Что такое биологическое окисление

Биология. 10 класс

Конспект урока

Урок 6. «Обмен веществ: фотосинтез и биологическое окисление (Гликолиз и цикл Кребса)»

3. Перечень вопросов, рассматриваемых в теме;

Урок посвящен изучению процессов обмена веществ в клетке и его роли в синтезе веществ и обеспечении энергией для процессов жизнедеятельности.

4. Глоссарий по теме (перечень терминов и понятий, введенных на данном уроке);

Автотрофы, анаэробный гликолиз, ассимиляция, аэробный гликолиз, биологическое окисление, гетеротрофы, диссимиляция, окислительное фосфорилирование, пласический обмен, световая и темновая фазы фотосинтеза, строма хлоропластов, тилакоиды гран, фотолиз воды, фотосинтез, цикл Кребса, энергетический обмен.

5. Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц);

2. Общая биология 10-11 классы: подготовка к ЕГЭ. Контрольные и самостоятельные работы/ Г. И. Лернер. – М.: Эксмо, 2007.стр 46-53

3. Биология: общая биология. 10-11 классы: учебник/ А. А. Каменский, Е. А. Криксунов, В. В. Пасечник.- М.: Дрофа, 2018. Стр.81-95

5. Е. Н. Демьянков, А. Н. Соболев «Сборник задач и упражнений. Биология 10-11», учебное пособие для общеобразовательных организаций.

6. открытые электронные ресурсы по теме урока (при наличии);

7. Теоретический материал для самостоятельного изучения;

Таким образом, обмен веществ или метаболизм – это совокупность реакций биосинтеза и расщепления веществ в клетке.

Метаболизм = Анаболизм + Катаболизм

или (ассимиляция) (диссимиляция)

или (пластический обмен) (энергетический обмен)

Пластический обмен – биологический синтез сложных веществ из более простых. При этом все реакции идут с использованием энергии. В результате интенсивно происходит рост организма. Это процессы фотосинтеза и синтеза белка.

Энергетический обмен – ферментативное расщепление (гидролиз, окисление) сложных органических соединений на простые. Все эти реакции идут с выделением энергии в виде АТФ. (энергия используется на поддержание жизненных процессов, работу организма)

Как объяснить такой сложный процесс, как фотосинтез, кратко и понятно?

В процессе фотосинтеза солнечная энергия преобразуется в химическую энергию. Химическое уравнение фотосинтеза: 6CO2 + 12H2O + свет = С6Н12О6 + 6O2 + 6Н2О.

Растения «придумали», как использовать солнечную энергию еще миллионы лет назад, потому что это было нужно для их выживания. Фотосинтез кратко и понятно можно объяснить таким образом: растения используют световую энергию солнца и преобразуют ее в химическую энергию, результатом которой является сахар (глюкоза), избыток которого хранится в виде крахмала в листьях, корнях, стеблях и семенах растения. Энергия солнца передается растениям, а также животным, которые эти растения едят. Когда растение нуждается в питательных веществах для роста и других жизненных процессов, эти запасы оказываются очень полезными.

Фотосинтез. Световая и темновая фазы фотосинтеза.

Во время темновой фазы происходит производство той самой глюкозы, пищи для растений. Этот процесс называют еще независимой от света реакцией.

1. Реакции, происходящие в хлоропластах, возможны только при наличии света. В этих реакциях энергия света преобразуется в химическую энергию

2. Хлорофилл и другие пигменты поглощают энергию от солнечного света. Эта энергия передается на фотосистемы, ответственные за фотосинтез

3. Вода используется для электронов и ионов водорода, а также участвует в производстве кислорода

4. Электроны и ионы водорода используются для создания АТФ (молекула накопления энергии), которая нужна в следующей фазе фотосинтеза

1. Реакции внесветового цикла протекают в строме хлоропластов

2. Углекислый газ и энергия от АТФ используются в виде глюкозы

История развития знаний о биологическом окислении Процесс, который лежит в основе получения энергии, сегодня вполне известен. Это биологическое окисление.

Виды биологического окисления. Можно выделить два основных типа рассматриваемого процесса, которые протекают при разных условиях. Так, самый распространенный у многих видов микроорганизмов и грибков способ преобразования получаемой пищи − анаэробный. Это биологическое окисление, которое осуществляется без доступа кислорода и без его участия в какой-либо форме. Подобные условия создаются там, куда нет доступа воздуху: под землей, в гниющих субстратах, илах, глинах, болотах и даже в космосе. Этот вид окисления имеет и другое название − гликолиз. Он же является одной из стадий более сложного и трудоемкого, но энергетически богатого процесса − аэробного преобразования или тканевого дыхания. Это уже второй тип рассматриваемого процесса. Он происходит во всех аэробных живых существах-гетеротрофах, которые для дыхания используют кислород. Таким образом, виды биологического окисления следующие. Гликолиз, анаэробный путь. Не требует присутствия кислорода и заканчивается разными формами брожения. Тканевое дыхание (окислительное фосфорилирование), или аэробный вид. Требует обязательного наличия молекулярного кислорода. биологическое окисление биохимия

Все биохимические процессы живых организмов чрезвычайно многогранны и сложны. Окислительно-восстановительные реакции, примеры которых могут проиллюстрировать описанные выше процессы окисления субстрата, следующие. Гликолиз: моносахарид (глюкоза) + 2НАД+ + 2АДФ = 2ПВК + 2АТФ + 4Н+ + 2Н2О + НАДН. Окисление пирувата: ПВК + фермент = диоксид углерода + ацетальдегид. Затем следующий этап: ацетальдегид + Кофермент А = ацетил-КоА. Множество последовательных преобразований лимонной кислоты в цикле Кребса. Данные окислительно-восстановительные реакции, примеры которых приведены выше, отражают суть происходящих процессов лишь в общем виде. Известно, что соединения, о которых идет речь, относятся к высокомолекулярным, либо имеющим большой углеродный скелет, поэтому изобразить все полными формулами просто не представляется возможным.

Энергетический выход тканевого дыхания: По приведенным выше описаниям очевидно, что подсчитать суммарный выход всего окисления по энергии несложно. Две молекулы АТФ дает гликолиз. Окисление пирувата 12 молекул АТФ. 22 молекулы приходится на цикл трикарбоновых кислот. Итог: полное биологическое окисление по аэробному пути дает выход энергии, равный 36 молекулам АТФ. Значение биологического окисления очевидно. Именно эта энергия используется живыми организмами для жизни и функционирования, а также для согревания своего тела, движения и прочих необходимых вещей. ферменты биологического окисления.

8. примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).

Вставьте пропущенные слова, выбирая из списка правильные ответы:

… (А) – создание на свету из углекислого газа и воды органических веществ, используя … (Б), при это в атмосферу выделяется кислород. Фотосинтез протекает в … (В). Световая фаза протекает на мембранах … (Г). Темновая фаза фотосинтеза протекает в … (Д) хлоропластов.

Тип вариантов ответов: (Текстовые, Графические, Комбинированные):

Источник

Биологическое окисление: суть процесса и его виды

Виды и стадии биологического окисления

Живые организмы не могут существовать без энергии. Ее требует каждый процесс, каждая химическая реакция. Получать энергию многие живые существа, в том числе и человек, могут с пищей. Стоит детально разобраться, откуда появляется энергия, и какие реакции протекают в это время в клетках живых организмов.

Значение биологического окисления и история его исследования

В основе получения энергии лежит процесс биологического окисления. Сейчас он изучен, создана даже целая наука, занимающаяся всеми тонкостями и механизмами процесса — биохимия. Биологическое окисление — это совокупность окислительно-восстановительных превращений веществ в живых организмах. Окислительно-восстановительными называют реакции, которые протекают с изменением степени окисления атомов вследствие перераспределения электронов между ними.

Первые предположения ученых о том, что внутри каждого живого организма протекают сложные химические реакции, были выдвинуты в XVI­II столетии. Изучением проблемы занимался французский химик Антуан Лавуазье, обративший внимание на то, что процессы горения и биологического окисления похожи друг на друга.

Ученый проследил путь кислорода, который поглощается живым организмом в процессе дыхания, и сделал вывод, что в организме происходит процесс окисления, напоминающий процесс горения, но протекающий более медленно. Лавуазье обнаружил, что молекулы кислорода (окислитель) взаимодействуют с органическими соединениями, содержащими углерод и водород. В результате происходит абсолютное превращение, при котором соединения разлагаются.

Некоторые моменты в процессе изучения проблемы оставались для ученых непонятыми:

Чтобы ответить на эти и многие другие вопросы, а также уяснить, что такое биологическое окисление, ученым потребовался не один год. К настоящему времени химиками были изучены: связь дыхания с другими процессами обмена веществ, в т.ч. процесс фосфорилирования. Кроме того, ученые исследовали свойства ферментов, катализирующих реакции биологического окисления; локализацию ферментов в клетке; механизм аккумуляции и преобразования энергии.

Здесь вы найдете безопасные эксперименты на исследование химических свойств белков, жиров и углеводов.

Биологическое окисление и его виды

При разных условиях возможны два вида биологического окисления. Многие грибки и микроорганизмы получают энергию, преобразовывая питательные вещества анаэробным способом. Анаэробное биологическое окисление – это реакция, происходящая без доступа и какого-либо участия в процессе кислорода. Такой способ получения энергии применим живыми организмами в среде, в которую не поступает воздух: в глине, под землей, в иле, на болоте, в гниющих субстанциях. Анаэробное биологическое окисление называют гликолизом.

Более сложный способ преобразования питательных веществ в энергию — аэробное биологическое окисление, или тканевое дыхание. Эта реакция осуществляется во всех аэробных организмах, использующих кислород в процессе дыхания. Аэробный способ биологического окисления невозможен без молекулярного кислорода.

Пути биологического окисления и участники процесса

Чтобы окончательно понять, что собой представляет процесс биологического окисления, следует рассмотреть его стадии.

Гликолиз — это беcкислородное расщепление моносахаридов, предшествующее процессу клеточного дыхания и сопровождающееся выходом энергии. Такая стадия является начальной для каждого организма-гетеротрофа. После гликолиза у анаэробов наступает процесс брожения.

Окисление пирувата заключается в преобразовании пировиноградной кислоты, получаемой в процессе гликолиза, в ацетилкоэнзим. Реакция происходит с помощью ферментного комплекса пируватдегидрогеназы. Локализация – кристы митохондрий.

Распад бета-жирных кислот осуществляется параллельно с окислением пирувата на кристах митохондрий. Цель – переработка всех жирных кислот в ацетилкоэнзим и постановка его в цикл трикарбоновых кислот.

Цикл Кребса: сначала ацетилкоэнзим превращается в лимонную кислоту, затем она подвергается последующим преобразованиям (дегидрированию, декарбоксилированию и регенерации). Все процессы несколько раз повторяются.

Окислительное фосфорилирование — заключительная стадия преобразования в организмах эукариот соединений. Осуществляется преобразование аденозиндифосфата в аденозинтрифосфорную кислоту. Необходимая для этого энергия поступает в процессе окисления молекул фермент-дегидрогеназа и кофермента дегидрогеназа, сформировавшихся в предыдущих стадиях. Затем энергия заключается в макроэргические связи аденозинтрифосфорной кислоты.

Таким образом, окисление веществ осуществляется такими способами:

В клетках живых организмов встречаются все перечисленные типы окислительных реакций, катализируемых соответствующими ферментами — оксидоредуктазами. Процесс окисления происходит неизолированно, он связан с реакцией восстановления: одновременно происходят реакции присоединения водорода или электрона, то есть осуществляются окислительно-восстановительные реакции. Процесс окисления — это каждая химическая реакция, которая сопровождается отдачей электронов с увеличением степеней окисления (окисленный атом имеет большую степень окисления). С окислением вещества может происходить и восстановление — присоединение электронов к атомам другого вещества.

Источник

Окисление биологическое

Совокупность реакций окисления, протекающих во всех живых клетках. Основная функция О. б. — обеспечение организма энергией в доступной для использования форме. Реакции О. б. в клетках катализируют ферменты, объединяемые в класс оксидоредуктаз (См. Оксидоредуктазы). Изучение окисления в организме было начато в 18 в. А. Лавуазье; в дальнейшем значительный вклад в исследование О. б. (его локализация в живых клетках, связь с др. процессами обмена веществ, механизмы ферментативных окислительно-восстановительных реакций, аккумуляция и превращение энергии и др.) внесли О. Варбург, Г. Виланд (Германия), Д. Кейлин, Х. Кребс, П. Митчелл (Великобритания), Д. Грин, А. Ленинджер, Б. Чанс, Э. Рэкер (США), а в СССР — А. Н. Бах, В. И. Палладин, В. А. Энгельгардт, С. Е. Северин, В. А. Белицер, В. П. Скулачев и др.

О. б. в клетках связано с передачей т. н. восстанавливающих эквивалентов (ВЭ) — атомов водорода или электронов — от одного соединения — донора, к другому — акцептору. У аэробов (См. Аэробы) — большинства животных, растений и многих микроорганизмов — конечным акцептором ВЭ служит кислород. Поставщиками ВЭ могут быть как органические, так и неорганические вещества (см. таблицу).

Классификация организмов по источнику энергии и восстанавливающих эквивалентов

Тип организмовИсточник энергииОкисляемое соединение (поставщик восстанавливающих эквивалентов)Примеры
ФотолитотрофыСветНеорганические соединенияЗелёные клетки высших растений,
ФотоорганотрофыСвет2О, H2S, S)синезелёные водоросли,
ХемолитотрофыРеакцииОрганические соединенияфотосинтезирующие бактерии
ХемоорганотрофыокисленияНеорганические соединенияНесерные пурпурные бактерии
Реакции(H2, S, H2S, NH3, Fe 2 + )Водородные, серные,
окисленияОрганические соединенияденитрифицирующие бактерии,
железобактерии
Животные, большинство
микроорганизмов,
нефотосинтезирующие клетки
растений

Основной путь использования энергии, освобождающейся при О. б., — накопление её в молекулах аденозинтрифосфорной кислоты (АТФ) и др. макроэргических соединений (См. Макроэргические соединения). О. б., сопровождающееся синтезом АТФ из аденозиндифосфорной кислоты (АДФ) и неорганического фосфата, происходит при Гликолизе, окислении α-кетоглутаровой кислоты и при переносе ВЭ в цепи окислительных (дыхательных) ферментов, обычно называют окислительным фосфорилированием (См. Окислительное фосфорилирование) (см. схему).

В процессе дыхания углеводы, жиры и белки подвергаются многоступенчатому окислению, которое приводит к восстановлению основных поставщиков ВЭ для дыхательных флавинов, Никотинамидадениндинуклеотида (НАД), Никотинамидадениндинуклеотидфосфата (НАДФ) и липоевой кислоты (См. Липоевая кислота). Восстановление этих соединений в значительной мере осуществляется в Трикарбоновых кислот цикле, которым завершаются основные пути окислительного расщепления углеводов (оно начинается с гликолиза), жиров и аминокислот. Помимо цикла трикарбоновых кислот, некоторое количество восстановленных коферментов (См. Коферменты) — ФАД (Флавинадениндинуклеотида) и НАД — образуется при окислении жирных кислот, а также при окислительном дезаминировании глутаминовой кислоты (НАД) и в пентозофосфатном цикле (См. Пентозофосфатный цикл) (восстановленный НАДФ).

Соотношение и локализация различных механизмов О. б. В расчёте на 1 молекулу глюкозы гликолиз даёт 2 молекулы АТФ, а фосфорилирование в дыхательной цепи — 34 молекулы АТФ. Гликолиз, цикл трикарбоновых кислот и дыхательная цепь функционируют, по-видимому, в клетках всех эукариотов (См. Эукариоты). Окисление жирных кислот у позвоночных поставляет половину энергии, потребляемой печенью, почками, мышцей сердца и покоящимися скелетными мышцами; в клетках мозга оно практически не происходит. Окисление по пентозофосфатному пути активно в печени и лактирующих молочных железах, но незначительно в сердечной и скелетных мышцах.

В жидкой фазе цитоплазмы растворены все ферменты гликолиза. Внутренние мембраны митохондрий (См. Митохондрии), мембраны хлоропластов (См. Хлоропласты) (тилакоидов) и клеточные мембраны бактерий содержат фосфорилирующие цепи переноса электронов. В матриксе митохондрий локализовано окисление жирных кислот, ферменты цикла трикарбоновых кислот и глутаматдегидрогеназа. Во внутренней мембране митохондрий находятся ферменты, окисляющие янтарную и β-оксимасляную кислоты, во внешней — ферменты, участвующие в обмене аминокислот: Моноаминоксидаза и кинуренингидроксилаза. В особых органоидах клетки, т. н. пероксисомах, или микротельцах, вклад которых в суммарное поглощение О2 может достигать в печени 20%, находится флавиновая оксидаза, окисляющая аминокислоты, гликолевую кислоту и др. субстраты с образованием перекиси водорода, которая затем разлагается каталазой (См. Каталаза) или используется пероксидазами (См. Пероксидазы) в реакциях окисления. В мембранах эндоплазматической сети клетки локализованы гидроксилазы и оксигеназы, организованные в короткие нефосфорилирующие цепи переноса электронов.

Окислительные реакции не всегда сопровождаются накоплением энергии; в ряде случаев они несут функции превращения веществ (например, окисление при образовании жёлчных кислот, стероидных гормонов, на путях превращения аминокислот и др.). При окислении происходит обезвреживание чужеродных и ядовитых для организма веществ (ароматических соединений, недоокисленных продуктов дыхания и др.). О. б., не сопряжённое с накоплением энергии, называется свободным окислением. Его энергетический эффект — образование тепла. По-видимому, система переноса электронов, осуществляющая окислительное фосфорилирование, способна переключаться на свободное окисление при увеличении потребности организма в тепле (у гомойотермных животных (См. Гомойотермные животные)).

Механизм использования энергии окисления. Долгое время оставался неясным вопрос о механизме преобразования энергии, освобождающейся при переносе ВЭ по цепи окислительных ферментов. Согласно т. н. хемиосмотической теории, развитой в 60-х гг. 20 в. (английский биохимик П. Митчелл и др.), энергия сначала используется для создания электрического поля («+» с одной стороны мембраны и «–» с другой) и разности концентраций ионов Н + по разные стороны мембраны. Оба фактора (электрическое поле и разность концентраций) могут служить движущей силой для действия фермента АТФ-синтетазы, осуществляющей синтез АТФ. Часть энергии поля может быть прямо использована клеткой для переноса ионов через мембрану, восстановление переносчиков электронов, образования тепла без промежуточного участия АТФ.

Эволюция энергообеспечения в живой природе. Древнейшие организмы, как полагают, существовали в первичной бескислородной атмосфере Земли и были анаэробами (См. Анаэробы) и гетеротрофными организмами (См. Гетеротрофные организмы). Обеспечение клеток энергией шло за счёт процессов типа гликолиза. Возможно, существовал механизм окисления, известный у некоторых современных микроорганизмов: ВЭ передаются через дыхательную цепь на нитрат (NO – 3) или на сульфат (SO – – 4). Принципиально важным этапом оказалось возникновение у древних одноклеточных организмов механизма фотосинтеза, с которым связывают появление кислорода в атмосфере Земли. В результате стало возможным использование O2, обладающего высоким окислительно-восстановительным потенциалом, в качестве конечного акцептора электронов в дыхательной цепи. Реализация этой возможности произошла при появлении специального фермента — цитохромоксидазы (См. Цитохромоксидаза), восстанавливающей О2, и привела к возникновению биохимического дыхательного аппарата современного типа. Обеспечение энергией у всех аэробов (их клетки содержат митохондрии) основано на таком дыхании. Вместе с тем клетки сохранили ферментный аппарат гликолиза. Образуемая в ходе последнего пировиноградная кислота окисляется далее в цикле трикарбоновых кислот, который, в свою очередь, питает дыхательную цепь электронами. Т. о., эволюция энергетического обмена шла, по-видимому, по пути использования и надстройки уже имевшихся ранее механизмов энергообеспечения. Наличие в клетках ныне существующих организмов биохимических систем гликолиза (в цитоплазме), дыхания (в митохондриях), фотосинтеза (в хлоропластах), а также поразительное сходство механизмов превращения энергии в этих органеллах и в микроорганизмах нередко рассматривают как свидетельство возможного происхождения хлоропластов и митохондрий от древних микроорганизмов-симбионтов. См. также Аденозинфосфорные кислоты, Биоэнергетика, Брожение, Дыхание, Митохондрии, Фотосинтез и лит. при этих статьях.

Лит.: Ленингер А., Превращение энергии в клетке, в кн.: Живая клетка, пер. с англ., М., 1962; Скулачев В. П., Аккумуляция энергии в клетке, М., 1969; его же, Трансформация энергии в биомембранах, М., 1972; Малер Г. и Кордес Ю., Основы биологической химии, пер. с англ., М., 1970, гл. 15; Леви А., Сикевиц Ф., Структура и функции клетки, пер. с англ., М., 1971, гл. 12; Ясайтис А. А., Превращение энергии в митохондриях, М., 1973; Ленинджер А., Биохимия, пер. с англ., М., 1974.

Что такое биологическое окисление. Смотреть фото Что такое биологическое окисление. Смотреть картинку Что такое биологическое окисление. Картинка про Что такое биологическое окисление. Фото Что такое биологическое окисление

Пути образования АТФ при хемоорганотрофном типе энергетического обмена. ФГА — 3-фосфоглицериновый альдегид; ФГК — 3-фосфоглицериновая кислота; ФЕП — фосфоенолпировиноградная кислота; ПК — пировиноградная кислота; Ацетил-КоА — ацетил-кофермент А. Количественные соотношения отдельных путей биологического окисления показаны одинарными и двойными стрелками.

Источник

ОКИСЛЕНИЕ БИОЛОГИЧЕСКОЕ

ОКИСЛЕНИЕ БИОЛОГИЧЕСКОЕ — ферментативные процессы окисления, протекающие в организмах животных и растений, а также в микроорганизмах. Окислительные процессы используются клеткой для создания и пополнения ресурсов энергии, для биосинтеза многих существенных для обмена веществ соединений (стеринов, простагландинов, нейромедиаторов и др.)? Для превращения крупных органических молекул в более простые и, наконец, для образования конечных продуктов обмена веществ и энергии, подлежащих выделению из организма. Окислительные реакции играют также большую роль в обезвреживании токсичных для организма веществ.

Началом научного исследования процессов О. б. явились труды А. Лавуазье, высказавшего предположение о медленном окислении продуктов питания в крови животных и человека, сопровождающемся поглощением кислорода и выделением углекислого газа. Позднее Спалланцани (L. Spallanzani) показал, что О. б. происходит не в крови, а в других тканях. В нашей стране проблеме О. б. были посвящены многие труды А. Н. Баха, В. А. Белицера, В. И. Палладина, С. Е. Северина, В. А. Энгельгардта и др.

Процесс окисления любого субстрата сопровождается переносом электронов или атомов водорода, так наз. восстановительных эквивалентов, от соединения-донора к соединению-акцептору. У гетеротрофных организмов, для к-рых окислительно-восстановительные реакции являются единственным источником получения необходимой для жизнедеятельности энергии, донорами электронов обычно служат различные органические соединения (напр., глюкоза, жирные к-ты, аминокислоты). Значительно реже эту роль выполняют неорганические соединения типа водорода, сероводорода, серы, аммиака.

Окисление с использованием атмосферного кислорода, называемое также тканевым или клеточным дыханием, является источником большей части энергии, получаемой аэробными клетками. Роль тканевого дыхания в живых клетках чрезвычайно велика, т. к. именно благодаря ему в клетке создается запас основной части энергии, заключенной прежде в сложных органических молекулах различной структуры и трансформированной в легко утилизируемую свободную энергию фосфатной связи молекулы АТФ (см. Аденозинтрифосфорные кислоты). Из природных соединений, способных активировать тканевое дыхание, следует отметить гормоны щитовидной железы, а также свободные жирные к-ты.

Начальным этапом тканевого дыхания считают многоступенчатый ферментативный процесс — цикл Трикарбоновых к-т, к-рый называют еще циклом Кребса или циклом лимонной к-ты (см. Трикарбоновых кислот цикл). Ранние стадии распада углеводов, белков и жиров катализируются самыми разнообразными ферментами и представляют собой широкий спектр реакций, специфических для каждого класса веществ. Однако конечными продуктами углеводного обмена (см.), азотистого обмена (см.) и жирового обмена (см.) является небольшое число соединений, теми или иными путями вовлекаемых в общий для всех этих классов веществ цикл — цикл Трикарбоновых к-т.

Для организма процесс тканевого дыхания энергетически наиболее выгоден. Если в процессе гликолиза (см.) — в превращении глюкозы, протекающем без потребления кислорода, происходит образование всего 2 молекул АТФ, а в цикле Трикарбоновых к-т образуется 2 молекулы АТФ на 1 молекулу расходуемой глюкозы, то при переносе электронов в дыхательной цепи митохондрий (см.) энергия запасается в высокоэргических связях 34 молекул АТФ на 1 молекулу глюкозы. Т. о., важность процессов тканевого дыхания в энергетическом обмене клетки не вызывает сомнения.

Дыхательная цепь митохондрий, в к-рой по завершении реакций цикла Трикарбоновых к-т реокисляются восстановленные НАД и сукцинатдегидрогеназа (КФ 1.3.99.1), представляет собой уникальный полиферментный комплекс, локализованный во внутренней мембране митохондрий. В состав дыхательной цепи входят несколько групп ферментов: флавинсодержащие дегидрогеназы [НАД-Н-дегидрогеназа (КФ 1.6.99.3), сукцинатдегидрогеназа, ацил-КоА-дегидрогеназа (КФ 1.3.99.3) и др.]; белки, содержащие негемовое железо (железосеропротеиды), а также несколько типов цитохромов (см.) — Цитохромы b, c1, c, a и a3. Обязательным компонентом дыхательной цепи является также кофермент Q, или убихинон, по-видимому, принимающий участие в акцептировании электронов от флавинсодержащих дегидрогеназ (см. Коферменты). Переносчики электронов расположены в дыхательной цепи в порядке возрастания величины их окислительно-восстановительного потенциала (см.). Основной функцией дыхательной цепи является ступенчатый перенос восстановительных эквивалентов от субстратов-доноров (НАД-Н, сукцината, ацил-КоА, бета-оксибутирата и др.) к конечному акцептору электронов — молекулярному кислороду. В результате такого переноса происходит постепенное высвобождение свободной энергии реакции восстановления кислорода до воды. Эта энергия частично может быть запасена в виде энергии фосфатной связи молекулы АТФ.

Процесс синтеза молекулы АТФ за счет энергии окисления различных субстратов был открыт в СССР В. А. Энгельгардтом в 1930 г. и получил название окислительного или дыхательного фосфорилирования. При переносе пары электронов от восстановленного НАД к кислороду в дыхательной цепи происходит образование 3 молекул АТФ. Если же реакция окисления начинается на уровне флавинсодержащих дегидрогеназ (сукцинатдегидрогеназы, ацил-КоА — дегидрогеназы), синтезируется только 2 молекулы АТФ. Для оценки эффективности окислительного фосфорилирования В. А. Белицер в 1939 г. ввел величину отношения P/О, т. е. количества неорганического фосфата, включившегося в молекулу АТФ, в пересчете на каждый поглощаемый атом кислорода. Величина отношения P/О при окислении НАД*H равна 3, а при окислении янтарной к-ты (сукцината) — 2.

Механизм трансформации энергии окисления в энергию хим. связи АТФ пока полностью не выяснен. Среди существующих гипотез наиболее признанной является хеми-осмотическая гипотеза Митчелла (Р. Mitchell), согласно к-рой перенос электронов в дыхательной цепи приводит к возникновению электрохимического потенциала ионов водорода по разные стороны внутренней мембраны митохондрий, энергия разности этих потенциалов используется затем в синтезе молекулы АТФ.

При нек-рых воздействиях (напр., при переохлаждении организма) у животных с постоянной температурой тела сопряженные процессы окисления и фосфорилирования (см.) разобщаются и свободная энергия, освобождающаяся при переносе электронов, не запасается в молекуле АТФ, а рассеивается в виде тепла. В интактных митохондриях перенос электронов в отсутствии субстратов фосфорилирования (АДФ и неорганического фосфата) происходит с очень низкой скоростью. В присутствии АДФ и неорганического фосфата скорость переноса электронов резко увеличивается. Такое жесткое сопряжение между окислением и фосфорилированием характерно только для интактных митохондрий. Под влиянием нек-рых соединений процессы окисления и фосфорилирования могут быть разобщены. Веществами, способными разобщать окисление и фосфорилирование, являются гормоны щитовидной железы, жирные к-ты, 2,4-динитрофенол, дикумарин и др.

В тканях организма вещества, всосавшиеся в кровь из кишечника (глюкоза, аминокислоты, жирные к-ты и др.), вступают в реакцию распада. Начальным этапом катаболизма глюкозы (см.) в тканях животных является гликолиз, представляющий собой определенную последовательность анаэробных ферментативных реакций превращения глюкозы в пировиноградную кислоту (см.). Энергетический эффект гликолиза состоит в образовании 2 молекул АТФ и 2 молекул НАД-H на 1 молекулу глюкозы. При окислении 2 молекул НАД*H в дыхательной цепи митохондрий происходит образование еще 6 богатых энергией фосфатных связей в молекулах АТФ. Источником энергии для образования АТФ в процессе гликолиза служит реакция гликолитической оксидоредукции, катализируемая глицеральдегидфосфатдегидрогеназой (КФ 1.2.1.12) и енолазой (КФ 4.2.1. 11). Пировиноградная к-та (пируват) подвергается окислительному декарбоксилированию (см.) под действием мультиферментного пируватдегидрогеназного комплекса (КФ 1.2.2.2), локализованного в митохондриях. Продуктом этой ферментативной реакции является ацетил-КоА, к-рый включается в цикл Трикарбоновых к-т.

