивают насыпи из щебня, устанавливают деревянные шпалы, которые нужны не только для получения прочного основания под рельсовый путь, но и повышают сопротивление между ним и грунтом.
Дополнительно практикуется монтаж прокладок из диэлектрических материалов. Но все эти способы больше подходят для ЖД магистралей, трамвайные пути изолировать таким способом сложно, так как это приводит к увеличению уровня рельсов, что в городских условиях нежелательно.
В случае с распределительными пунктами и подстанциями, ЛЭП, ситуацию можно исправить применением более совершённых систем автоматического отключения. Но возможности такого оборудования ограничены, да и постоянное отключение электроснабжения, особенно в промышленных условиях, нежелательно.
Поэтому в большинстве случаев прибегают к защите трубопроводов, бронированных кабелей и металлических конструкций, расположенных в зоне действия блуждающих токов.
Активная и пассивная защита
Существует два основных способа защиты:
Активная защита
В различных условиях применяют отличающиеся способы защиты от электрохимической коррозии. Рассмотрим несколько основных примеров.
Защита полотенцесушителей
Главное отличие — находятся на открытом воздухе, поэтому изоляция не поможет, а отвести блуждающие токи некуда. Поэтому единственно допустимый вариант — выравнивание потенциалов.
Для решения этой проблемы применяют простое заземление. То есть восстанавливают те условия, которые были до разрыва цепи при помощи полимерных труб. При этом требуется заземление каждого полотенцесушителя или радиатора отопления.
Защита водопроводных труб
В этом случае больше подходит протекторная защита с применением дополнительного анода. Такой способ применяется и для предотвращения образования накипи в электрических водонагревательных баках.
Анод, чаще всего магниевый, соединяется с металлической поверхностью трубы, образуя гальваническую пару. При этом блуждающие токи выходят не через сталь, а через такой жертвенный анод, постепенно разрушая его. Металлическая труба при этом остаётся целой. Следует понимать, что время от времени требуется замена защитного анода.
Защита газопроводов
Для защиты этих объектов применяют два способа:
Отметим, что ощутимый ущерб, наносимый металлическим конструкциям, требует применения комплексных мер. Они включают защиту и предотвращение появления опасных факторов.
Блуждающие токи в водопроводных трубах: как устранить проблему
Согласно исследованиям, ускоренное разрушение подземных коммуникаций из металла происходит по причине возникновения электрохимической коррозии. Ее причиной является целенаправленное перемещение заряженных частиц, являющихся блуждающими токами. Такая ситуация указывает на то, что для обеспечения сохранности металлоконструкций необходимо разобраться, как устранить блуждающие токи под землей в трубах для водоснабжения.
Определение понятия
Блуждающие токи – это заряженные электрочастицы с определенной траекторией движения, возникающие в земле, являющейся проводником. Термин блуждающие возник из-за того, что невозможно предугадать локализацию частиц и начало возникновения процесса. Влияние блуждающих электрочастиц крайне негативно сказывается на металлических изделиях, находящихся над землей и под ней.
Подобные процессы возникают из-за растущего количества электрифицированных объектов, являющихся основой современных стран. А так как почва проводник для электричества, происходит взаимодействие между элементами.
Возникают блуждающие частицы подобно электрическим, для взаимодействия которых требуется сопоставление разности потенциалов в 2-х произвольных точках, только для блуждающего варианта проводник – это земля. В результате находящийся металлический материал вблизи процесса разрушается быстрее из-за коррозии.
Процесс формирования
Причиной для возникновения блуждающих токов служит большое количество оборудования, работающего от электрического заряда, в результате потенциальными источниками являются следующие элементы:
Механизм возникновения спонтанных разрядов можно рассмотреть на примере одного из приведенных пунктов.
Один конец нулевого провода соединен с ЗУ электростанции, а другой присоединен к шине PEN потребляющего энергию, обладающей присоединением к ЗУ. Отсюда следует, что разница потенциалов электрического значения между выводами формирует блуждающие токи, так как энергия станет передаваться на ЗУ, что в свою очередь сформирует цепь.
В данном случае объем потерь не имеет большого процента, так как пройдет по пути самого малого сопротивления, однако определенная часть попадет в землю.
Аналогично происходит утечка энергии и в случае с повреждением изоляции проводки.
При этом постоянная бесперебойная утечка не имеет места, так как о ее возникновении сигнализирует система и происходит автоматическая локализация участка, а также согласно нормативам, существует определенный период времени, отведенный на устранение неполадок.
Важно! Cогласно статистике, основные места формирования утечки электроэнергии и образования блуждающих токов приходятся на городские и пригородные зоны, где существует наземный транспорт, зависящий от энергосети.
При использовании городского электрифицированного транспорта, подается напряжение из подстанции в тяговую систему, переходящее на рельсы и совершающее обратный цикл. Если рельсы как железная основа относительно проводника недостаточно устойчивы, это ведет к образованию в почве локаций блуждающих токов, тогда любая металлоконструкция, появившаяся на их пути, например, сантехнические изделия, выступают в качестве проводника.
Важно! Происходит такое взаимодействие из-за того, что ток перемещаясь, выбирает путь наименьшего сопротивления, которое у металла ниже, чем у земли.
Все это приведет к ускоренному разрушению металлических изделий.
Взаимосвязь токов и коррозийных процессов
Любой водопровод, находящийся в почве, повреждается коррозией за счет воздействия на него влаги и солей, однако если сюда еще подключить и активность токов, то возникает электролитический процесс. При этом на скорость электрохимической реакции воздействует заряд, протекающий между анодом и катодом. Отсюда следует, что на активность повреждения изделий из металла будет влиять сопротивление почвы движению зарядов, а также сложность течений, находящихся в анодной и катодной зоне.
В такой обстановке система водоснабжения подвержена обычной коррозии под влиянием токов утечки. Воздействие формирует гальваническую пару, ускоряющую развитие коррозии. В истории существует немало моментов, когда укладываемый трубопровод должен был служить 20 лет, а на самом деле разрушение происходило через 2 года.
Варианты возможной защиты
Чтобы защитить изделия из металла от пагубного воздействия применяются различные методы, разделяющиеся по природе их применения на пассивные и активные.
Пассивный вариант
Этот вариант является применением различного изолирующего материала, формирующего защиту между проводником и металлом. В качестве изоляции применяется:
Но если ограничиться только этим вариантом, то полноценной защиты не получится, так как изоляционный материал не является стопроцентным барьером из-за наличия диффузионной проницаемости. Поэтому изоляция происходит в частичный способ. Кроме этого в процессе перемещения труб такой слой может быть поврежден, в результате чего возникают значительные царапины, надрезы, сквозные дыры и прочие изъяны.
Важно! Поэтому использовать пассивный метод защиты можно только в качестве дополнения.
Активная защита
Указывает на применение активных способ локализации источника воздействия посредством применения катодной поляризации, где отрицательный заряд смещает естественный.
Чтобы подобную защиту реализовать необходимо применение одного из двух инструментов:
Подобный способ может обеспечить и негативное воздействие:
Приведенные примеры можно рассмотреть на защите такого изделия как полотенцесушитель.
Коррозийные процессы на таких изделиях или прочих оконечных водопроводных изделиях никогда не происходили, но это было реально до начала применения металлопластиковой трубы, где существует контакт с алюминием внутри стенки. В результате формирование блуждающих элементов происходит не только из-за применения пластиковых труб в непосредственном помещении, но и в прочих, так как в многоквартирном доме они могут быть применены у соседа с другого этажа.
Важно! Чтобы избежать негативного влияния образовавшихся токов на собственную конструкцию необходимо выровнять потенциалы, за счет обеспечения полотенцесушителя, батареи и водопроводных труб элементом заземления.
При этом использование так необходимого заземления происходит в отношении любой коммуникации, которая выполнена из металлических труб, например, газопровода в земле.
Правила выполнения замеров
Чтобы оценить всю степень сложившейся ситуации с утечкой электрозарядов необходимо выполнить ряд мероприятий:
Чтобы выполнить замеры, применяется специальный прибор, если мероприятия проводить на железнодорожных полотнах необходимо выбирать час пик движения транспорта.
Инструменты для замера
Для проверки применяют трансформаторы и подстанции у линии движения – электрод, подключенный к прибору, соединяют с ЗУ и втыкают в 10 метрах от подстанции. Вся возникающая разность фиксируется прибором.
Если предстоит укладка линии труб для водоснабжения важно выявить локацию блуждающих токов, с этой целью определяется разность потенциалов между двумя выборочными точками поверхности земли, размещенными перпендикулярно друг к другу с соблюдением равного расстояния. Такое определение важно выполнять систематически с разрывом в километр.
При этом используемые приборы обязательно должны иметь класс точности не ниже 1,5, а сопротивление оборудования от 1 МОм. Применение измеряющих электродов с разностью потенциалов выше 10 мВ. Время проведения одного замера обязательно проходит в пределах 10 мин, а разрыв между процессами 10 сек.
Заключение
Вычислением потенциала и определением места локализации блуждающих электрических частиц не следует пренебрегать, так как от этого зависит качество работы водопроводной системы, кроме этого следует применять одновременно оба способа защиты, которые урегулируют возникающее напряжение и обеспечат полную защиту трубопровода.