Что такое биологическое значение
Биологическое значение амитоза: причины деления ядра и клеток и особенности амитоза
Каково биологическое значение амитоза
Важное и органическое свойство всех живых организмов — размножение или воспроизведение себе подобных.
Живая материя предстает в виде элементарных единиц на любом уровне организации. Проще говоря, она является дискретной. Соответственно, дискретность — одно из многочисленных свойств живого организма.
Структурные единицы клетки — органоиды.
Целостность клетки зависит от непрерывного воспроизведения новых органоидов взамен тем, что износились. Любой организм состоит из клеток, размножение которых обеспечивает его развитие и существование.
Почему ядро и клетки делятся
Деление клеток — основа размножения. При этом деление ядра всегда происходит до деления клетки. Предположительно, ядро и другие органеллы клетки возникли в результате специализации и дифференциации отдельных участков цитоплазмы в ходе исторического развития. Но в процессе индивидуального развития клеток, ядро происходит только из ядра — в результате деления.
Растительный организм растет, то есть, увеличивается в размерах, в результате увеличения количества клеток путем деления. Если организм одноклеточный, то деление клетки в нем является еще и способом размножения: увеличивается вес и количество новых особей.
Клетка растет определенный промежуток времени. В ходе ее роста изменяется соотношение между растущим объемом клеток и ее растущей поверхностью.
Рост поверхности всегда меньше в абсолютном выражении, чем рост объема. Все потому, что поверхность увеличивается квадратически, а объем — кубически.
Способы деления клетки
Питание клетки осуществляется через поверхность. В определенный момент времени поверхность не может сохранить объем клетки, и она начинает активно делиться.
Клетка делится 4 различными способами:
Какова биологическая роль митоза, мейоза и эндомитоза, мы поговорим позже. А сейчас разберемся с амитозом.
Особенности амитоза
Виды амитозного распределения
Амитоз впервые был описан в 1841 году немецким биологом Р. Ремарком, а сам термин «амитоз» ввел в науку немецкий гистолог В. Флеминг в 1882 году. Амитоз как способ деления встречается нечасто (реже, чем митоз). Происходит такое деление в результате перетяжки ядрышка, ядра и цитоплазмы.
Существенное отличие амитоза от митоза в том, что в первом случае конденсации хромосом не происходит: хромосомы удваиваются. Также для амитоза характерно сохранение физико-химических свойств цитоплазмы.
Согласно физиологическому значению, выделяют три вида амитозного распределения:
Процесс амитоза
Амитозное деление клетки в результате расщепления ядра происходит цитоплазматическое сужение. Вначале ядро удлиняется, а после приобретает вид гантелей. При дальнейшем сужении ядро делится на два ядра. После деления ядра происходит деление цитоплазмы, которая делит клетку на две одинаковые (или примерного одинаковые) половины.
Никакого ядерного события не происходит — но образуются две дочерние клетки. Клетка увеличивается за счет ауксентического роста. Происходит расширение ядра, которое приобретает структуру в виде гантели с медианным сужением.
Срединная часть клеточной мембраны приобретает два сужения. Сужение ядра становится все глубже и в конечном счете делит ядро на два дочерних ядра — шпиндельное волокно при этом не образуется. Инвагинации клетки смешаются внутрь. Родительская ячейка делится на пополам: на две равных по размеру дочерние клетки.
Амитоз можно наблюдать у молодых нормально развитых клеток. Хотя чаще всего так делятся высокодифференцированные и более старые клетки. Путем амитоза делятся низкоуровневые организмы, такие как дрожжи, бактерии и пр.
Минус амитоза — невозможность генетической рекомбинации и вероятность экспрессии нежелательных рецессивных генов.
Значение амитоза
Плюс амитоза в том, что ядро и содержимое клетки делятся на две части. При этом дочерние клетки образуются без предварительных изменений структуры органелл, а также ядра.
Деление ядра на две части происходит даже без предварительного растворения оболочки ядра. Веретено деления не формируется — в случае других способов деления это происходит.
За делением ядра происходит деление протопласта и всей клетки на две части. Если ядро дробится на несколько частей, то получаются многоядерные клетки. Для амитоза характерно неравномерное распределение вещества ядра между дочерними ядрами, поэтому биологическая равномерность не обеспечивается. Но при этом образованные клетки отличаются структурной организацией и жизнедеятельностью.
На протяжении некоторого времени амитоз считался патологическим явлением — присущим только клеткам, патологически измененным. Но согласно последним исследованиям, эта мысль не нашла подтверждения. Многочисленные исследования доказывают, что способом амитоза делятся и вполне молодые нормально развитые клетки.
К примеру, амитоз можно обнаружить в клетках харовых водорослей, лука, традесканции.
Встречается амитоз и в специализированных тканях, в которых активно происходят метаболические процессы: в клетках тапетума микроспорангиев, в эндосперме семян отдельных растений и др.
Не характерен амитоз для клеток, в которых важно сохранение полноценной генетической информации: в яйцеклетках и клетках зародыша. В связи с этим некоторые ученые считают амитоз неполноценным способом размножения клеток.
биологическое значение
Смотреть что такое «биологическое значение» в других словарях:
Лизогения и ее биологическое значение — При изучении явления бактериофагии исследователи обратили внимание на то, что иногда встречаются культуры микроорганизмов, которые содержат фаги, хотя на эти культуры фагами и не воздействовали. Явление фагоносительства получило название… … Биологическая энциклопедия
Биологическое образование — система подготовки биологов для научно исследовательских учреждений и преподавателей биологических дисциплин. Знание биологии (См. Биология) предусматривается при подготовке специалистов с медицинским, с. х., педагогическим и другим… … Большая советская энциклопедия
Биологическое сигнальное поле животных — (термин предложен Н. П. Наумовым): 1. Вносимые жизнедеятельностью животных изменения в окружающую среду и приобретающие информационное значение для представителей данного вида, а иногда и для представителей др. видов. 2. Вся доступная животным… … Психология общения. Энциклопедический словарь
Биологическое действие ионизирующих излучений — изменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии коротковолновых электромагнитных волн (рентгеновского излучения и гамма излучения (См. Гамма излучение)) или потоков заряженных частиц (альфа частиц… … Большая советская энциклопедия
БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ — окислительно восстановительные реакции, протекающие в организмах; осн. источник их энергии. Сводится к передаче атомов водорода или электронов от одного органич. соединения к другому с помощью ферментов оксидоредуктаз, в первую очередь… … Ветеринарный энциклопедический словарь
Жвачный процесс — – биологическое значение состоит в дополнительном измельчении и расщеплении частиц корма, ограничении приема новых порций корма, выделении слюны, что смачивает и ощелачивает корм, усиливает эвакуацию содержимого в сетку, книжку, сычуг, экономя… … Словарь терминов по физиологии сельскохозяйственных животных
Подкласс Открыточелюстные или Настоящие насекомые (Insectа Ectognatha) — Основные сведения о насекомых Из общего числа видов животных, населяющих Землю, на долю насекомых приходится около 70%. Число уже описанных видов приближается к миллиону, но ежегодно специалисты открывают и описывают все новые и… … Биологическая энциклопедия
Рефлексы — (от лат. reflexus повёрнутый назад, отражённый) реакции организма, вызываемые центральной нервной системой при раздражении рецепторов (См. Рецепторы) агентами внутренней или внешней среды; проявляются в возникновении или изменении… … Большая советская энциклопедия
КЛАСС ИНФУЗОРИИ (INFUSORIA или CILIATA) — Простейшие этого обширного по количеству видов около 6 тыс. класса широко распространены в природе. (Эта цифра приводится в сводке Корлисса, 1961 г.). К ним относятся многочисленные обитатели морских и пресных вод. Некоторые виды… … Биологическая энциклопедия
Мезенхимальные диспротеинозы — (сосудисто стромальные диспротеинозы) дисметаболические (дистрофические) процессы, характеризующиеся преимущественным нарушением белкового обмена и первично развивающиеся в строме органов. Традиционно наряду с мезенхимальными диспротеинозами как… … Википедия
Во́здух — смесь газов, главным образом азота и кислорода, из которых состоит атмосфера земного шара Общая масса В. составляет 5,13․1015 т и оказывает на поверхность Земли давление, равное на уровне моря в среднем 1,0333 кг на 1 см3. Масса 1 л сухого В.… … Медицинская энциклопедия
биологи́ческий
Биологические исследования. Биологическая океанография. Биологическая станция. Биологический вид. Биологические законы. Самостоятельные биологические дисциплины. Применение биологических агентов. Глобальная биологическая катастрофа.
биологическая очистка
Удаление посторонних или вредных агентов из вод и почв с помощью живых организмов, способствующих фильтрации или разложению этих примесей и восстановлению первичных свойств среды.
биологический эквивалент рентгена
Биол. Внесистемная единица эквивалентной дозы излучения, равная 0,01 джоуля на килограмм.
биологическое оружие
2. Биол. Относящийся к биологии (2 зн.).
Биологическое развитие человека. Биологические свойства растений. Биологическое значение вирусов. Снижение биологической активности почвы. Биологическая несовместимость тканей.
биологическая индикация
Экол. Определение состояния и свойств среды по наличию или отсутствию в ней тех или иных организмов.
биологическая коррозия
Метал. Разрушение промышленных материалов или изделий живыми организмами — поселяющимися на них микроорганизмами, животными и растениями.
биологическая мать 1
Юр. Женщина, отказавшаяся от ребенка после его рождения в пользу приемных родителей.
биологическая мать 2
Мед. Женщина, ребенок которой выношен другой женщиной после совершения экстракорпорального оплодотворения.
биологическая рекультивация
Агро. Восстановление плодородия почвы, включающее комплекс агротехнических и фитомелиоративных мероприятий (нанесение на отвальные грунты слоя гумуса и засевание его определенными растениями), направленных на возобновление биоты.
биологические ритмы
Циклические колебания интенсивности и характера процессов и явлений в живых организмах.
биологические часы
Способность животного и человека ориентироваться во времени, основанная на строгой периодичности физико-химических и физиологических процессов в клетках.
биологический возраст
Истинная степень старения организма, определяемая специальными приборами по физическому состоянию сердечно-сосудистой, дыхательной, нервной, мышечной систем и т. п. и не всегда совпадающая с числом прожитых человеком лет.
биологический круговорот веществ
Постоянная циркуляция веществ и энергии между почвой, растительным и животным миром и микроорганизмами, связанная с существованием и жизнедеятельностью живых организмов.
биологический отец
Кровный отец ребенка, воспитывающегося приемными родителями или усыновленного отчимом.
биологическое разнообразие
Число различимых типов биологических объектов или явлений и частота их встречаемости на фиксированном интервале пространства и времени, в общем случае отражающие сложность живого вещества, способность его к саморегуляции своих функций.
3. Связанный с физиологической стороной организма человека.
Биологические потребности. Биологическое и духовное начало в человеке.
Данные других словарей
Под ред. С. А. Кузнецова
биологи́ческий
1. к Биоло́гия (1 зн.).
Доктор биологических наук. Б-ие исследования.
2. Связанный с физической или физиологической стороной существования живых организмов.
Б-ие свойства растений. Б-ая сущность человека. Б-ое развитие животных. Б-ая адаптация космонавтов. Б. страх (рефлекторный, инстинктивный).
Б-ие часы (способность человека, животных и растений ориентироваться во времени без специальных приборов и приспособлений).
Адаптироваться б. и социально. Б. активные вещества
Биологическое значение
Каждый ион играет особую роль в биологических и химических процессах, однако, водородные ионы занимают особое положение среди всех других ионов. Так, активность ферментов, при помощи которых осуществляется синтез и разложение химических веществ в живой клетке, состоит в непосредственной зависимости от концентрации ионов водорода. Каждый фермент имеет определенную величину рН, оптимальную для его действия, например:
Оптимальные рН сред для действия некоторых ферментов
Название ферментов | Оптимум рН |
Диастаза солоды | 4.9 |
Сахароза дрожжей | 4.5 |
Сахароза животных | 6.0-8.0 |
Лактаза | 7.0 |
Липаза желудочного сока | 4.0-5.0 |
Каталаза крови | 7.0 |
Пепсин при действии на яичный альбумин | 1.2-1.6 |
Трипсин при действии на казеин | 6.0-6.5 |
Концентрация ионов водорода имеет большое значение в жизнедеятельности микроорганизмов. Установлено, например, что дифтерийный микроб лучше развивается при рН в пределах 7,3-7,6, микроб кишечной палочки при рН = 6-7.
В прямой зависимости от рН находится деятельность почвенных микроорганизмов. Например, активная фиксация азота микробами наблюдается при рН =7,2.
Отношение высших растений к рН почвы также различно. Так, например, овес, репа, картофель, рожь дают наивысшие урожаи при рН около 5; пшеница, ячмень, свекла, люцерна лучше развиваются при нейтральной реакции почвы или даже слабо щелочной.
По видовому составу луговой растительности можно определить рН почвы – присутствие растения «щучки» (Deschampsia flexuosa) указывает на рН почвы – 3,5-3,9; преобладание осоки (Carex) на рН в пределах 4,5-4,9; преобладание «мать-мачехи» (Tussilfgo farfara) на рН 7,5-7,9 и т.д.
Концентрация ионов водорода имеет большое значение для развития растений. Давно известно, что на кислых почвах многие растения развиваются слабо. Агрономы применяют известкование с целью повышения плодородия почв. Концентрация водородных ионов почв оказывает влияние не только на процессы жизнедеятельности растений, но и на распределение и активность микроорганизмов, населяющих почву, и даже на физико-химическое состояние почвенных коллоидов.
Искусственно изменяя рН среды, например, внесением в почву извести или суперфосфата, мы можем регулировать и изменять бактериальное население почвы, способствовать ее нитрификации и т.д.
рН водной среды является мощным фактором, влияющим на распространение водных организмов. Наиболее благоприятной для жизнедеятельности организмов водной средой является нейтральная или слабощелочная. Реакция воды в пресных водоемах и морях зависит от целого ряда факторов, но все они сводятся к буферному действию. Буферами в море и реках являются угольная кислота, бикарбонаты и карбонаты. рН поверхностных слоев морей и океанов поэтому колеблется незначительно, в пределах 8,1-8,3
В природе есть ряд стоячих водоемов, отличающихся ярко выраженной кислой реакцией. Это – сфагновые болота и озера. Интенсивные процессы гниения, происходящие там, обилие гуминовых веществ, создают среду с рН ниже 5,0, здесь накапливаются минеральные кислоты, например, такая сильная как серная.
Различные водные организмы обладают неодинаковой выносливостью к тем или иным колебаниям рН среды. Например, главная масса пресноводных организмов – инфузории, коловратки, планарии, ракообразные и т.д. выдерживают только нейтрально-щелочные воды в диапозоне рН от 5 до 10. К этой группе организмов следует отнести и все морские организмы.
Функциональная деятельность отдельных органов и тканей высших животных также находится в зависимости от концентрации водородных ионов. Так, у лягушки, при изменении рН крови от 7,5 до 6,5 происходит резкое ослабление сердечной деятельности, а при рН = 6 сердце перестает работать. Изменение рН крови выше 7,3 вызывает сужение сосудов, а ниже – расширение сосудов. При изменении рН в кислую сторону перистальтика кишечника усиливается. Резко реагирует на изменение рН нервная система. Изменения концентрации ионов водорода могут происходить при различных заболеваниях, причем рН крови может смещаться в кислую – ацидоз или в щелочную среду – алкалоз.
рН крови высших животных и человека поддерживается мощными буферными системами – такими как гем-гемоглобин, оксигемоглобин, белковыми, бикарбонатными. Ниже приводятся показатели концентрации водородных ионов крови, соков и жидкостей организма (таблица 5).
Под влиянием водородных ионов изменяются основные физико-химические свойства веществ и растворов: растворимость, фильтрация, диализ, поверхностное натяжение, вязкость, устойчивость, осмотическое давление, набухание и т.д. Вот почему определение концентрации водородных ионов нашло применение во всех областях химии, биологии, физиологии, бактериологии, медицины, сельского хозяйства и техники.
объект исследования | рН | Объект исследования | рН |
Кровь животных: бык кролик Собака (сыворотка крови) Лошадь Свинья Баран (сыворотка крови) Коза (сыворотка крови) Овца | 7.36-7.40 7.33-7.35 7.30 7.40-7.60 7.85-7.95 7.82 7.65 7.40-7.58 6.02 | Мышечный сок Слюна лошади Слюна коровы Желудочный сок собаки Желчь Молоко коровы Моча коровы Моча лошади Пот лошади Содержание тонких кишок кур | 7.56 8.10 0.96-080 7.0-8.0 6.2 8.5-8.7 7.4-8.7 7.8-8.9 5.5-6.3 |
Вопросы для самоконтрля:
1. Ионное произведение воды. Водородный показатель ( рН ).
2. Понятие о рН, как показателе реакции среды.
3. Роль концентрации водородных ионов в биологических процессах. Кислотность и щелочность почв.
4. Буферные растворы, их состав.
5. Свойства буферных растворов. Их биологическое значение.
6. Основное уравнение буферных растворов.
7. Буферная емкость, ее определение. Буферность почв и почвенного раствора.
8. Потенциометрический метод определения рН.
Биологическое значение размножения
Что такое размножение
Размножение или репродукция, присущая всем живым существам функция воспроизведения себе подобных. В отличие от всех других жизненно важных функций организма, размножение направлено не на поддержание жизни отдельной особи, а на сохранение ее генов в потомстве и продолжение рода— тем самым на сохранение генофонда популяции, вида, семейства и т.д.
Молекулярную основу процессов размножения всех организмов составляет способность ДНК к самоудвоению. В результате генетический материал воспроизводится в строении и функционировании дочерних организмов.
Размножение происходит на следующих уровнях организации:
• молекулярно-генетическом (репликация ДНК),
• клеточном (амитоз, митоз),
Биологическое значение размножения
Способность к размножению – одна из важнейших особенностей живого. В процессе размножения происходит передача генетического материала от родителей потомкам. Значение размножения для вида в целом состоит в непрерывном восполнении количества особей данного вида, умирающих по различным причинам. Кроме того, размножение позволяет в благоприятных условиях увеличить количество особей.
Бесполый тип размножения более прост и его биологическая роль в процессе эволюции меньше, чем полового.
Бесполое размножение широко распространено у бактерий, водорослей. При нем происходит деление бактерии, представляющей собою организм, состоящий из одной клетки, на две новые клетки.
Бесполое размножение может осуществляться также путем побегов, корневищ, отводков, что распространено у многих высших растений. В садоводстве и полеводстве часто используют этот способ для быстрого размножения полезных растений. Биологическая наука достигла таких успехов, когда с помощью отдельных клеток или кусочка ткани можно быстро размножить ценные растения. Вегетативное размножение позволяет быстро получить большое количество посадочного материала и высокие урожаи. Потомство получается однородным по своим наследственным свойствам. Это как бы бесчисленные копии одного единственного родителя. Эта особенность часто используется в селекции, когда хотят сохранить какие-либо полезные качества, широко используются в практике сельского хозяйства, для сохранения ценных сортов.
Бесполое размножение простым делением встречается, но значительно реже, и у животных (у одноклеточных животных вроде амебы и инфузорий, у некоторых червей).
При вегетативном размножении жизнь организма, из которого образовалось потомство, как бы продолжается, а не возникает заново. Так, поставленная в воду срезанная ветка даст корни и будет продолжать развитие с того состояния, в котором находилось дерево, с которого она была взята. Ветка, срезанная с дерева весной, распустит почки и будет зеленеть; ветка, срезанная осенью, даст опадание листьев.
Биологическое значение полового размножения в процессе эволюции заключается в том, что оно создает более сильное, более жизненное потомство,чем потомство, получаемое от бесполого размножения.
Как мы уже говорили, организм, полученный от вегетативного размножения, продолжает тот этап развития, в котором находился организм, отделивший этот новый, т. е. срезанная ветка дерева, превращенная в самостоятельный организм, будет иметь тот же возраст и тот же этап развития, какие имело дерево, от которого ее отделили. У потомства, полученного от вегетативного размножения, обнаруживается понижение жизненности и как бы преждевременное одряхление.
По заданию академика Т. Д. Лысенко были отысканы редко встречающиеся экземпляры деревьев с женскими цветками. Было произведено искусственное опыление этих цветков пыльцой и получены семена. Из полученных семян выращены были еще перед Великой Отечественной войной тополевые сеянцы, обладающие крепостью, скорым ростом и выносливостью. Такое потомство от полового размножения тополя будет более долголетним и не имеет преждевременной суховершинности.
Из этого примера видно, что половое размножение имеет большое значение в создании крепкого, жизненного потомства. Это означает, что половое размножение биологически полезно в жизни животных и растений.
Кроме тогополовое размножение увеличивает наследственную изменчивость и предоставляет материал для естественного отбора. В результате повышаются приспособительные возможности организмов к меняющимся условиям внешней среды. Оно обеспечивает биологическое разнообразие видов, повышение их адаптивных возможностей и эволюционных перспектив.
Типы размножения
Все разнообразие способов размножения можно разделить на два основных типа: бесполое (его вариант – вегетативное) размножение и половое размножение.
В бесполой форме размножение осуществляется родительской особью самостоятельно, без обмена наследственной информацией с другими особями. Дочерний организм образуется путем отделения от родительской особи одной или нескольких соматических (телесных) клеток и дальнейшего их размножения посредством митоза. Потомство наследует признаки родителя, являясь в генетическом отношении его точной копией. Различают несколько типов бесполого размножения.
В половом размножении, в отличие от бесполого, участвует пара особей. Их половые клетки (гаметы) несут гаплоидные наборы хромосом. В процессе оплодотворения гаметы сливаются и образуют диплоидную оплодотворенную яйцеклетку (зиготу), которая дает начало новому организму.
Одна из гомологичных хромосом соматической клетки достается от «мамы», а другая — от «папы». В результате части генетического материала родительских особей объединяются, и в потомстве появляются новые комбинации генов. Разнообразие генетического материала позволяет потомству успешнее приспосабливаться к изменяющимся внешним условиям. В обогащении наследственной информации состоит главное преимущество полового размножения, его основное биологическое значение.
Формы бесполого размножения
Различают несколько форм бесполого размножения:
Простое деление. Особенно распространено бесполое размножение у бактерий и синезеленых водорослей. Единственная клетка этих безъядерных организмов разделяется пополам или сразу на несколько частей. Каждая часть является целостным функциональным организмом. Простым делением размножаются амебы, инфузории, эвглены и другие простейшие. Разделение происходит посредством митоза, поэтому дочерние организмы получают от родительских тот же набор хромосом.
Почкование. Этот тип размножения используют как одноклеточные, так и некоторые многоклеточные организмы: дрожжи (низшие грибы), инфузории, коралловые полипы. Почкование у пресноводных гидр происходит следующим образом. Сначала на стенке гидры образуется вырост, который постепенно удлиняется. На его конце появляются щупальца и ротовое отверстие. Из почки вырастает маленькая гидра, которая отделяется и становится самостоятельным организмом. У других существ почки могут оставаться на теле родителя.
Одноклеточное животное малярийный плазмодий (возбудитель малярии) размножается посредством шизогонии— множественного деления. Сначала в его клетке путем делений формируется большое количество ядер, затем клетка распадается на множество дочерних.
Вегетативное размножение. Этот вид бесполого размножения широко распространен у растений. В отличие от спорообразования, вегетативное размножение осуществляется не особыми специализированными клетками, а практически любыми частями вегетативных органов. Многолетние дикорастущие травы размножаются корневищами (осот дает до 1800 особей/м2 почвы), земляника — усами, а виноград, смородина и слива — отводками. Картофель и георгины используют для размножения клубни — видоизмененные подземные участки корня. Тюльпаны и лук размножаются луковицами. У деревьев и кустарников укореняются с образованием нового растения побеги — черенки, а у бегонии роль черенков способны выполнять листья. Черенками размножают малину, сливу, вишню и розы. На корнях и пнях деревьев образуется поросль, которая затем превращается в самостоятельные растения.
Клонирование. Как уже говорилось, получение идентичных потомков при помощи бесполого размножения называют клонированием. В естественных условиях клоны появляются редко. Общеизвестный пример естественного клонирования, существующего в природе и имеющего место у человека – однояйцевые близнецы, развившиеся из одной яйцеклетки (Это обязательно дети одного пола). До шестидесятых годов двадцатого века клоны получали искусственным путем исключительно при вегетативном размножении растительных организмов, чаще всего для сохранения сортовых признаков и при получении культур микроорганизмов, используемых в медицине. В начале шестидесятых годов были разработаны методы, позволяющие успешно клонировать некоторые высшие растения и животных путем выращивания из отдельных клеток. Такого рода эксперименты не только доказывают, что дифференцированные (специализированные) клетки содержат всю информацию, необходимую для развития целого организма, но и позволяют рассчитывать, что подобные методы можно будет использовать для клонирования позвоночных, стоящих на более высоких ступенях развития, в том числе и человека. Техника клонирования сулит, в первую очередь, большие перспективы для животноводства, так как дает возможность получать от любого животного, обладающего ценными качествами, многочисленные генетически идентичные копии с теми же признаками. Клонирование нужных животных, например племенных быков, скаковых лошадей и т.п., может оказаться столь же выгодным, как и клонирование растений, которое, как было сказано, уже производится. Также одна из возможных областей применения данной технологии клонирование редких и исчезающих видов диких животных.
Формы полового размножения
У животных чаще встречается раздельнополость, т. е. наличие мужских и женских особей (самцов) и (самок), которые нередко различаются по размерам и внешнему виду (половой диморфизм). Половые клетки образуются в специальных органах — половых железах. Мелкие, снабженные жгутиком, подвижные сперматозоиды формируются в семенниках, а крупные неподвижные яйцеклетки (яйца) — в яичниках.Процесс оплодотворения у многоклеточных организмов, как и у одноклеточных, заключается в слиянии мужских и женских гамет. Как правило, затем сразу же происходит и слияние их ядер с образованием диплоидной зиготы (оплодотворенной яйцеклетки)
Сформировавшаяся зигота объединяет в своем ядре гаплоидные наборы хромосом родительских организмов. У развивающегося из зиготы дочернего организма происходит комбинирование наследственных признаков обоих родителей.
У многоклеточных организмов различают наружное оплодотворение (при слиянии гамет вне организма) и внутреннее оплодотворение, происходящее внутри родительского организма. Наружное может осуществляться только в водной среде, поэтому оно наиболее широко встречается у водных организмов (водорослей, кишечнополостных, рыб). Наземным организмам чаще свойственно внутреннее оплодотворение (высшие семенные растения, насекомые, высшие позвоночные животные).
Различают также перекрестное оплодотворение (при слиянии гамет от разных особей) и самооплодотворение (при слиянии мужских и женских гамет, продуцируемых двуполым организмом — гермафродитом, например, у некоторых паразитических червей). Цветковым растениям присуще двойное оплодотворение, при котором один спермий сливается с яйцеклеткой, а второй — с диплоидной центральной клеткой зародышевого мешка. В результате образуются зигота и триплоидная клетка, дающая начало эндосперму — ткани, в клетках которой запасаются питательные вещества, необходимые для развития зародыша.
Нетипичное половое размножение
Партеногенез (девственное размножение). Открыт в середине XVIII в. швейцарским натуралистом Ш. Бонне. Партеногенез встречается у растений и животных. При нем развитие дочернего организма осуществляется из неоплодотворенной яйцеклетки. Причем образующиеся дочерние особи, как правило, либо мужского пола (трутни у пчел), либо женского (у кавказских скальных ящериц), кроме того, могут рождаться потомки обоих полов (тли, дафнии). Количество хромосом у партеногенетических организмов может быть гаплоидным (самцы пчел) или диплоидным (тли, дафнии).
1) размножение возможно при редких контактах разнополых особей;
2) резко возрастает численность популяции, так как потомство, как правило, многочисленно;
3) встречается в популяциях с высокой смертностью в течение одного сезона.
1) облигатный (обязательный) партеногенез. Встречается в популяциях, состоящих исключительно из особей женского пола (у кавказской скалистой ящерицы). При этом вероятность встречи разнополых особей минимальна (скалы разделены глубокими ущельями). Без партеногенеза вся популяция оказалась бы на грани вымирания;
2) циклический (сезонный) партеногенез (у тлей, дафний, коловраток). Встречается в популяциях, которые исторически вымирали в больших количествах в определенное время года. У этих видов партеногенез сочетается с половым размножением. При этом в летнее время существуют только самки, которые откладывают два вида яиц — крупные и мелкие. Из крупных яиц партеногенетически появляются самки, а из мелких — самцы, которые оплодотворяют яйца, лежащие зимой на дне. Из них появляются исключительно самки; факультативный (необязательный) партеногенез. Встречается у общественных насекомых (ос, пчел, муравьев). В популяции пчел из оплодотворенных яиц выходят самки (рабочие пчелы и царицы), из неоплодотворенных — самцы (трутни). У этих видов партеногенез существует для регулирования численного соотношения полов в популяции.
Выделяют также естественный (существует в естественных популяциях) и искусственный (используется человеком) партеногенез. Этот вид партеногенеза исследовал В. Н. Тихомиров. Он добился развития неоплодотворенных яиц тутового шелкопряда, раздражая их тонкой кисточкой или погружая на несколько секунд в серную кислоту (известно, что шелковую нить дают только самки).
Гиногенез(у костистых рыб и некоторых земноводных). Сперматозоид проникает в яйцеклетку и лишь стимулирует ее развитие. Ядро сперматозоида при этом с ядром яйцеклетки не сливается и погибает, а источником наследственного материала для развития потомка служит ДНК ядра яйцеклетки.
Андрогенез. В развитии зародыша участвует мужское ядро, привнесенное в яйцеклетку, а ядро яйцеклетки при этом гибнет. Яйцеклетка дает лишь питательные вещества своей цитоплазмы.
Полиэмбриония. Зигота (эмбрион) делится на несколько частей бесполым способом, каждая из которых развивается в самостоятельный организм. Встречается у насекомых (наездников), броненосцев. У броненосцев клеточный материал первоначально одного зародыша на стадии бластулы равномерно разделяется между 4—8 зародышами, каждый из которых в дальнейшем дает полноценную особь. К этой категории явлений можно отнести появление однояйцовых близнецов у человека.
Что такое мейоз
Мейоз — особый тип деления клеток, в результате которого образуются половые клетки.
В отличии от митоза, при котором сохраняется число хромосом, получаемых дочерними клетками, при мейозе число хромосом в дочерних клетках уменьшается вдвое.
Процесс мейоза состоит из двух последовательных клеточных делений — мейоза I (первое деление) и мейоза II (второе деление).
Удвоение ДНК и хромосом происходит только перед мейозом I.
В результате первого деления мейоза, называемого редукционным, образуются клетки с уменьшенным вдвое числом хромосом. Второе деление мейоза заканчивается образованием половых клеток. Таким образом, все соматические клетки организма содержат двойной, диплоидный (2n), набор хромосом, где каждая хромосома имеет парную, гомологичную хромосому. Зрелые половые клетки имеют лишь одинарный, гаплоидный (n), набор хромосом и соответственно вдвое меньшее количество ДНК.
Биологическая роль мейоза
Если бы в процессе мейоза не происходило уменьшения числа хромосом, то в каждом следующем поколении при слиянии ядер яйцеклетки и сперматозоида число хромосом увеличивалось бы бесконечно. Благодаря мейозу зрелые половые клетки получают гаплоидное (n) число хромосом, при оплодотворении же восстанавливается свойственное данному виду диплоидное (2n) число.
При мейозе гомологичные хромосомы попадают в разные половые клетки, а при оплодотворении парность гомологичных хромосом восстанавливается. Следовательно, обеспечивается постоянство для каждого вида полных диплоидных наборов хромосом и постоянное количество ДНК.
Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом определяют закономерности наследственной передачи признака от родителей потомству. Из каждой пары двух гомологичных хромосом (материнской и отцовской), входивших в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится лишь одна хромосома. Она может быть:
o отцовской хромосомой;
o материнской хромосомой;
o отцовской с участком материнской;
o материнской с участком отцовской.
Эти процессы возникновения большого количества качественно различных половых клеток способствуют наследственной изменчивости.
В отдельных случаях вследствие нарушения процесса мейоза, при нерасхождении гомологичных хромосом, половые клетки могут не иметь гомологичной хромосомы или, наоборот, иметь обе гомологичные хромосомы. Это приводит к тяжелым нарушениям в развитии организма или к его гибели.
Отличие мейоза от митоза
Все живое имеет клеточное строение. Клетки живут: растут, развиваются и делятся. Их деление может происходить различными способами: в процессе митоза или мейоза. Оба этих способа имеют одинаковые фазы деления, предваряя эти процессы, происходят спирализация хромосом и самостоятельное удвоение в них молекул ДНК. Рассмотрим, в чем заключается отличие митоза от мейоза.
Митоз является универсальным способом непрямого деления клеток, имеющих ядро, то есть клеток животных, растений, грибов. Слово «митоз» произошло от греческого «митос», что означает «нить». Его еще называют вегетативным способом размножения или клонированием.
Мейоз – это также способ деления аналогичных клеток, но число хромосом в ходе мейоза уменьшается в два раза. Основой происхождения названия «мейоз» стало греческое слово «меёсис», то есть «уменьшение».
Процесс деления
В процессе митоза каждая хромосома расщепляется на две дочерние и распределяется по двум вновь образовавшимся клеткам. Жизнь образовавшихся клеток может развиваться по-разному: обе могут продолжать деление, делится дальше только одна клетка, в то время, как другая теряет такую способность, обе клетки утрачивают способность делиться.
Мейоз состоит из двух делений. В первом делении число хромосом становится меньше в два раза, из диплоидной клетки получаются две гаплоидные, при этом в каждой хромосоме имеется по две хроматиды. Во втором делении число хромосом не уменьшается, лишь образуется четыре клетки с хромосомами, которые содержат по одной хроматиде.
Конъюгация
В процессе мейоза в первом делении происходит слияние гомологичных хромосом, при митозе любые виды спаривания отсутствуют.
Выстраивание
В процессе митоза удвоенные хромосомы выстраиваются по экватору по раздельности, в то время как при мейозе аналогичное выстраивание происходит парами.
Итог процесса деления
В результате митоза происходит образование двух соматических диплоидных клеток. Важнейшим аспектом этого процесса является то, что наследственные факторы в ходе деления не изменяются.
Итогом мейоза является появление четырех половых гаплоидных клеток, наследственность которых изменена.
Размножение
Мейоз происходит в созревающих половых клетках и является основой полового размножения.
Митоз является основой бесполого размножения соматических клеток, причем это единственный способ их самовосстановления.
Биологическое значение
В процессе мейоза поддерживается постоянное число хромосом и кроме того происходит появление новых соединений наследственных задатков в хромосомах.
При митозе происходит удвоение хромосом в ходе их продольного расщепления, которые равномерно распределяются по дочерним клеткам. Объем и качество исходной информации не меняется, и сохраняется в полной мере.
Митоз является основой индивидуального развития всех многоклеточных организмов.
Таким образом, основные отличия митоза от мейоза:
Генетические аспекты мейоза
Процессы деления клеток лежат в основе роста и размножения любых организмов, развития и преемственности жизни на Земле. У многоклеточных организмов с половым размножением различают два типа деления клеток: митоз и мейоз. Хотя известны они давно, их молекулярные механизмы во многом еще далеки от понимания. Даже у цитологов, изучающих структуру и функционирование клеток, есть разногласия о функциях ряда структур, которые появляются в процессе клеточного деления.
Центральную роль в обоих типах деления играет самокопирование и распределение по дочерним клеткам носителей генов – хромосом. У растений и животных хромосомы представляют собой гигантские линейные молекулы ДНК, связанные с белками. Именно ДНК обладает свойством самокопирования, или репликации. Хромосомы не одинаковы по составу ДНК. Каждая из них содержит лишь часть общего набора генов. Число и структура хромосом постоянны у большинства особей одного вида. У высших организмов набор хромосом парный – половина от матери, другая – от отца. Такие пары называют гомологичными.
Суть митоза состоит в репликации (удвоении) и точном распределении между дочерними клетками набора хромосом клеточного ядра. Так обеспечивается воспроизведение материальных носителей наследственной информации. В случае же мейоза происходит сокращение вдвое (редукция) числа хромосом. Образующиеся в результате мейотического деления половые клетки, или гаметы, несут лишь по одному гомологу каждой пары хромосом. Именно особенности мейоза лежат в основе законов наследования Менделя и хромосомной теории наследственности. Независимое наследование разных генов и их сочетание у потомков основано на независимом расхождении разных пар гомологичных хромосом в гаметы. Кроме того, в мейозе могут обмениваться гены, лежащие и в одной хромосоме.
Интерес к мейозу особенно возрос в конце 60-х гг., когда выяснилось, что одни и те же ферменты могут принимать участие в процессах воспроизведения ДНК, обмена ее отдельных участков, восстановления повреждений. В последнее время ряд биологов развивает оригинальную идею, заключающуюся в том, что мейоз у высших организмов гарантирует стабильность генетической индивидуальности, т.к. в процессе мейоза, когда пары хромосом-гомологов тесно соприкасаются, происходит проверка нитей ДНК на полную идентичность и восстановление повреждений сразу в обеих нитях.
Изучение мейоза связало методы и интересы двух наук: цитологии и генетики. Это привело к рождению новой ветви знания – цитогенетики, тесно соприкасающейся с молекулярной биологией и генной инженерией. Селекционеров всегда манила перспектива объединить, например, в одном растении полезность культурной пшеницы и продуктивность и устойчивость к внешним повреждающим факторам дикого пырея. Но эта заманчивая идея создания гибридных хромосом натолкнулась на сито мейоза. В мейозе у гибридных растений хромосомы расходились как попало, и в итоге плодовитость падала. Стало ясно, что необходимо выяснить молекулярный механизм гибридизации и то, каким образом контролируется поведение хромосом.
Генетика обладает надежным инструментом изучения сложных процессов путем выявления изменений генов (мутаций), нарушающих ход отдельных стадий. Объектом, удобным с точки зрения цитологии и генетики для систематического поиска и анализа мутаций, нарушающих мейоз (далее в тексте – мей-мутаций), оказалась кукуруза. Это растение, прекрасно изученное и цитологами и генетиками, имеет всего 10 пар относительно крупных хромосом. Кроме того, у кукурузы уже было найдено несколько мей-мутаций.
Поиск новых мутаций был основан на представлении о мейозе как универсальном биологическом процессе, свойственном всем эукариотам. В результате с единых позиций были систематизированы все имевшиеся разрозненные данные о проявлении мей-мутаций у разных объектов – дрожжей, растений, насекомых и человека, что позволило сформулировать концепцию генного контроля мейоза. Но прежде чем изложить ее принципы, необходимо хотя бы в самых общих чертах описать сложный «танец» хромосом при мейотическом редукционном делении клетки. В этом «танце» цитологи выделяют четыре основных фигуры, или фазы: профаза, метафаза, анафаза и телофаза. Суть мейоза можно кратко выразить так: одна репликация хромосом приходится на два последовательных деления клетки. В итоге получаются четыре дочерние половые клетки, которые имеют вдвое меньшее число непарных хромосом (рис. 1).
Центральное событие начальных этапов мейоза – таинственный процесс узнавания друг другом гомологичных хромосом, их попарное сближение и тесное соприкосновение – синапсис (от греч. «соединение, связь»). В ходе синапсиса гомологи обмениваются фрагментами. В световом микроскопе последствия этого обмена видны как перекресты, или хиазмы (рис. 2).
Рис. 1. Схема мейоза (для простоты показана одна пара хромосом)
Во втором делении мейоза центромеры разделяются, и образовавшиеся ранее (до первого деления) копии в каждой паре просто расходятся, после чего образуются еще две дочерние клетки, и в итоге их получается четыре). Второе деление мейоза в принципе соответствует митозу. Таков в самом общем виде сценарий основных цитологических картин мейоза у самых разных организмов
Рис. 2. Хиазмы в результате трех отдельных перекрестов хроматид обеих хромосом
Механизмы оплодотворения
Процесс проникновения сперматозоидов в яйцеклетку называется оплодотворением,в результате чего восстанавливается диплоидный набор хромосом, характерный для того или иного вида животных.
Встреча гамет происходит либо внутри половых путей самки (внутреннее оплодотворение), либо во внешней среде, например, в воде (наружное оплодотворение). Яйцеклетка окружена несколькими оболочками, структура которых такова, что только сперматозоид собственного вида может попасть в яйцеклетку. После оплодотворения оболочки яйцеклетки меняются и другие сперматозоиды уже не могут в нее проникнуть.
Сперматозоид приближается к яйцеклетке головкой вперед. В случае если оболочка яйцеклетки мягкая, навстречу ему приподнимается протоплазматический вырост яйца – воспринимающий бугорок, который и втягивает спермий в глубь яйца. После этого почти мгновенно над воспринимающим бугорком появляется тонкая желточная оболочка оплодотворения, наглухо закрывающая сюда доступ остальным спермиям. При плотных оболочках спермии проникают в яйцеклетки через одно из микропилярных отверстий. В процессе оплодотворения различают три фазы.
Первая фаза – сближение. Как при наружном (у рыб, амфибий), так и при внутреннем (у рептилий, птиц и млекопитающих) оплодотворении сперматозоиды в результате хемотаксиса в условиях слабо щелочной среды очень быстро перемещаются по направлению к яйцеклеткам. Смещение рН в кислую сторону, наоборот, парализует спермии. Сперматозоиды млекопитающих обладают способностью двигаться против тока жидкости, направленного из яйцевода, где происходит оплодотворение, в матку. Сближению половых клеток способствуют: перистальтика маточных труб и мерцательное движение ресничек эпителия маточных труб, а также определенная разность потенциалов между положительной электрозарядностью для семенной жидкости и отрицательной для яйцеклетки.
Оплодотворение у животных. Населяющие планету живые организмы различаются строением, образом жизни, средой обитания. Одни из них производят очень много половых клеток, другие — относительно мало. Существует разумная закономерность: чем меньше вероятность встречи мужской и женской гамет, тем большее число половых клеток продуцируют организмы. Рыбам и амфибиям свойственно внешнее осеменение. Их гаметы попадают в воду, где и происходит оплодотворение. Многие гаметы погибают или поедаются другими существами, поэтому эффективность внешнего осеменения очень низка. Для сохранения вида рыбам и амфибиям необходимо производить огромное количество гамет (треска мечет около 10 млн. икринок).
Высшие животные и растения используют внутреннее осеменение. В этом случае процесс оплодотворения и образующаяся зигота защищены организмом матери. Вероятность оплодотворения значительно повышается, поэтому и продуцируется, как правило, лишь несколько яйцеклеток. Но сперматозоидов все же производится достаточно много, их избыточное количество необходимо для создания вокруг яйцеклетки определенной химической среды, без которой оплодотворение невозможно. Яйцеклетка имеет механизмы, препятствующие проникновению лишних сперматозоидов. После того, как проник первый, она выделяет вещество, подавляющее подвижность мужских гамет. Даже если их в яйцеклетку успевает проникнуть несколько, то с яйцеклеткой сливается только один, остальные гибнут.
Обычно оплодотворение происходит сразу после осеменения, но у нек