Что такое биологический смысл
В чем заключается биологическое значение мейоза
Природа создала несколько способов деления клеток, одним из них является мейоз. Он представляет собой процесс, во время которого из соматической клетки образуется четыре гаметы (половые клетки с одинарным набором хромосом). Они отличаются комбинациями генов и редуцированными наборами хромосом. Без этого процесса половое размножение многоклеточных живых организмов просто невозможно. В этом и заключается биологическое значение мейоза.
Общая информация
При половом размножении после слияния двух гамет образуется зигота. Именно из этой клетки затем и развивается дочерний организм. Родительские половые клетки имеют определенный гаплоидный набор (n) хромосом. После их соединения число хромосом в зиготе увеличивается и становится диплоидным (2n). При этом каждая пара гомологических хромосом имеет по одной материнской и отцовской хромосоме. Так кратко можно описать сущность процесса формирования диплоидных клеток из гаплоидных, который и называется мейоз.
Уже в 1883 году ученые при изучении оплодотворения и предзародышевого развития (гаметогеноз) у червей обнаружили одну закономерность — яйцеклетки и сперматозоиды содержат в два раза меньше хромосом в сравнении с зиготой. Во время дальнейшего внимательного изучения гаметогенеза был обнаружен новый вид деления клеток — мейоз. На установление главных закономерностей этого процесса было затрачено около 50 лет.
Фазы мейоза
Процесс деления клеток состоит из двух последовательных этапов. Они называются первое деление (мейоз I) и вторичное деление (мейоз II). Между этими этапами существует укороченная интерфаза, названная интеркинезом. Каждый этап деления состоит из 4 фаз. Для мейоза I это:
Мейоз II, в свою очередь, составляют соответственно профаза II, метафаза II, анафаза II и телофаза II. В ходе всех этих делений в клетках происходят серьезные изменения. Среди них следует отметить:
Каждый этап мейоза требует более детального рассмотрения.
Первое деление
В мейоз могут вступать только определенные соматические клеточки после завершения интерфазы. Профаза I является самым сложным процессом. Это связано с тем, что именно на этой стадии происходит распределение генетического материала. У человека профаза I длиться чуть более 22 дней и состоит из 5 стадий:
Если на этапе профаза I происходит подготовка к делению генетического материала, то во время метафазы I это делают остальные структуры клетки. Оболочка ядра растворена, биваленты находятся около полюсов, образуя тем самым метафазную пластину. Кроме этого к каждой хромосоме присоединяется веретено деления.
На стадии анафаза I веретено деления притягивает к полюсам по одной хромосоме из всех тетрад. В результате в клетке формируется 2 гаплоидных генома — по одному на полюс. Однако до завершения процесса деления цитоплазмы клетка продолжает оставаться диплоидной.
Телофаза I характеризуется делением цитоплазмы на две части. У растительных организмов этот процесс протекает благодаря достраиванию поперечной стенки в клетке. У представителей фауны мембрана цитоплазмы перешнуровывается. Также во время телофазы I происходит формирование ядер. В результате образуется две клеточки, в состав которых входит 2 хроматиды. При этом новообразованные клетки имеют только один вариант генов.
Второй этап
Второе деление начинается после непродолжительного интеркинеза — паузы. На этом этапе делиться начинают 2 клеточки, содержащие гаплоидные геномы. Для профазы II характерно разрушение мембран и ядер. Одновременно с этим наблюдаются следующие процессы:
Во время метафазы II хромосомы размещаются в определенном порядке в плоскости экватора. При этом метафазные пластины расположены перпендикулярно друг к другу. Веретено деления связывает хроматиды и центриоли.
На следующем этапе (анафаза II) к каждому полюсу смещается одна дочерняя хроматида из каждой хромосомы. В делящейся клеточке создается два редуцированных генетических набора. Так как цитоплазма еще не разделилась, клетку следует считать гаплоидной.