Аминокислоты, входящие в состав белков, подвергаются ферментативным окислительным реакциям распада с образованием довольно ограниченного числа метаболитов, в основном ацетил-КоА, альфа-кетоглутаровой и щавелево-уксусной к-т. Все они способны включаться в цикл Трикарбоновых к-т. Центральное место в катаболизме аминокислот занимают транс а минирование (см.) и окислительное дезаминирование (см.). При трансаминировании альфа-аминогруппы практически всех аминокислот переносятся в молекулу а-кетоглутаровой к-ты, в результате чего образуется глутаминовая к-та. В митохондриях под действием фермента глутаматдегидрогеназы (КФ 1.4.1.3; 1.4.1.4) происходит окислительное дезаминирование глутаминовой к-ты, сопровождающееся образованием альфа-кетоглутаровой к-ты и токсичного для организма аммиака, к-рый обезвреживается в цикле мочевины (см.). Акцептором электронов в глутаматдегидрогеназной реакции служат НАД и НАДФ, окисляющиеся затем в дыхательной цепи митохондрий.

Важную роль играют окислительные процессы и в жировом обмене. Молекулы свободных жирных кислот (см.) в процессе бета-окисления и в меньшей степени α- и ω-окисления вступают в циклические окислительно-восстановительные реакции с образованием в качестве главного промежуточного продукта ацетил-КоА. Ферменты, принимающие участие в окислительном распаде жирных к-т при их бета-окислении, локализованы преимущественно в митохондриях и тесно связаны с дыхательной цепью. Выход энергии в результате окислительного распада жирных к-т, напр, пальмитиновой к-ты, очень велик: в результате β-окисления этой жирной к-ты образуется 8 молекул ацетил-КоА, 7 молекул ФАД-Н2 и 7 молекул НАД-Н, окисление к-рых в цикле Трикарбоновых к-т и дыхательной цепи митохондрий может дать до 130 молекул АТФ.

Многие окислительно-восстановительные реакции, протекающие в организме человека и животных, не направлены на накопление потенциальной энергии фосфоангидридных связей, но являются совершенно необходимыми для образования таких жизненно важных соединении, как стерины, простагландины, биологически активные производные витамина

D, нейромедиаторы и др. Реакции такого типа чаще всего катализируются оксигеназами (КФ 1.13.11), к-рые участвуют также и в катаболизме многих органических веществ, в т. ч. и токсичных для организма.

Интенсивность О. б. в отдельных органах и тканях может быть изучена с помощью манометрических методов. Дыхательный коэффициент (см.), количественно характеризующий О. б. в изолированных тканях или их гомогенатах, представляет собой величину отношения объема углекислого газа, выделившегося за определенный промежуток времени, к объему поглощенного за это же время кислорода. Количество поглощенного срезами изолированных тканей или тканевыми гомогенатами кислорода и выделенного углекислого газа можно измерить в аппарате Варбурга (см. Микрореспирометры).

Большое значение для изучения процессов О. б. имеет разработка методов фракционирования биол, материала. Для выделения тех или иных компонентов живой клетки применяются такие методы, как ультрацентрифугирование, адсорбционная, ионообменная и аффинная хроматография (см.), гель-фильтрация (см.), электрофорез (см.) и др. С помощью этих методов удается выделить не только очищенные клеточные органеллы, напр, митохондрии, но и индивидуальные оксидоредуктазы в гомогенном состоянии. Широкое применение для изучения окислительно-восстановительных реакций нашли радиоизотопные методы, спектроскопия (см.), потенциометрические, электрометрические и полярографические (см. Полярография) методы исследования.

Библиография: Беркович E. М. Энергетический обмен в норме и патологии, М., 1964; Ленинджер А. Биохимия, пер. с англ., с. 311, М., 1976; Мецлер Д. Биохимия, Химические реакции в живой клетке, пер. с англ., т. 2, М., 1980; P экер Э. Биоэнергетические механизмы, новые взгляды, пер. с англ., М., 1979; Скулачев В. П. Аккумуляция энергии в клетке, М., 1969; Скулачев В. П. и Козлов И. А. Протонные аденозинтрифосфатазы, М., 1977; Mitchell P. Keilin’s respiratory chain concept and its chemiosmotic consequences, Science, v. 206, p. 1148, 1979.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *