Что такое блеск звезд и как меняется цвет звезд
Блеск (астрономия)
Видимая звёздная величина (иногда — просто «звёздная величина») — безразмерная числовая характеристика объекта на небе, чаще всего звезды, говорящая о том, сколько света приходит от него в точку, где находится наблюдатель. Видимая звёздная величина зависит не только от того, сколько света излучает объект, но и от того, на каком расстоянии от наблюдателя он находится. Видимая звёздная величина считается единицей измерения блеска звезды, причём чем блеск больше, тем величина меньше, и наоборот.
Содержание
Определение
Современное понятие видимой звёздной величины сделано таким, чтобы оно соответствовало величинам, приписанным звёздам древнегреческим астрономом Гиппархом во II веке до н. э. Гиппарх разделил все звёзды на шесть величин. Самые яркие он назвал звёздами первой величины, самые тусклые — звёздами шестой величины. Промежуточные величины он распределил равномерно между оставшимися звёздами.
В 1856 году Н. Погсон предложил формализацию шкалы звёздных величин. Видимая звёздная величина определяется по формуле:
где I — световой поток от объекта, C — постоянная.
Поскольку данная шкала относительная, то её нуль-пункт (0 m ) определяют как яркость такой звезды, у которой световой поток равен 10³ квантов /(см²·с·Å) в зелёном свете (шкала UBV) или 10 6 квантов /(см²·с·Å) во всём видимом диапазоне света. Звезда 0 m за пределами земной атмосферы создаёт освещённость в 2,54·10 −6 люкс.
Шкала звёздных величин является логарифмической, поскольку изменение яркости в одинаковое число раз воспринимается как одинаковое (закон Вебера — Фехнера). Кроме того, поскольку Гиппарх решил, что величина тем меньше, чем звезда ярче, то в формуле присутствует знак минус.
Следующие два свойства помогают пользоваться видимыми звёздными величинами на практике:
В наши дни видимая звёдная величина используется не только для звёзд, но и для других объектов, например, для Луны и Солнца и планет. Поскольку они могут быть ярче самой яркой звезды, то у них может быть отрицательная видимая звёздная величина.
Спектральная зависимость
Видимая звёздная величина зависит от спектральной чувствительности приёмника излучения (глаза, фотоэлектрического детектора, фотопластинки и т. п.)
Разности звёздных величин одного объекта в разных диапазонах U−B и B−V являются интегральными показателями цвета объекта, чем они больше, тем более красным является объект.
Блеск звезды
Смотреть что такое «Блеск звезды» в других словарях:
ЗВЕЗДЫ — горячие светящиеся небесные тела, подобные Солнцу. Звезды различаются по размеру, температуре и яркости. По многих параметрам Солнце типичная звезда, хотя кажется гораздо ярче и больше всех остальных звезд, поскольку расположено намного ближе к… … Энциклопедия Кольера
Блеск (астрономия) — Видимая звёздная величина (иногда просто «звёздная величина») безразмерная числовая характеристика объекта на небе, чаще всего звезды, говорящая о том, сколько света приходит от него в точку, где находится наблюдатель. Видимая звёздная величина … Википедия
Звезды типа UV Кита — Вспыхивающие звёзды или звёзды типа UV Кита переменные звёзды, резко и непериодически увеличивающие свою светимость в несколько раз во всём диапазоне от радиоволн до рентгеновского излучения. Вспыхивающие звёзды это тусклые красные карлики,… … Википедия
ПЕРЕМЕННЫЕ ЗВЕЗДЫ — звезды, блеск которых заметно изменяется со временем. Большинство переменных звезд либо очень молоды, либо стары. Поэтому удобнее всего классифицировать их в соответствии с возрастом, т. е. со стадией их эволюции. См. также ЗВЕЗДЫ. Молодые… … Энциклопедия Кольера
Переменные звезды — Переменная звезда звезда, блеск которой изменяется со временем в результате происходящих в её районе физических процессов. Строго говоря, блеск любой звезды меняется со временем в той или иной степени. Переменной называется звезда, изменения… … Википедия
Чем ночь темней, тем ярче звезды — Из стихотворения «Не говори. » (1882) Аполлона Николаевича Майкова (1821 1897): Не говори, что нет спасенья, Что ты в печалях изнемог: Чем ночь темней, тем ярче звезды. Стихотворение А. Н. Майкова «Не говори. » входит в цикл его стихов 80 х… … Словарь крылатых слов и выражений
Переменные звезды — изменяющие по временам свою яркость. Известно в настоящее время около 250 П. звезд. К П. звездам должны быть причислены так называемые новые и пропавшие звезды. Почти все пропавшие звезды являются следствием ошибочных положений звезд, данных в… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Видимый блеск — Видимая звёздная величина (иногда просто «звёздная величина») безразмерная числовая характеристика объекта на небе, чаще всего звезды, говорящая о том, сколько света приходит от него в точку, где находится наблюдатель. Видимая звёздная величина … Википедия
Вращение звезды — Иллюстрация показывает вид сплюснутой звезды Ахернар, вызванный быстрым вращением. Вращение звезды угловое движение звезды вокруг своей оси. Скорость вращения может быть измерена по смещению линий в её спектре или по времени … Википедия
Двойные звезды — Двойная звезда, или двойная система две гравитационно связанные звезды, обращающиеся по замкнутым орбитам вокруг общего центра масс. C помощью двойных звёзд, существует возможность узнать массы звёзд и построить различные зависимости. А не зная… … Википедия
Блеск и цвет звезд
Даже при беглом обзоре звездного неба заметно, что видимая яркость звезд различна: одни звезды очень яркие и четко выделяются среди остальных, другие — менее яркие, третьи — очень слабые и еле видны невооруженным глазом. Подавляющее же большинство звезд доступно наблюдениям лишь в телескопы. Изучение видимой яркости небесных светил позволяет установить многие их физические характеристики.
Видимая яркость небесных светил называется их блеском (также, видимая яркость известна как звёздная величина). По своей физической сущности видимая яркость, или блеск, небесного светила представляет собой освещенность, создаваемую этим светилом на приемнике световой энергии, например в нашем глазу. В физике освещенность измеряется световой энергией, падающей на единицу поверхности за одну секунду времени. В Международной системе единиц (СИ) освещенность измеряется люксами (лк). Но для измерения блеска небесных светил эта единица освещенности (люкс) совершенно не приемлема, так как она слишком велика в сравнении с ничтожными световыми потоками, приходящими к Земле от небесных светил (кроме Солнца, конечно). Достаточно сказать, что полная Луна, находясь в зените, создает на местности освещенность, близкую к 0,3 лк, а даже самые яркие звезды в сотни тысяч и миллионы раз слабее полной Луны. Поэтому блеск небесных светил до сих пор выражают в очень удобной условной шкале звездных величин.
Звездные величины, оцениваемые непосредственно глазом, в том числе и с применением фотометров, называются визуальными звездными величинами (от лат. visualis — зрительный). Но зрение разных наблюдателей имеет свои особенности, которые снижают точность определения блеска светил. Поэтому в настоящее время визуальные наблюдения применяются лишь для приближенной оценки блеска, особен но при изучении переменных звезд (меняющих блеск) и метеоров. Измерения, позволяющие определять блеск с точностью до 0,01 m (звездной величины), осуществляются по изображениям светил на фотонегативах, для чего применяются фотопластинки (и фотопленки) различных сортов.
На фотопластинки с бромо-серебряной эмульсией красный свет совсем не действует, желтый действует весьма слабо, зато синие, фиолетовые и ультрафиолетовые лучи действуют необычайно сильно. Поэтому звезды красноватого цвета, например Антарес (α Скорпиона) или Бетельгейзе (α Ориона), получаются на таких фотопластинках более слабыми, чем воспринимаются зрением, а голубовато-белые звезды, например Спика (α Девы) или Белятрикс (γ Ориона),— наоборот, более яркими. Звездные величины, измеренные по изображениям светил на таких фотопластинках, получили названия фотографических звездных величин (mp). Визуальные звездные величины (mv) измеряются по изображениям на специальных фотопластинках, реагирующих на световые лучи почти так же, как человеческий глаз.
Разность между фотографической и визуальной звездными величинами светила называется его обычным показателем цвета C = mp — mv и характеризует цвет светила.
Обычный показатель цвета позволяет сравнивать между собой визуальное Ev и фотографическое Ер излучения светила, так как, согласно формуле Погсона, lg(Ev/Ep) = 0.4 (mp-mv) = 0,4С.
Давайте для примера определим изменение блеска Цефеиды в звездных величинах, если ее температура меняется от 7200 к до 6000 к при неизменном радиусе. Светимость при неизменном радиусе пропорциональна четвёртой степени температуры и квадрату радиуса который тут постоянен. В звёздных величинах это 2.5 lg ((7200/6000)^4)=0.8 звездной величины.
В настоящее время для изучения блеска небесных светил широко применяются фотодатчики, генерирующие под действием света электрический ток (фототок) — явление, открытое еще в 1888—1890 гг. выдающимся русским физиком А. Г Столетовым (1839—1896 гг.). Современные чувствительные фотоэлементы дают слабый электрический ток под воздействием ничтожно малого освещения, но специальные приборы усиливают его до значений, доступных измерению с большой точностью. Фотоэлектрические измерения блеска небесных светил проводят сквозь светофильтры раздельно в различных лучах, как правило, в желто-зеленых (визуальных), синих и ультрафиолетовых, а чтобы фотоэлектрические звездные величины не спутать с полученными другими способами, их обозначают буквами V (визуальные), В (синие) и U (ультрафиолетовые).
Фотоэлектрическая система звездных величин была предложена в 1953 г. американскими астрономами Г. Джонсоном, У. Морганом и Д. Хэррисом и с 1955 г. по международному соглашению, принята за основную для измерения блеска звезд. В этой системе разность (В — V) звездных величин В и V называется основным показателем цвета, а разность (U — V) — ультрафиолетовым показателем цвета. Основной показатель цвета дает различие излучения в желто-зеленых и синих лучах, а ультрафиолетовый — различие в желто-зеленых и ультрафиолетовых лучах, вычисляемое по заданным формулам.
Для светил чисто белого цвета принято считать звездные величины U = B = V, т. е. показатели цвета (B — V) = (U — V) =0; у светил желтого и красноватого цвета (B-V)>0 и (U-V)>0, а у голубоватых — оба фотоэлектрических показателя цвета отрицательны.
Поскольку восприятие световых лучей у фотоэлементов и фотографических пластинок неодинаково, то и фотоэлектрические звездные величины светил несколько отличаются от их визуальной и фотографической величин.
Современные высокоточные приборы болометры (от греч. «боле» — луч и «метрео» — измеряю) позволяют измерять суммарное излучение в ультрафиолетовых, визуальных и инфракрасных лучах. Получаемые по этим измерениям звездные величины называются болометрическими (mb).
Может быть, у читателя возникнет вопрос: а для чего астрономам нужно знать блеск в разных лучах и показатели цвета звезд с большой точностью? Оказывается, для того, что блеск звезд позволяет вычислять их истинную светимость, а показатели цвета — температуру и размеры звезд, т. е. обе эти характеристики служат основой для изучения физической природы звезд и их эволюции. Но об этом — в следующих наших статьях.
Что такое блеск звезд и как меняется цвет звезд
При взгляде на небо сразу же бросается в глаза различие звезд по блеску.
Ярчайшая звезда ночного неба – Сириус (α Большого Пса), – уже чуть-чуть поднявшись над горизонтом, привлекает нас своим сиянием, тогда как соседние с ней звезды становятся заметными лишь на довольно большой высоте (3-5°).
Звезды Ковша Большой Медведицы легко увидеть даже на городском небе в полнолуние, а за городом в ясную безлунную ночь невооруженный глаз замечает на небе несколько тысяч звезд.
Взглянув же на небо в бинокль, сразу понимаешь, что есть и множество звезд, блеск которых слишком слаб для невооруженного глаза.
Еще в глубокой древности астрономы попытались выразить различия в блеске звезд числами. Звезды были разделены на шесть групп, названных звездными величинами.
Самые яркие светила назвали звездами первой величины, немного более тусклые — звездами второй величины и т. д. Самые тусклые звезды, которые может различить глаз (конечно, невооруженный: телескоп изобрели гораздо позже), отнесли к звездам шестой величины.
Обычно это деление звезд по блеску на шесть групп связывают с именем Гиппарха (II в. до н.э.), который впервые применил это деление в составленном им звездном каталоге. Таким образом, говоря о «звездной величине», имеют в виду блеск, а вовсе не размер звезды.
Все звезды – и самые яркие, и самые слабые – всегда казались астрономам светящимися точками, не имеющими размеров.
Лишь в начале XX в. удалось измерить угловой размер некоторых из них, а совсем недавно, в конце XX в., были получены изображения дисков некоторых особенно крупных и близких звезд. Разумеется, они совершенно неразличимы для глаза, даже вооруженного хорошим телескопом.
Мы можем лишь догадываться о причинах, побудивших древних ученых ввести именно шесть групп, шесть звездных величин. Тем более удивительно, что понятие звездной величины дожило в науке до наших дней и им пользуются современные астрономы!
Конечно, в наши дни понятие звездной величины получило точное определение. Теперь это не группы звезд примерно одинакового блеска.
Видимая звездная величина – это число, которое можно определить для каждой звезды как характеристику ее блеска с точки зрения земного наблюдателя.
Какую физическую величину мы воспринимаем как блеск звезды?
Измерения показали, что наш глаз чувствует создаваемую звездой освещенность, то есть количество света, падающего за единицу времени на площадку единичной площади, ориентированную перпендикулярно лучам.
Наше восприятие освещенности подчиняется психофизиологическому закону Вебера–Фехнера: при изменении освещенности в геометрической прогрессии наше ощущение меняется в арифметической прогрессии.
Это открытие было сделано в XIX в., но уже древние астрономы бессознательно следовали этой закономерности: они так поделили звезды на величины, что в среднем отношение освещенностей, создаваемых звездами первой и второй величин, почти в точности равно отношению освещенностей от звезд второй и третьей величин, и т. д.
Современные астрономы сохранили эту традицию, чуть-чуть уточнив ее: ныне отношение освещенностей, создаваемых светилами со звездными величинами, различающимися на единицу, по определению принимают равным 5 √100 = 2,5118864. ≈ 2,512.
Десятичный логарифм этой величины (lg10 2/5 ) в точности равен 0,4.
Таким образом, отношению освещенностей, равному 100, соответствует различие в блеске точно на 5 звездных величин.
Приняв некоторую звезду за эталон и приписав ей определенную звездную величину (вообще говоря – произвольную), можно сравнивать с ней по световому потоку все другие звезды и определять их звездные величины.
Если L1 и L2 – освещенности, создаваемые первой и второй звездами, а m1 и m2 – их звездные величины, то
Знак минус во второй из этих формул означает, что чем ярче звезда, тем меньше значение ее звездной величины. Почти точное совпадение коэффициентов в этих формулах (2,512 и 2,5) возникло случайно, просто потому, что lg(2,512. ) = 0,4 = 1/2,5.
Применяя эти формулы, можно распространить понятие звездной величины на светила, недоступные невооруженному глазу, вплоть до сколь угодно слабых.
Разумеется, блеск в звездных величинах не всегда выражается целым числом, ведь современные наземные приборы позволяют измерить блеск звезды с точностью до сотой или даже до тысячной доли звездной величины (а за пределами атмосферы точность еще выше).
До сих пор мы обсуждали визуальные звездные величины, измеряемые человеческим глазом или прибором, имеющим такую же относительную чувствительность к лучам разного цвета, что и глаз человека.
Но звездную величину можно измерить и при помощи приборов, по-иному чувствительных к лучам разной длины волны, чем глаз. Тогда результаты получатся разными для звезд одинакового визуального блеска, но разного цвета. (Невооруженный глаз уверенно чувствует различия цвета у ярких звезд; сравните, например, цвет белого Ригеля и красной Бетельгейзе в созвездии Орион.) Принято по определению, что для белых звезд спектрального класса A0, свет которых не ослаблен межзвездной пылью, звездные величины должны быть одинаковыми при измерении любыми приборами.
Когда в астрономии стали применять фотографию, то обнаружили, что на снимках ночного неба красноватые звезды кажутся намного слабее, чем белые и голубоватые звезды такого же визуального блеска.
Дело в том, что первые фотоэмульсии были более чувствительны к голубым, чем к желтым и красным лучам, по сравнению с нашими глазами. Тогда родилось понятие фотографической звездной величины (не вполне строгое, потому что фотоэмульсии бывают разные, с различной чувствительностью к лучам разного цвета). Фотографические величины красных звезд больше, чем визуальные (поскольку блеск этих звезд в голубых лучах меньше).
Некоторые приборы более чувствительны к красным и менее чувствительны к голубым лучам, чем глаз; измеренные с такими приборами величины красных звезд меньше по числовому значению, чем визуальные.
Цвет звезд можно определить и одним прибором, чувствительным в широком диапазоне спектра, если помещать перед ним различные цветные светофильтры и сквозь них проводить измерения блеска. Часто используют светофильтры B (blue, голубой) и V (visual, визуальный, т. е. желто-зеленый).
Показатель цвета (В-V), представляющий собой разность звездных величин, измеренных с фильтрами B и V, заменил в современной астрофизике величину CI. Показатель цвета (B-V) равен нулю для белых звезд, отрицателен для голубоватых и положителен для красных.
Все звездные величины, о которых мы говорили до сих пор (фотографические, визуальные, величины В и V), являются видимыми звездными величинами. Они получены при наблюдении с Земли и поэтому в большей степени отражают различие в расстояниях до звезд, чем истинную разницу в мощности их излучения.
К тому же пространство между Землей и звездами не пустое – в нем встречаются поглощающие свет межзвездные газово-пылевые облака. Только учтя разницу в расстояниях до звезд и в степени межзвездного поглощения их света, можно использовать видимые звездные величины для сравнения истинной светимости (мощности излучения) звезд.
Заметим, что в ослабление видимого блеска звезд вносит немалый вклад и земная атмосфера. Она в разной степени ослабляет лучи разного цвета (сильнее — голубые, слабее — красные), и ее оптические свойства сильно зависят от места наблюдения и от высоты звезды над горизонтом: оба фактора влияют на толщину воздушного столба вдоль луча зрения. А от места наблюдения к тому же зависит еще и чистота воздуха. Все эти факторы приходится учитывать в процессе измерений, приходится, как говорят астрономы, исправлять видимые звездные величины за поглощение света в земной атмосфере. Приводимые в таблицах звездные величины фактически относятся к наблюдателю за пределами земной атмосферы.
Расстояние от Земли до Солнца составляет около 150 млн км; его называют астрономической единицей (а. е.) и употребляют для указания расстояний в пределах Солнечной системы.
В научно-популярной литературе расстояния до звезд часто указывают в световых годах. Это название обманчиво: световой год – единица не времени, а длины, равная расстоянию, которое луч света проходит за год. Расстояние до Проксимы составляет 4,2 св. года.
В профессиональной астрономической литературе расстояния до звезд обычно выражают в парсеках (пк) – это расстояние, с которого радиус земной орбиты, ориентированный перпендикулярно лучу зрения, виден под углом 1″. А поскольку угловая секунда равна 1/206265 радиана, то 1 пк = 206 265 а. е. = 3,26 св. года.
Вообще, угол, под которым от звезды виден радиус земной орбиты, называют ее параллаксом («парсек» как раз и означает «параллакс + секунда»). В этих единицах расстояние до Проксимы составляет 1,3 пк.
Истинную светимость звезды выражают с помощью абсолютной звездной величины.
Чтобы от видимых величин (m) перейти к абсолютным (M), нужно рассчитать, какую звездную величину имела бы звезда, если бы ее поместили на принятом стандартном расстоянии 10 пк от нас и при этом исключили поглощение света в межзвездном пространстве:
где Μ — абсолютная звездная величина, m – видимая величина, r – расстояние (в парсеках), A – ослабление блеска звезды из-за межзвездного поглощения света, выраженное в звездных величинах.
Пользуясь этой формулой, нужно не забывать, что все три фотометрические величины (M, m и A) должны быть в одной системе: визуальной, фотографической, В, V или любой другой, но обязательно в одной и той же.
Итак, абсолютная величина звезды непосредственно связана с мощностью ее излучения, которую астрономы называют светимостью.
Светимость звезды можно измерять в физических единицах (скажем, в ваттах), но астрономы чаще выражают светимости звезд в единицах светимости Солнца.
Значение светимости зависит от того, в каком диапазоне спектра она измеряется, поэтому говорят об оптической, инфракрасной, ультрафиолетовой и других светимостях звезды.
Если измерена полная мощность излучения звезды во всех диапазонах электромагнитного спектра, то такую светимость называют болометрической. У Солнца она составляет около 4·10 26 Вт.
Цвета звезд и их классификация
Какие цвета звезд бывают? На самом деле, они могут быть совершенно разными. Как правило, визуально на небесной сфере мы различаем белые и красные светила.
Хотя многие считают, что звёздные объекты белые, в действительности, это не так. Они бывают голубые, желтые, оранжевые и красные.
Сияние звезд на небе очень красивое и таинственное явление.
Разноцветные звезды
Почему звезды разного цвета
Во-первых, атмосфера Земли искажает реальные цвета звезд.
Во-вторых, нам кажется, что излучение звёздных тел белое из-за нашего восприятия. В основном, это связано с физическими возможностями человека. Потому как в сетчатке наших глаз находятся рецепторы, которые отвечают за цветное зрение. Чем слабее импульс, тем более в тусклом свете мы видим.
На удивление, разнообразные цвета звезд обусловлены не так их составом, их температурой. Как оказалось, нагрев ионизирует определённые элементы, тем самым скрывая их.
Благодаря спектральному анализу астрономы определяют и состав, и температуру объектов. Поскольку атомы отдельного вещества обладают своей пропускной способностью. Например, одни световые волны легко проходят через определенные вещества. А другие, наоборот, не пропускают их. Таким образом можно определить химический состав тела.
Наос (самая горячая звезда)
В любом случае, разница в цветовой гамме зависит от температуры поверхности. Стоит отметить, что в природе всегда существует отношение между энергией и излучаемым светом.
Собственно говоря, на степень нагретости влияет скорость молекулярного движения вещества. А она оказывает влияние на длину световых волн, проходящих через эти вещества. То есть при высокой скорости молекулы движутся быстрее, поверхность становится горячее. В результате волны укорачиваются. И наоборот, холодная среда характеризуется небольшой скоростью, а также удлинёнными волнами.
Как оказалось, излучаемый видимый свет складывается из световых волн. Где короткие проявляются синими, а длинные красными оттенками. Белый же цвет возникает при наложении разных спектральных лучей друг на друга.
Напомним, что диаграмма Герцшпрунга-Рассела отображает все основные характеристики звёзд, которые между собой взаимосвязаны. Как из неё видно, цвета звезд зависят от их температуры по возрастанию.
Диаграмма Герцшпрунга — Рассела
Какого цвета холодные звезды
В действительности, их поверхность нагрета до 3000 градусов. И цвет холодных звезд находится в красном диапазоне. Как правило, это красные гиганты.
Какого цвета самые горячие звезды
Между прочим, чем горячее звёздное тело, тем ближе к голубому. Их разогретость может иметь значения 10-30 тысяч градусов по Цельсию. К тому же, существуют тела с показателями около 100 тысяч градусов. Причем это самые горячие голубые звезды. Также представляют собой гиганты.
Классификация звезд по цвету
Прежде всего, разделение происходит по принципу: от горячих к холодным. Всего выделено 7 групп. В свою очередь, они делятся на категории от 0 до 9, также от самых горячих к самым холодным.
Класс О: голубые
Как уже было сказано, они имеют самую высокую температуру (в среднем 300000°С). Вероятнее всего, возникают из двойных при их слиянии. В итоге, получается одно очень яркое и массивное светило, которое сильно разогрето.
К примеру, к ним относятся Ригель, Тау Большого Пса, Дзета Ориона и другие.
По оценке учёных, это довольно редкие экземпляры в нашей Вселенной.
Класс В: белые и голубые
По большей части, это небольшие тела с нагретой поверхностью от 7 до 200000°С. В эту группу входят Альтаир, Вега и Сириус.
G класс — желтые
Установлено, что желтая звезда обладает температурой поверхности около 60000°С, а масса приблизительно как у Солнца (0,8-1,4).
Из них можно отметить светила Альхита, Дабих, Капелла и другие. Также, например, наше родное Солнце относится к карликам класса G2.
Класс К — оранжевые
В отличие от других, для них характерен нагрев от 4000 до 60000°С. Для примера, известная звезда Альдебаран как раз имеет оранжевый цвет.
М класс — красные
По сравнению с остальными, их поверхность не отличается горячностью (30000°С). А внешняя оболочка богата на углерод. Что важно, многие популярные объекты представляют данный тип. Взять хотя бы Антарес и Бетельгейзе.
Между прочим, во Вселенной наиболее распространены оранжевые и красные светила.
Какие еще бывают светила по цвету
С одной стороны, спектр обладает максимумом в определенном цвете. С другой стороны, при наблюдении это не всегда заметно. Нам кажется, что свет белый, иногда даже красноватый. Конечно, детальный анализ распределения интенсивности электромагнитного излучения показывает реальные свойства небесных объектов. Хотя сейчас многие телескопы также позволяют их различить.
Более того, мы научились распознавать другие виды излучений. Что делает возможным выяснить многие особенности космических тел.
Так, установили, что нейтронные светила излучают рентгеновские лучи. Кроме того, существуют зелёные и фиолетовые тела. Которые мы воспринимаем как белые и голубые соответственно. Правда, их невозможно определить без специальных приборов. Потому что они могут быть лишь в очень тесных двойных системах.
Вдобавок ко всему, цвет звезд, как и все её характеристики, может меняться под влиянием друг друга, внешней среды и стадии эволюции. То есть, все происходящие с ними процессы, так или иначе, влияют и изменяют его.
Помимо всего, визуальное различие тел зависит от чувствительности глаз человека, а также индивидуального восприятия.
Итак, мы узнали какого цвета звезды на небе, причины их различия. Надеюсь, теперь вы сможете ответить на вопрос: какого цвета, например, звезда Бетельгейзе?
При наблюдениях не стоит забывать, что сияющая одним светом звезда, скорее всего, в действительности обладает иным спектром.