Что такое биологическая мембрана

Биологическая мембрана

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембрана

Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.

Содержание

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Функции биомембран

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Источник

Что такое биологическая мембрана

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ И ФУНКЦИЯ БИОЛОГИЧЕСКИХ МЕМБРАН

Биологические мембраны — это активный молекулярный комплекс с высокоизбирательными свойствами, обеспечивающий обмен веществ и энергии с окружающей средой. В мембранах находятся специфические молекулярные насосы и каналы, с помощью которых регулируются молекулярный и ионный состав внутриклеточной среды. Помимо внешней цитоплазматической мембраны (плазмолемма) в клетках эукариотов имеются еще и внутренние мембраны, ограничивающие различные внутриклеточные компартменты (отсеки), например митохондрии, лизосомы, хлоропласты и т. д. Мембраны регулируют также обмен информацией между клетками и средой (восприятие внешних стимулов) и т. д. Мембраны различаются как по функции, так и по структуре. Однако всем им присущи следующие основные свойства:

■ мембраны представляют собой плотную структуру толщиной в несколько молекул, 60-100 А, образующую сплошную перегородку между отдельными клетками и внутриклеточными отсеками;

■ мембраны главным образом состоят из липидов и белков. В мембранах имеются также углеводные компоненты, связанные с липидами и белками;

■ липиды мембран представлены относительно небольшими молекулами, несущими гидрофильные и гидрофобные группы. В водной среде эти молекулы спонтанно образуют замкнутые бимолекулярные слои, которые служат барьером для проникновения полярных соединений;

■ большинство функций мембран опосредуются специфическими белками, которые могут играть роль насосов, каналов, рецепторов, ферментов и т. д.

В состав мембран входят три основных типа липидов: фосфолипиды, гликолипиды и холестерин.

СТРОЕНИЕ МЕМБРАН

Фосфолипиды мембран. Среди липидных компонентов мембран главенствующая роль принадлежит фосфолипидам — веществам, производным либо трехатомного спирта глицерола (глицерофосфолипиды), либо более сложного спирта сфингозина (сфингофосфолипиды). Все основные глицерофосфолипиды являются производными фосфатидной кислоты, этерифицированной с гидроксильной группой спиртов, таких как серии (серинфосфатидыкефалины), этаноламин, холин (холинфосфа-тиды), кардиолипин (дифосфатидилглицерол) и инозитол (фос-фатидилинозитол).

Из сфингофосфолипидов основным является сфингомиелин, основу которого составляет сфингозин — аминоспирт с длинной ненасыщенной углеводородной цепью. В состав сфингомиелина входит также азотистое основание холин.

В качестве примера можно привести фосфатидилэтаноламин и фосфатидилхолин. Оба они имеют в верхней части молекулы полярные головки NH4 (фосфатидилэтаноламин) и N+ (фосфатидилхолин), которые через остаток фосфорной кислоты и глицерина присоединены к двум остаткам жирных кислот, из которых одна насыщенная, другая — ненасыщенная (рис. 1).

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембрана

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембрана

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембрана

Фосфолипиды с ненасыщенными жирными кислотами

Фосфолипиды с насыщенными жирными кислотами

В 1972 г. С. Дж. Сингер и Г. Никольсон сформулировали теорию строения мембран, согласно которой мембраны имеют жидкостно-мозаичную структуру. При обычной для клетки температуре мембранный бислой находится в жидком состоянии, что обеспечивается определенным соотношением между насыщенными и ненасыщенными жирными кислотами в гидрофобных хвостах полярных фосфолипидов. Жирные кислоты с ненасыщенными связями характеризуются большей гибкостью (в отличие от насыщенных ЖК) и способностью создавать изгибы, что предотвращает плотную упаковку, затрудняет «замораживание» мембран и таким образом влияет на их текучесть ().

Упаковка углеводородов в бислое зависит от температуры. При низких температурах бислой находится в виде геля и упакован плотно, при высоких же температурах (температура тела) бислой фактически «расплавляется» и становится текучим, позволяя липидным молекулам двигаться вокруг своей оси, вращаться, меняться местами. Это, в свою очередь, способствует перемещению уже других компонентов в мембране, в частности белков.

Мембранные гликолипиды. Следующим важным компонентом мембран являются гликолипиды — липиды, содержащие углеводы. Гликолипиды животных клеток, подобно сфингомиелину, являются производными спирта сфингозина, связанного с ацильным радикалом. Отличие между этими липидами заключается в том, что в гликолипидах к сфингозиновому остатку присоединены один или несколько остатков сахара, а в сфингомиелине — фосфорилхолин.

Гликолипиды могут быть простые и сложные. Простейший гликолипид — цереброзид, содержащий только один остаток сахара (глюкозу или галактозу). В более сложных гликолипидах число сахарных остатков может достигать семи (ганглиозиды)

Гликолипиды в мембранах могут выполнять защитную, полупроводниковую, рецепторсвязывающую роль. Среди молекул, способных связываться с гликолипидами, встречаются также такие клеточные яды, как холера, токсин тетануса и др.