Этап телофаза II завершает деление клетки. Именно в этот момент происходит разделение цитоплазмы и формирование мембран ядер. Из двух гаплоидных клеток создается 4 гаметы с разными комбинациями генов. У мужчин во время гаметогенеза цитоплазма поровну распределяется между четырьмя сперматозоидами. У женщин основная часть цитоплазмы смещается в направлении яйцеклетки. В остальных клетках (полярные тельца) основную часть свободного пространства занимают ядра.
Биологическое значение
Ознакомившись с процессом деления, остается выяснить, каково биологическое значение мейоза, и какую он играет роль в жизни эукариотов. Этот процесс крайне важен для многоклеточных организмов. Во время оплодотворения, при слиянии гамет, новый организм сохраняет признаки кариотипа, так как получает диплоидный генетический набор. При отсутствии мейоза при делении клеточек количество хромосом постоянно увеличивалось бы.
Кроме этого, биологический смысл мейоза заключается в следующем:
Большая Энциклопедия Нефти и Газа
Биологический смысл
Биологический смысл естественных суточный колебаний физиологических функций состоит в обеспечении высокой активности, выносливости и работоспособности человека днем за счет преобладания тонуса симпатической нервной системы и состояния отдыха и восстановительных процессов ночью за счет активизации парасимпатической нервной системы. [1]
Биологический смысл этого явления связан, по-видимому, с возможностью более быстрого отделения тРНК от мРНК, что очень важно для процесса белкового синтеза. [3]
Биологический смысл этого процесса вполне очевиден. [4]
Биологический смысл этих превращений сводится, как уже указывалось, прежде всего к освобождению некоторого количества энергии, используемой в анаэробных условиях организмом для выполнения тех или иных физиологических функций. [6]
Биологический смысл свечения пока непонятен. Есть гипотеза, что это защита от переокисления: когда накапливается много восстановленного пиридиннуклеотида, срабатывает отводной канал, электроны сбрасываются на флавин и высвечиваются. [8]
Биологический смысл боли состоит в том, что она, являясь сигналом опасности, мобилизует организм на борьбу за самосохранение. Под влиянием болевого сигнала перестраивается работа всех систем организма и повышается его реактивность. [9]
Биологический смысл ветвления заключается в повышении растворимости гликогена и в увеличении числа нередуцирующих концов у его молекул, что делает гликоген более доступным для действия гликоген-фосфорилазы и гликоген-син-тазы. [11]
Биологический смысл временного отставания в развитии реакций специфической системы вполне очевиден. Он заключается в том, что резервы этой системы не расходуются по мелочам, на агрессию, не представляющую опасности для жизни организма хозяина. [13]
Биологический смысл спиртового брожения заключается в том, что образуется определенное количество энергии, которая запасается в форме АТФ, а затем расходуется на все жизненно необходимые процессы клетки. [14]
Митоз и мейоз
Жизненный цикл клетки (клеточный цикл)
С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.
Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, клетка растет.
Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.
Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.
ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).
Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).
Мейоз
В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).
Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.
Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.
Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.
Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).
Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.
Бинарное деление надвое
При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.
Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Деление клетки: мейоз — фазы и биологическое значение
В этой статье мы разберемся, что такое мейоз и через какие фазы он проходит. Поймем какой хромосомный набор на каждом этапе такого деления и что обозначают все эти n и c. А самое главное — какое биологическое значение у мейоза. В конце сравним его с митозом, выявим сходства и различия между ними.
Что же такое мейоз?
Мейоз — это способ деления клетки. Его еще называют редукционным делением, потому что из одной диплоидной клетки получается четыре гаплоидных, то есть происходит уменьшение хромосом в два раза.
Какие клетки могут так делиться? Эукариотические, но не все, а только избранные. Прежде всего, это предшественники половых клеток человека — сперматоциты и овоциты (или ооциты). Ещё таким способом образуются споры у высших растений.
Хромосомный набор
Начнем с хромосомы. Представьте себе мешок с картошкой. Вот хромосома — это такой мешок, только вместо картошки в ней длинная молекула ДНК, которая связана с белками — гистонами и негистонами.
Всего у нас 46 хромосом или 23 пары. Почему пары? Дело в том, что у каждой хромосомы есть своя сестричка — двойняшка (гомолог). Вроде они и очень похожи, но разница есть. Они содержат похожие молекулы ДНК, но не такие же! Гомологичные хромосомы могут содержать немного разные нуклеотидные последовательности, а значит по-разному проявляют признаки.
Когда у каждой хромосомы есть своя пара, то это диплоидный набор — 46 хромосом. Если пары нет, то это гаплоидный набор — 23 хромосомы.
n — это число хромосом. У каждой есть своя пара, значит всего 2n.
c — это число молекул ДНК, в одной хромосоме одна молекула. Всего молекул = 2c
Редукционный этап или первое деление мейоза
Его суть — изменение числа хромосом внутри клетки. То есть из одной диплоидной (2n4c) клетки получаем две гаплоидных (1n2c). Так стоп, откуда 4c? До этого же было 2n2c. Ах да… Сейчас разберемся.
Интерфаза
Перед вступлением в мейоз клетка проходит через интерфазу. Ей нужно подготовиться к делению — запасти энергетических субстратов (АТФ), синтезировать необходимые белки и удвоить количество молекул ДНК. Еще в интерфазу происходит удваивание центромер.
В интерфазу произошла репликация ДНК — образовалась идентичная цепь. Но эти две цепи, или хроматиды, связаны между собой при помощи центромеры, значит количество хромосом такое же. Итого набор — 2n4c
Ну вы ведь понимаете, что таким образом реплицируются все 46 хромосом. Просто удобнее показать на паре. Помните, что все 23 пар вступают в мейоз, а не только одна. После репликации начинается собственно мейоз, а именно его первая фаза:
Профаза мейоза I
Лептотена
Какая основная задача у клетки? Правильно, передать генетический материал своим потомкам. Поэтому она начинает упаковывать молекулы ДНК как можно плотнее, она собирает чемодан, ведь не хочет ничего не потерять в пути. Этот процесс называется спирализация или конденсация хромосомы. Клетка так старается, что невидимые раньше в микроскоп хромосомы становятся видимыми. Они похожи на длинные и тонкие нити.
Зиготена
Здесь происходит конъюгация хромосом — их сближение с образованием бивалентов. Связь обеспечивает синаптонемальный комплекс — он удерживает гомологичные хромосомы рядом это необходимо для запуска кроссинговера на следующем этапе.
Связи между хромосомами могут иметь разный вид, но они должны быть. Если в клетке останутся хромосомы, которые не сблизились, то она запускает апотоз и погибает. Клетка — с заботой о будущих поколениях!
Пахитена
Начинается с еще большей конденсации хромосом, они становятся короче и толще. Но в местах образования синаптонемальных комплексов происходит частичное раскручивание (деконденсация) хромосом.
Все это для начала кроссинговера — обмена участками ДНК у гомологичных хромосом. Обмен обеспечивает перекомбинацию генетического материала. Если бы мы могли рассоединить хромосомы сразу после кроссинговера, то увидели примерно такую картину:
Схема. Кроссинговер.
В конце пахитены мостики между хромосомами разрушаются, они начинают отдаляться друг от друга.
Диплотена
Хромосомы расходятся в области центромер, но остаются связаны между собой в местах кроссинговера — перекрестах или хиазмах. В микроскоп можно увидеть все четыре хроматиды, так сильно они упаковались (спирализовались).
Диакинез
Хромосомный набор в конце профазы I
Метафаза мейоза I
В этой фазе заканчивается образование веретена деления. Нити веретена прикрепляются к центромерам и начинают притягивать хромосомы, из-за этого они располагаются на экваторе клетки.
Набор в метафазе I
Анафаза мейоза I
Нити веретена деления продолжают тянуть хромосомы на себя — они расходятся к полюсам клетки. На полюсах клетки располагается по 23 хромосомы, но они все еще состоят из двух нитей ДНК.
n2c у полюсов, но вся клетка 2n4c
Телофаза мейоза I
Образование двух гаплоидных клеток — n2c
Результат редукционного деления
Второй этап мейоза — эквационный
Начинается сразу же после первого. Эквация — это уравнивание. Так что задача клетки на этом этапе — сделать так, чтобы в одной хромосоме была одна молекула ДНК.
Он похож на митоз, здесь к полюсам клетки отправятся хроматиды, а не целые хромосомы и мы получим из каждой клетки по две — с набором nc.
Протекает он через такие же фазы, но с одним исключением. Здесь не будет интерфазы — клетка уже готова к делению, она запасла энергетические субстраты и белки ещё перед началом первого деления. Поэтому сразу начинается профаза II.
Профаза мейоза II
Клетка уже сделала свою работу — упаковала генетический материал как можно лучше. Ей ничего не нужно делать, ну почти. Разве что растворить ядерные оболочки и достроить веретено деления. Этим она и займется.
Вы конечно понимаете, что вторая клетка идет по такому же пути. Просто мне лень рисовать сразу две.
Набор в профазу II
Метафаза мейоза II
Прикрепление нитей веретена деления к центриолям — хромосомы снова на экваторе клетки.
Анафаза мейоза II
Торжественный момент — сейчас наши хроматиды станут полноценными хромосомами. Каждая разойдется к своему полюсу.
Поздравляем, ох уж эти хроматиды, они так быстро растут…
У полюсов — nc, всего 2n2c, так как каждая хроматида теперь — это полноценная хромосома.
Набор в анафазу II
Телофаза мейоза II
Вокруг хромосом формируются ядерные мембраны, появляется перетяжка и делит клетку на две.
Вторая клетка прошла через такое же деление. Всего из одной диплоидной клетки 2n2c получилось четыре гаплоидных с набором nc.
Четыре клетки с хромосомным набором — nc
Биологическое значение мейоза
1)Передать свой генетический материал будущим поколениям.
2)Поддержать диплоидный набор хромосом у организма. В конце мейоза формируются гаплоидные клетки, которые после оплодотворения образуют диплоидный набор.
3)Мейоз обеспечивает не только передачу генетической информации, но и ее преобразование — основа изменчивости. Кроссинговер обеспечивает взаимный обмен у гомологичных хромосом. В анафазу I к полюсам клетки независимо расходятся гомологичные хромосомы, а в анафазу II — хроматиды. Так формируются уникальные комбинации генов.
Мейоз кратко и понятно
Мейоз – осуществляется в клетках организмов, размножающихся половым путем.
Биологический смысл явления определяется новым набором признаков у потомков.
В данной работе рассмотрим сущность этого процесса и для наглядности представим его на рисунке, посмотрим последовательность и продолжительность деления половых клеток, а так же узнаем, в чем сходство и отличие митоза и мейоза.
Что такое мейоз
Процесс, сопровождающийся образованием четырех клеток с одинарным хромосомным набором из одной исходной.
Генетическая информация каждой новообразованной соответствует половине набора соматической клетки.
Фазы мейоза
Мейотичекое деление включает два этапа, состоящие из четырех фаз каждое.
Первое деление
Включает профазу I, метафазу I, анафазу I и телофазу I.
Профаза I
На данном этапе образуются две клетки с половинным набором генетической информации. Профаза первого деления включает несколько стадий. Ей предшествует предмейотическая интерфаза, во время которой идет репликация ДНК.
Затем происходит конденсация, образование длинных тонких нитей с протеиновой осью во время лептотены. Данная нить прикрепляется к мембране ядра с помощью концевых расширений – прикрепительных дисков. Половинки удвоенных хромосом (хроматиды) еще не различимы. При исследовании имеют вид монолитных структур.
Далее наступает стадия зиготены. Гомологи сливаются с образованием бивалентов, число которых соответствует одинарному числу хромосом. Процесс конъюгации (соединения) осуществляется между парными, сходными в генетическом и морфологическом аспекте. Причем взаимодействие начинается с концов, распространяясь вдоль тел хромосом. Комплекс из гомологов, связанных белковым компонентом – бивалент или тетрада.
Спирализация происходит во время стадии толстых нитей – пахитены. Здесь уже удвоение ДНК выполнено полностью, начинается кроссинговер. Это обмен участками гомологов. В результате формируются сцепленные гены с новой генетической информацией. Параллельно протекает транскрипция. Плотные участки ДНК – хромомеры активируются, что приводит к изменению структуры хромосом по типу «ламповых щеток».
Гомологичные хромосомы конденсируются, укорачиваются, расходятся (исключая точки соединения хиазмы). Это стадия в биологии диплотена или диктиотена. Хромосомы на данном этапе богаты РНК, которая синтезируется на этих же участках. По свойствам последняя близка к информационной.
Наконец, биваленты расходятся к периферии ядра. Последние укорачиваются, теряют ядрышки, становятся компактными, не связанными с ядерной оболочкой. Это процесс носит название диакинеза (перехода к делению клетки).
Метафаза I
Далее биваленты перемещаются к центральной оси клетки. От каждой центромеры отходят веретена деления, каждая центромера равноудалена от обоих полюсов. Небольшие по амплитуде движения нитей удерживают их в данном положении.
Анафаза I
Хромосомы, построенные из двух хроматид, расходятся. Происходит перекомбинация с уменьшением генетического разнообразия (в связи с отсутствием в наборе генов, расположенных в локусах (участках) гомологов).
Телофаза I
Суть фазы состоит в расхождении хроматид с их центромерами к противоположным участкам клетки. В животной клетке происходит цитоплазматическое деление, в растительной – образование клеточной стенки.
Второе деление
После интерфазы первого деления клетка готова ко второму этапу.
Профаза II
Чем длиннее телофаза, тем короче длительность профазы. Хроматиды выстраиваются вдоль клетки, образуя своими осями прямой угол относительно нитей первого мейотического деления. В эту стадию они укорачиваются и утолщаются, ядрышки подвергаются распаду.
Метафаза II
Центромеры вновь расположены в экваториальной плоскости.
Анафаза II
Хроматиды отделяются друг от друга, перемещаясь к полюсам. Теперь они носят название хромосом.
Телофаза II
Деспирализация, растяжение образованных хромосом, исчезновение веретена деления, удвоение центриолей. Гаплоидное ядро окружается ядерной мембраной. Формируются четыре новые клетки.
Таблица сравнения митоза и мейоза
Кратко и понятно особенности и отличия представлены в таблице.
Характеристики | Мейотическое деление | Митотическое деление |
Число делений | осуществляется в два этапа | осуществляется в один этап |
Метафаза | после удвоения хромосомы расположены по центральной оси клетки парами | после удвоения хромосомы расположены по центральной оси клетки одиночно |
Слияние | есть | нет |
Кроссинговер | есть | нет |
Интерфаза | нет удвоения ДНК в интерфазу II | перед делением характерно удвоение ДНК |
Итог деления | гаметы | соматические |
Локализация | в зреющих гаметах | в соматических клетках |
Путь воспроизведения | половой | бесполый |
Представленные данные – схема отличий, а сходства сводятся к одинаковым фазам, редупликации ДНК и спирализации перед началом клеточного цикла.
Биологическое значение мейоза
Какова же роль мейоза:
Заключение
Мейоз сложный биологический процесс, в ходе которого образуются четыре клетки, с новыми признаками, полученными в результате кроссинговера.