Холестерин в мембранах. Другой представитель липидов в мембранах — это холестерин. Количество его в мембранах варьирует в зависимости от типа клеток. В плазматических мембранах в среднем на каждую молекулу фосфолипида приходится примерно 1 молекула холестерина. У других (например, бактерий) — холестерина нет вообще. У холестерина так же, как у фосфолипидов, имеются участки полярные и неполярные.

Внутри мембран холестерин внедряется между фосфолипидами и ориентируется в том же направлении, что и сами молекулы фосфолипидов. Таким образом, полярная головка холестерина оказывается в той же плоскости, что и полярные головки фосфолипидов (рис. 2).

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембрана

В мембранах холестерин выполняет следующие функции:

■ фиксируют первые несколько ближайших углеводородных групп, входящих в состав фосфолипидных жирных кислот. Это делает липидный бислой более устойчивым к деформациям и ограничивает прохождение через них небольших водорастворимых молекул. В случае отсутствия холестерина (как, например, у бактерий) клетка нуждается в оболочке;

■ предотвращает кристаллизацию углеводородов и фазовые сдвиги в мембране.

Мембранные белки. В то время как мембранные липиды ответственны за создание барьера проницаемости, мембранные белки опосредуют отдельные функции мембран, т. е. транспорт веществ, передачу информации, энергии и т. д. Соотношение между липидами и белками у разных мембран может быть разным, например, миелин, изолятор нервных клеток, содержит только 18% белков и 76% липидов, а митохондриальная внутренняя мембрана, наоборот — содержит 76% белков и только 24% липидов. В зависимости от характера локализации в мембранах выделяют белки интегральные (трансмембранные), периферические и «заякоренные».

Интегральные белки пронизывают бислой мембраны насквозь и благодаря своим бифильным свойствам фиксируются в нем. Белки, пронизывающие мембрану только один раз, называют однократно пронизывающими белками, а несколько раз — многократно пронизывающими.

Периферические белки локализуются на поверхности мембран и скрепляются только за счет электростатических взаимодействий и водородных связей. Довольно часто периферические белки присоединяются к некоторым участкам интегральных белков (рис. 3).

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембрана

Олигосахариды Гликопротеины Олигосахариды

Рис. 3. Белковый состав мембран

«Заякоренные» белки фиксируются в мембранах с помощью коротких хвостовых липофильных доменов, образованных либо за счет гидрофобных аминокислотных остатков (цитохром b5), либо за счет ковалентно связанных ацильных радикалов (фермент щелочная фосфатаза).

Участки белков, которые обращены во внеклеточную среду, могут подвергаться гликозилированию.

Транспортные белки. Мембранным белкам принадлежит решающая роль в транспорте веществ через мембраны, и для выполнения этой роли наилучшим образом подходят интегральные белки, которые охватывают пространство как внутриклеточное, так и межклеточное.

Транспорт веществ через мембраны белки осуществляют различными способами; они могут выступать в качестве белковых насосов, каналов, транспортеров.

Белки-транспортеры способствуют транспорту различных ионов и молекул через мембрану; однако, в отличие от канальных белков, белки-транспортеры связывают одну (или несколько) молекул субстрата одновременно, что приводит к изменению конформации белка и в результате к транспорту этих связанных молекул через мембрану. Такие транспортеры могут переносить в клетку около 102-104 молекул в секунду, что гораздо медленнее, чем движение по белковым каналам.

Обнаружены 3 типа белка-транспортера.

Юнипортеры осуществляют транспорт через мембрану животных клеток молекул одного типа в сторону уменьшения их концентрационного градиента, например, глюкозу, аминокислоты.

Антипортеры и симпортеры обеспечивают согласованный ко-транспорт одних молекул или ионов через мембрану против их концентрационного градиента с движением других молекул или ионов в процессе их перемещения в сторону уменьшения их концентрационного градиента.

АКТИВНЫЙ ТРАНСПОРТ ЧЕРЕЗ МЕМБРАНУ

Активный транспорт — это транспорт веществ через мембраны за счет потребления энергии расщепления АТР. Активным транспортом осуществляется транспорт некоторых ионов и небольших молекул против их концентрационного градиента.

Белки, участвующие в активном транспорте через мембраны (белковые насосы), условно подразделяют на 4 класса: суперсемейство белков АВС, белки класса Р., F., и V. Белки класса Р., F. и V транспортируют только ионы, а АВС — небольшие молекулы и ионы.

■ Nа+/К+- АТРаза — фермент, локализованный в плазматической мембране и регулирующий внутриклеточное содержание ионов Nа+ и К+ в клетках животных;

■ Са2+- АТРазы — насосы, перекачивающие ионы Са2+ из цитозоля в межклеточное пространство против их концентрационного градиента для поддержания низкого уровня кальция (10-2 М) в цитоплазме клеток животных, дрожжей и растений. Помимо плазматических Са2+-АТРаз клетки мышц содержат еще другую Са2+-АТРазу (мышечный Са2+-й насос), которая осуществляет перекачивание ионов кальция из цитозоля в саркоплазматический ретикулум (СР) — внутриклеточное хранилище кальция;

■ мембранные белки эпителиальных клеток желудка у млекопитающих, способствующие поступлению соляной кислоты в желудок;

■ Н+- насосы, транспортирующие протоны водорода из клетки взамен поступления ионов К+ внутрь клетки;

■ Н+- насосы, регулирующие мембранный электрический потенциал в клетках растений, грибов, бактерий. Эти насосы не содержат фосфопротеиновой части.

Ионные насосы класса F и V структурно похожи друг на друга, но гораздо сложнее, чем белки класса Р. Насосы F и V состоят из 3 трансмембранных белков и 5 различных полипептидов, которые ориентированы в цитозольную часть белка и формируют внутрицитозольный домен. Некоторые субъединицы трансмембранных белков, ориентированные во внешнюю часть биомембран, структурно аналогичны внутрицитозольным доменным полипептидам.

Насосы класса V в основном участвуют в поддержании низкого значения рН в вакуолях растений и лизосомах и других кислотных везикулах животных клеток за счет расходования энергии расщепления АТР и перекачивая протоны водорода через мембрану из цитозоля в межклеточное пространство против протонного электрохимического градиента. Насосы класса F найдены в плазматических мембранах бактерий, мембранах хлоропластов и митохондрий. В отличие от насосов класса V их функция в основном направлена на синтез АТР из АDР и неорганического фосфата за счет движения протонов водорода из цитозольного межмембранного пространства в сторону уменьшения электрохимического градиента.

Источник

Мембраны биологические

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембрана

Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.

Содержание

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Функции биомембран

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Источник

Биологические мембраны

4.1. Общая характеристика мембран. Строение и состав мембран

4.2. Транспорт веществ через мембраны

4.3. Трансмембранная передача сигналов_

Цели изучения Уметь:

1. Интерпретировать роль мембран в регуляции метаболизма, транспорте веществ в клетку и удалении метаболитов.

2. Объяснять молекулярные механизмы действия гормонов и других сигнальных молекул на органы-мишени.

1. Строение биологических мембран и их роль в обмене веществ и энергии.

2. Основные способы переноса веществ через мембраны.

3. Главные компоненты и этапы трансмембранной передачи сигналов гормонов, медиаторов, цитокинов, эйкозаноидов.

ТЕМА 4.1. ОБЩАЯ ХАРАКТЕРИСТИКА МЕМБРАН.

СТРОЕНИЕ И СОСТАВ МЕМБРАН

Все клетки и внутриклеточные органеллы окружены мембранами, которые играют важную роль в их структурной организации и функционировании. Основные принципы построения всех мембран одинаковы. Однако плазматическая мембрана, а также мембраны эндоплазматического ретикулума, аппарата Гольджи, митохондрий и ядра имеют существенные структурные особенности, они уникальны по своему составу и по характеру выполняемых функций.

• отделяют клетки от окружающей среды и делят ее на компартменты (отсеки);

• регулируют транспорт веществ в клетки и органеллы и в обратном направлении;

• обеспечивают специфику межклеточных контактов;

• воспринимают сигналы из внешней среды.

Согласованное функционирование мембранных систем, включающих рецепторы, ферменты, транспортные системы, помогает поддерживать гомеостаз клетки и быстро реагировать на изменения состояния внешней среды путем регуляции метаболизма внутри клеток.

1. Липиды мембран. В состав липидов мембран входят как насыщенные, так и ненасыщенные жирные кислоты. Ненасыщенные жирные кислоты встречаются в два раза чаще чем насыщенные, что определяет текучесть мембран и конформационную лабильность мембранных белков.

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.1. Поперечный разрез плазматической мембраны

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.2. Глицерофосфолипиды.

Холестерол содержится в мембранах всех животных клеток, он придает мембранам жесткость и снижает их жидкостность (текучесть). Молекула холестерола располагается в гидрофобной зоне мембраны параллельно гидрофобным «хвостам» молекул фосфо- и гликолипидов. Гидроксильная группа холестерола, как и гидрофильные «головки» фосфо- и гликолипидов,

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.3. Производные аминоспирта сфингозина.

обращена к водной фазе. Молярное соотношение холестерола и других липидов в мембранах равно 0,3-0,9. Самое высокое значение имеет эта величина для цитоплазматической мембраны.

Увеличение содержания холестерола в мембранах уменьшает подвижность цепей жирных кислот, что влияет на конформационную лабильность мембранных белков и снижает возможность их латеральной диффузии. При повышении текучести мембран, вызванном действием на них липофильных веществ или перекисным окислением липидов, доля холестерола в мембранах возрастает.

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.4. Положение в мембране фосфолипидов и холестерола.

Молекула холестерола состоит из жесткого гидрофобного ядра и гибкой углеводородной цепи. Полярной «головкой» является ОН-группа у 3-го углеродного атома молекулы холестерола. Для сравнения на рисунке представлено схематическое изображение фосфолипида мембран. Полярная головка этих молекул значительно больше и имеет заряд

Липидный состав мембран различен, содержание того или другого липида, по-видимому, определяется разнообразием функций, которые выполняют эти молекулы в мембранах.

Главные функции липидов мембран состоят в том, что они:

• обеспечивают необходимую для функционирования мембранных белков среду;

• участвуют в регуляции активности ферментов;

• служат «якорем» для поверхностных белков;

• участвуют в передаче гормональных сигналов.

Изменение структуры липидного бислоя может привести к нарушению функций мембран.

2. Белки мембран. Белки мембран различаются по своему положению в мембране (рис. 4.5). Мембранные белки, контактирующие с гидрофобной областью липидного бислоя, должны быть амфифильными, т.е. иметь неполярный домен. Амфифильность достигается благодаря тому, что:

• аминокислотные остатки, контактирующие с липидным бислоем, в основном неполярны;

• многие мембранные белки ковалентно связаны с остатками жирных кислот (ацилированы).

Ацильные остатки жирных кислот, присоединенные к белку, обеспечивают его «заякоревание» в мембране и возможность латеральной диффузии. Кроме того, белки мембран подвергаются таким посттрансляционным модификациям, как гликозилирование и фосфорилирование. Гликозилирование наружной поверхности интегральных белков защищает их от повреждения протеазами межклеточного пространства.

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.5. Белки мембран:

Наружный и внутренний слои одной и той же мембраны различаются по составу липидов и белков. Эта особенность в строении мембран называется трансмембранней асимметрией.

Белки мембран могут участвовать в:

• избирательном транспорте веществ в клетку и из клетки;

• передаче гормональных сигналов;

• образовании «окаймленных ямок», участвующих в эндоцитозе и экзоцитозе;

• качестве ферментов в превращениях веществ;

• организации межклеточных контактов, обеспечивающих образование тканей и органов.

ТЕМА 4.2. ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНЫ

1. Пассивный транспорт может осуществляться следующими способами (рис. 4.6, 4.7):

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.6. Механизмы переноса веществ через мембраны по градиенту концентрации

К пассивному транспорту относится диффузия ионов по белковым каналам, например диффузия Н+, Са 2 +, N+, К+. Функционирование большинства каналов регулируется специфическими лигандами или изменением трансмембранного потенциала.

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.7. Са 2 +-канал мембраны эндоплазматического ретикулума, регулируемый инози- тол-1,4,5-трифосфатом (ИФ3).

Вторично-активный транспорт происходит за счет градиента концентрации одного из переносимых веществ (рис. 4.9), который создается чаще всего Na+, К+-АТФазой, функционирующей с затратой АТФ.

Присоединение в активный центр белка-переносчика вещества, концентрация которого выше, изменяет его конформацию и увеличивает сродство к соединению, которое проходит в клетку против градиента концентрации. Вторично-активный транспорт бывает двух типов: активный симпорт и антипорт.

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.8. Механизм функционирования Са 2 +-АТФазы

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.9. Вторично-активный транспорт

Перенос из внеклеточной среды в клетку макромолекул, например белков, нуклеиновых кислот, полисахаридов или еще более крупных частиц, происходит путем эндоцитоза. Связывание веществ или высокомолекулярных комплексов происходит в определенных участках плазматической мембраны, которые называются окаймленными ямками. Эндоцитоз, происходящий с участием рецепторов, встроенных в окаймленные ямки, позволяет клеткам поглощать специфические вещества и называется рецептор-зависимым эндоцитозом.

Макромолекулы, например пептидные гормоны, пищеварительные ферменты, белки внеклеточного матрикса, липопротеиновые комплексы, секретируются в кровь или межклеточное пространство путем экзоцитоза. Этот способ транспорта позволяет выводить из клетки вещества, которые накапливаются в секреторных гранулах. В большинстве случаев экзоцитоз регулируется путем изменения концентрации ионов кальция в цитоплазме клеток.

ТЕМА 4.3. ТРАНСМЕМБРАННАЯ ПЕРЕДАЧА СИГНАЛОВ

Мембранные рецепторы подразделяются на:

• рецепторы, содержащие субъединицу, связывающую первичный мессенджер, и ионный канал;

• рецепторы, способные проявлять каталитическую активность;

• рецепторы, с помощью G-белков активирующие образование вторичных (внутриклеточных) мессенджеров, передающих сигнал специфическим белкам и ферментам цитозоля (рис. 4.10).

Вторичные мессенджеры имеют небольшую молекулярную массу, с высокой скоростью диффундируют в цитозоле клетки, изменяют активность соответствующих белков, а затем быстро расщепляются или удаляются из цитозоля.

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.10. Рецепторы, локализованные в мембране.

Роль вторичных мессенджеров выполняют молекулы и ионы:

• цАМФ (циклический аденозин-3′,5′-монофосфат);

• цГМФ (циклический гуанозин-3′,5′-монофосфат);

Рецепторы, сопряженные с G-белками

Взаимодействие гормонов с рецепторами, сопряженными с G-белками, приводит к активации инозитолфосфатной системы трансдукции сигнала или изменению активности аденилатциклазной регуляторной системы.

2. Аденилатциклазная система включает (рис. 4.11):

интегральные белки цитоплазматической мембраны:

• фермент аденилатциклазу (АЦ).

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембрана

Рис. 4.11. Функционирование аденилатциклазной системы

Последовательность событий передачи сигнала первичных мессенджеров с помощью аденилатциклазной системы

Рецептор имеет центры связывания первичного мессенджера на наружной поверхности мембраны и G-белка (α,,βγ-ГДФ) на внутренней поверхности мембраны. Взаимодействие активатора аденилатциклазной системы, например гормона с рецептором (Rs), приводит к изменению конформации рецептора. Увеличивается сродство рецептора к G..-белку. Присоединение комплекса гормон-рецептор к GS-ГДФ снижает сродство α,,-субъединицы G..-белка к ГДФ и увеличивает сродство к ГТФ. В активном центре α,,-субъединицы ГДФ замещается на ГТФ. Это вызывает изменение конформации субъединицы α,, и снижение ее сродства к субъединицам βγ. Отделившаяся субъединица α,,-ГТФ латерально перемещается в липидном слое мембраны к ферменту аденилатциклазе.

Активная протеинкиназа А с помощью АТФ фосфорилирует специфические белки по остаткам серина и треонина. Фосфорилирование белков и ферментов повышает или понижает их активность, поэтому изменяется скорость метаболических процессов, в которых они участвуют.

Активация сигнальной молекулой рецептора R стимулирует функционирование Gj-белка, которое протекает по тем же правилам, что и для G..-белка. Но при взаимодействии субъединицы αi-ГТФ с аденилатциклазой активность фермента снижается.

Инактивация аденилатциклазы и протеинкиназы А

α,,-Субъединица в комплексе с ГТФ при взаимодействии с аденилатциклазой начинает проявлять ферментативную (ГТФ-фосфатазную) активность, она гидролизует ГТФ. Образующаяся молекула ГДФ остается в активном центре α,,-субъединицы, изменяет ее конформацию и уменьшает сродство к АЦ. Комплекс АЦ и α,,-ГДФ диссоциирует, α,,-ГДФ включается в G..-белок. Отделение α,,-ГДФ от аденилатциклазы инактивирует фермент и синтез цАМФ прекращается.

Фосфорилированные ферменты и белки под действием фосфопротеинфосфатазы переходят в дефосфорилированную форму, изменяется их конформация, активность и скорость процессов, в которых участвуют эти ферменты. В результате система приходит в исходное состояние и готова вновь активироваться при взаимодействии гормона с рецептором. Таким образом, обеспечивается соответствие содержания гормона в крови и интенсивности ответа клеток-мишеней.

3. Участие аденилатциклазной системы в регуляции экспрессии генов. Многие белковые гормоны: глюкагон, вазопрессин, паратгормон и др., передающие свой сигнал посредством аденилатциклазной системы, могут не только вызвать изменение скорости реакций путем фосфорилирования уже имеющихся в клетке ферментов, но и увеличивать или уменьшать их количество, регулируя экспрессию генов (рис. 4.12). Активная протеинкиназа А может проходить в ядро и фосфорилировать фактор транскрипции (СRЕВ). Присоединение фосфорного

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.12. Аденилатциклазный путь, приводящий к экспрессии специфических генов

остатка повышает сродство фактора транскрипции (СRЕВ-(Р) к специфиче-ской последовательности регуляторной зоны ДНК-СRЕ (цАМФ-response element) и стимулирует экспрессию генов определенных белков.

Синтезированные белки могут быть ферментами, увеличение количества которых повышает скорость реакций метаболических процессов, или мембранными переносчиками, обеспечивающими поступление или выход из клетки определенных ионов, воды или других веществ.

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаЧто такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.13. Инозитолфосфатная система

Работу системы обеспечивают белки: кальмодулин, фермент протеинкиназа С, Са 2 +-кальмодулин-зависимые протеинкиназы, регулируемые Са 2 +-каналы мембраны эндоплазматического ретикулума, Са 2 +-АТФазы клеточной и митохондриальной мембран.

Последовательность событий передачи сигнала первичных мессенджеров с помощью инозитолфосфатной системы

Связывание активатора инозитолфосфатной системы с рецептором (R) приводит к изменению его конформации. Повышается сродство рецептора к Gфлс-белку. Присоединение комплекса первичный мессенджер-рецептор к Gфлс-ГДФ снижает сродство афлс-субъединицы к ГДФ и увеличивает сродство к ГТФ. В активном центре афлс-субъединицы ГДФ замещается на ГТФ. Это вызывает изменение конформации субъединицы афлс и снижение сродства к субъединицам βγ, происходит диссоциация Gфлс-белка. Отделившаяся субъединица афлс-ГТФ латерально перемещается по мембране к ферменту фосфолипазе С.

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.14. Гидролиз фосфатидилинозитол-4,5-бисфосфата (ФИФ2)

Включение ИФ-системы непродолжительно, и после ответа клетки на стимул происходит инактивация фосфолипазы С, протеинкиназы С и Са 2 +-кальмодулин-зависимых ферментов. афлс-Субъединица в комплексе с ГТФ и фосфолипазой С проявляет ферментативную (ГТФ-фосфатазную) активность, она гидролизует ГТФ. Связанная с ГДФ афлс-субъединица теряет сродство к фосфолипазе С и возвращается в исходное неактивное состояние, т.е. включается в комплекс αβγ-ГДФ Gфлс-белок).

ИФ3 и ДАГ, образовавшиеся в результате активации системы, могут снова взаимодействовать друг с другом и превращаться в фосфатидилинозитол- 4,5-бисфосфат.

Фосфорилированные ферменты и белки под действием фосфопротеинфосфатазы переходят в дефосфорилированную форму, изменяется их конформация и активность.

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.15. Активация рецептора инсулина.

Фосфопротеинфосфатаза дефосфорилирует специфические фосфопротеины.

Фосфодиэстераза превращает цАМФ в АМФ и цГМФ в ГМФ.

Тирозиновая протеинфосфатаза дефосфорилирует β-субъединицы рецептора

Примером каталитического рецептора может служить рецептор инсулина, в состав которого входят две а- и две β-субъединицы. а-Субъединицы расположены на наружной поверхности клеточной мембраны, β-субъединицы пронизывают мембранный бислой. Центр связывания инсулина образован N-концевыми доменами а-субъединиц. Каталитический центр рецептора находится на внутриклеточных доменах β-субъединиц. Цитозольная часть рецептора имеет несколько остатков тирозина, которые могут фосфорилироваться и дефосфорилироваться.

Присоединение инсулина в центр связывания, образованный а-субъединицами, вызывает кооперативные конформационные изменения рецептора. β-Субъединицы проявляют тирозинкиназную активность и катализируют трансаутофосфорилирование (первая β-субъединица фосфорилирует вторую β-субъединицу, и наоборот) по нескольким остаткам тирозина. Фосфорилирование приводит к изменению заряда, конформации и субстратной специфичности фермента (Тир-ПК). Тирозиновая-ПК фосфорилирует определенные клеточные белки, которые получили название субстратов рецептора инсулина. В свою очередь эти белки участвуют в активации каскада реакций фосфорилирования:

фосфопротеинфосфатазы (ФПФ), которая дефосфорилирует специфические фосфопротеины;

фосфодиэстеразы, которая превращает цАМФ в АМФ и цГМФ в ГМФ;

тирозиновой протеинфосфатазы, которая дефосфорилирует β-субъединицы рецептора инсулина;

регуляторных белков ядра, факторов транскрипции, повышающих или снижающих экспрессию генов определенных ферментов.

Реализация эффекта ростовых факторов может осуществляться с помощью каталитических рецепторов, которые состоят из одной полипептидной цепи, но при связывании первичного мессенджера образуют димеры. Все рецепторы этого типа имеют внеклеточный гликозилированный домен, трансмембранный (а-спираль) и цитоплазматический домен, способный при активации проявлять протеинкиназную активность.

Димеризация способствует активации их каталитических внутриклеточных доменов, которые осуществляют трансаутофосфорилирование по аминокислотным остаткам серина, треонина или тирозина. Присоединение фосфорных остатков приводит к формированию у рецептора центров связывания для специфических цитозольных белков и активации протеинкиназного каскада передачи сигнала (рис. 4.16).

Последовательность событий передачи сигнала первичных мессенджеров (ростовых факторов) при участии Ras- и Raf-белков.

Связывание рецептора (R) с фактором роста (ФР) приводит к его димеризации и трансаутофосфорилированию. Фосфорилированный рецептор приобретает сродство к Grb2-белку. Образованный комплекс ФР*R*Grb2 взаимодействует с цитозольным белком SOS. Изменение конформации SOS

обеспечивает его взаимодействие с заякоренным белком мембраны Ras-ГДФ. Образование комплекса ФР?R?Gгb2?SOS?Ras-ГДФ снижает сродство Ras- белка к ГДФ и увеличивает сродство к ГТФ.

Замена ГДФ на ГТФ изменяет конформацию Ras-белка, который отделяется от комплекса и взаимодействует с Raf-белком в примембранной области. Комплекс Ras-ГТФ?Raf проявляет протеинкиназную активность и фосфорилирует фермент МЕК-киназу. Активированная МЕК-киназа в свою очередь фосфорилирует МАП-киназу по треонину и тирозину.

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис.4.16. МАП-киназный каскад.

Рецепторы такого типа имеют эпидермальный фактор роста (ЭФР), фактор роста нервов (ФРН) и другие ростовые факторы.

Изменение активности этих белков оказывает влияние на скорость метаболических процессов, функционирование мембранных транслоказ, митотическую активность клеток-мишеней.

Рецепторы с гуанилатциклазной активностью также относятся к каталитическим рецепторам. Гуанилатциклаза катализирует образование из ГТФ цГМФ, который является одним из важных мессенджеров (посредников) внутриклеточной передачи сигнала (рис. 4.17).

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.17. Регуляция активности мембранной гуанилатциклазы.

6. Передача сигнала с помощью внутриклеточных рецепторов. Гидрофобные по химической природе гормоны (стероидные гормоны и тироксин) могут диффундировать через мембраны, поэтому их рецепторы находятся в цитозоле или ядре клетки.

Цитозольные рецепторы связаны с белком-шапероном, который предотвращает преждевременную активацию рецептора. Ядерные и цитозольные рецепторы стероидных и тиреоидных гормонов содержат ДНКсвязывающий домен, обеспечивающий в ядре взаимодействие комплекса гормон-рецептор с регуляторными участками ДНК и изменение скорости транскрипции.

Последовательность событий, приводящих к изменению скорости транскрипции

В каждой клетке существуют рецепторы, включенные в состав разных сигнал-трансдукторных систем, преобразующих все внешние сигналы во внутриклеточные. Число рецепторов для конкретного первичного мессенджера может варьировать в пределах от 500 до более 100 000 на клетку. Они располагаются на мембране отдаленно друг от друга либо сосредоточены в определенных ее участках.

Что такое биологическая мембрана. Смотреть фото Что такое биологическая мембрана. Смотреть картинку Что такое биологическая мембрана. Картинка про Что такое биологическая мембрана. Фото Что такое биологическая мембранаРис. 4.18. Передача сигнала на внутриклеточные рецепторы

ЗАДАНИЯ ДЛЯ ВНЕАУДИТОРНОЙ РАБОТЫ

1. а) перенесите таблицу 4.1 в тетрадь, к названиям липидов допишите формулы. Для работы по темам модуля необходимо знать формулы фосфатидилхолина, фосфатидилсерина, фосфатидилинозитол-4,5-бисфосфата.

Таблица 4.1. Фосфолипиды мембран

A. Фосфатидилэтаноламин Б. Фосфатидилхолин

Г. Фосфатидилинозитол-4,5-бисфосфат Д. Сфингомиелин

б) из таблицы выберите липиды, участвующие в:

1. Активации протеинкиназы С

2. Реакции образования ДАГ под действием фосфолипазы С

3. Формировании миелиновых оболочек нервных волокон

в) напишите реакцию гидролиза липида, выбранного вами в п. 2;

г) укажите, какой из продуктов гидролиза участвует в регуляции Са 2 +-канала эндоплазматического ретикулума.

2. Выберите правильные ответы.

На конформационную лабильность белков-переносчиков может влиять:

A. Содержание холестерола в бислое мембран

Б. Изменение электрического потенциала на мембране

B. Присоединение специфических молекул Г. Жирнокислотный состав липидов бислоя Д. Количество переносимого вещества

3. Установите соответствие:

A. Кальциевый канал ЭР Б. Са 2 +-АТФаза

Г. Ка+-зависимый переносчик Са 2 + Д. N+, К+-АТФаза

1. Переносит Na+ по градиенту концентрации

2. Функционирует по механизму облегченной диффузии

3. Переносит Na+ против градиента концентрации

4. Перенесите табл. 4.2. в тетрадь и заполните ее.

Таблица 4.2. Аденилатциклазная и инозитолфосфатная системы

Строение и этапы функционирования

Пример первичного мессенджера системы

Интегральный белок клеточной мембраны, взаимодействующий комплементарно с первичным мессенджером

Белок, активирующий фермент сигнальной системы

Фермент системы, образующий вторичный (е) мессенджер (ы)

Вторичный (ые) мессенджер (-ы) системы

Цитозольный (е) фермент (ы) системы, взаимодействующий (е) с вторичным мессенджером

Механизм регуляции (в данной системе) активности ферментов метаболических путей

Механизмы снижения концентрации вторичных мессенджеров в клетке-мишени

Причина снижения активности мембранного фермента сигнальной системы

ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

1. Установите соответствие:

A. Пассивный симпорт Б. Пассивный антипорт

B. Эндоцитоз Г. Экзоцитоз

Д. Первично-активный транспорт

1. Транспорт вещества в клетку происходит вместе с частью плазматической мембраны

2. Одновременно в клетку по градиенту концентрации проходят два разных вещества

3. Перенос веществ идет против градиента концентрации

2. Выберите правильный ответ.

ag-Субъединица G-белка, связанная с ГТФ, активирует:

B. Фосфодиэстеразу Г. Аденилатциклазу Д. Протеинкиназу С

3. Установите соответствие.

A. Регулирует активность каталитического рецептора Б. Активирует фосфолипазу С

B. Переводит в активную форму протеинкиназу А

Г. Повышает концентрацию Са 2+ в цитозоле клетки Д. Активирует протеинкиназу С

4. Установите соответствие.

A. Способен к латеральной диффузии в бислое мембраны

Б. В комплексе с первичным мессенджером присоединяется к энхансеру

B. Проявляет ферментативную активность при взаимодействии с первичным мессенджером

Г. Может взаимодействовать с G-белком

Д. В процессе передачи сигнала взаимодействует с фосфолипазой С Рецептор:

3. Стероидного гормона

5. Выполните «цепное» задание:

а) пептидные гормоны взаимодействуют с рецепторами:

A. В цитозоле клетки

Б. Интегральными белками мембран клеток-мишеней

Г. Ковалентно связанными с ФИФ2

б) взаимодействие такого рецептора с гормоном вызывает повышение концентрации в клетке:

Б. Промежуточных метаболитов

B. Вторичных мессенджеров Г. Ядерных белков

в) этими молекулами могут быть:

B. Протеинкиназу А Г. Фосфолипазу С

д) этот фермент изменяет скорость метаболических процессов в клетке путем:

A. Повышения концентрации Са 2 + в цитозоле Б. Фосфорилирования регуляторных ферментов

B. Активации протенфосфатазы

Г. Изменения экспрессии генов регуляторных белков

6. Выполните «цепное» задание:

а) присоединение фактора роста (ФР) к рецептору (R) приводит к:

A. Изменению локализации комплекса ФР-R

Б. Димеризации и трансаутофосфорилированию рецептора

B. Изменению конформации рецептора и присоединению к Gs-белку Г. Перемещению комплекса ФР-R

б) такие изменения в структуре рецептора увеличивают его сродство к поверхностному белку мембраны:

в) это взаимодействие повышает вероятность присоединения к комплексу цитозольного белка:

А. Кальмодулина B. Ras

г) который увеличивает комплементарность комплекса к «заякоренному» белку:

д) изменение конформации «заякоренного» белка снижает его сродство к:

е) это вещество заменяется на:

ж) присоединение нуклеотида способствует взаимодействию «заякоренного» белка с:

А. ПКА B. Кальмодулином

з) этот белок входит в состав комплекса, который фосфорилирует:

А. МЕК-киназу В. Протеинкиназу С

Б. Протеинкиназу А Г. МАП-киназу

и) этот фермент в свою очередь активирует:

А. МЕК-киназу В. Протеинкиназу G

Б. Raf-белок Г. МАП-киназу

к) фосфорилирование белка повышает его сродство к:

А. Белкам SOS и Raf В. Регуляторным белкам ядра Б. Кальмодулину Г. Ядерным рецепторам

л) активация этих белков приводит к:

A. Дефосфорилированию ГТФ в активном центре белка Ras Б. Снижению сродства рецептора к фактору роста

B. Повышению скорости матричных биосинтезов Г. Диссоциации комплекса SOS-Grb2

м) вследствие этого:

A. Белок SOS отделяется от рецептора

Б. Происходит диссоциация протомеров рецептора (R)

B. Ras-белок отделяется от Raf-белка

Г. Возрастает пролиферативная активность клетки-мишени.

ЭТАЛОНЫ ОТВЕТОВ К «ЗАДАНИЯМ ДЛЯ САМОКОНТРОЛЯ»

5. а) Б, б) В, в) Г, г) В, д) Б

6. а) Б, б) Г, в) Г, г) А, д) Б, е) Г, ж) Г, з) А, и) Г, к) В, л) В, м) Г

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

1. Структура и функции мембран

2. Транспорт веществ через мембраны

3. Особенности строения белков мембран

4. Трансмембранные системы передачи сигналов (аденилатциклазная, инозитолфосфатная, гуанилатциклазная, каталитические и внутриклеточные рецепторы)

5. Первичные мессенджеры

6. Вторичные мессенджеры (посредники)

ЗАДАНИЯ ДЛЯ АУДИТОРНОЙ РАБОТЫ

1. Ознакомьтесь с рис. 4.19 и выполните следующие задания:

а) назовите вид транспорта;

б) установите порядок событий:

Б. Протеинкиназа А фосфорилирует R-субъединицу канала

B. Изменяется конформация R-субъединицы

Г. Происходят кооперативные конформационные изменения мембранного белка

Д. Активируется аденилатциклазная система

Таблица 4.3. Способы регуляции функционирования каналов

Причина изменения конформации канала

Механизм транспорта ионов

а) представьте схему передачи сигнала для адреналина и ацетилхолина;

б) укажите различие в каскадах передачи сигналов этих мессенджеров.

б) напишите реакцию образования вторичного мессенджера;

а) приведите схему трансмембранной передачи сигнала инсулина;

б) назовите белки и ферменты, которые активирует инсулин в клеткахмишенях, укажите их функцию.

4. Белок Ras является «заякоренным» белком цитоплазматической мембраны. Функцию «якоря» выполняет 15-углеродный остаток фарнезила Н3С-(СН3)С=СН-СН2-[СН2-(СН3)С=СН-СН2]2-, который присоединяется к белку ферментом фарнезилтрансферазой в ходе посттрансляционной модификации. В настоящее время ингибиторы этого фермента проходят клинические испытания.

а) представьте схему передачи сигнала с участием Ras-белков;

б) объясните функцию Ras-белков и последствия нарушения их ацилирования;

в) предположите, для лечения каких заболеваний были разработаны эти препараты.

5. Стероидный гормон кальцитриол активирует всасывание пищевого кальция, увеличивая количество белков-переносчиков Са 2+ в клетках кишечника. Объясните механизм действия кальцитриола. Для этого:

а) приведите общую схему передачи сигнала стероидных гормонов и опишите ее функционирование;

б) назовите процесс, который активирует гормон в ядре клетки-мишени;

в) укажите, в каком матричном биосинтезе будут участвовать молекулы, синтезированные в ядре, и где он протекает.

Источник:
Биологическая химия с упражнениями и задачами : учебник / под ред. чл.-корр. РАМН С.Е. Северина. М.: ГЭОТАР-Медиа, 2011. 624 с.: ил.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *