Что такое безъядерные эритроциты

Повышены эритроциты в крови — причины, что значит и о чем говорит

Эритроциты — красные клетки крови, содержащие в себе гемоглобин (белковое соединение, снабжающее человеческий организм железом и другими важными веществами). Основными функциями этих структур являются доставка кислорода к тканям и органам, стабилизация кислотно-щелочного баланса, регулировка иммунных процессов. Возрастание уровня эритроцитов в крови известно под медицинским термином «эритроцитоз». Такое явление возникает на фоне различных патологий или бывает связанным с физиологическими факторами.

Что такое безъядерные эритроциты. Смотреть фото Что такое безъядерные эритроциты. Смотреть картинку Что такое безъядерные эритроциты. Картинка про Что такое безъядерные эритроциты. Фото Что такое безъядерные эритроциты

Основные причины эритроцитоза

Существует немало патологий, приводящих к повышению количества красных кровяных клеток. У представителей обоих полов подобное состояние вызывается:

При эритроцитозе кровь становится более густой, медленнее движется в сосудах. В результате этого возрастает риск развития опасных осложнений. Одним из них является обезвоживание, связанное с ростом температурных показателей в организме.

Эритроцитоз может быть первичным, вторичным (симптоматическим) и относительным (ложным). Первичный носит генетически обусловленный характер. Вторичное нарушение развивается в течение жизни при наличии определенных заболеваний. Ложный эртроцитоз связан с сокращением объема плазмы, спровоцированным рвотой, диареей.

Почему повышаются эритроциты у женщин

У представительниц слабого пола причинами эритроцитоза могут становиться гормональные нарушения. Количество красных кровяных клеток возрастает при переизбытке такого вещества как эритропоэтин.

Названный гормон повышается в случае возникновения определенных заболеваний женской половой сферы. Среди основных болезней – опухоли яичников и миома матки.

Повышение эритроцитов в крови не всегда обусловлено патологическими процессами. Подобное явление также может возникнуть на фоне:

Неумеренное количество красных клеток крови обнаруживается после перенесенных инфекций, трансплантации почек или других внутренних органов. Его фиксируют у людей, находящихся в горах и вдыхающих разряженный воздух. Особенно это касается тех, кто постоянно проживает в такой местности или является приезжим, но длительно находится в новых условиях.

Эритроцитоз способен иметь наследственный характер. В некоторых случаях он передается детям от родителей или других родственников.

Эритроцитоз обнаруживается у большинства новорожденных малышей. Такая особенность связана с механизмами насыщения крови плода кислородом от материнского организма и носит временный характер. В крови женщины содержится меньше O2, чем в воздухе, поэтому для его передачи малышу требуется повышенное количество эритроцитов. Начав дышать самостоятельно, ребенок получает достаточно кислорода извне и количество кровяных клеток нормализуется.

Достаточно часто эритроцитоз протекает без очевидных внешних проявлений, поэтому многие пациенты не подозревают о наличии такой проблемы. В некоторых случаях этому явлению сопутствуют:

Эритроцитоз может иметь различную степень выраженности. Проявления симптомов выражаются тем ярче, чем выше количество красных кровяных телец.

Кроме эритроцитоза, достаточно часто обнаруживается обратный процесс — понижение уровня красных кровяных клеток. Такое явление, называемое эритропенией, провоцируется длительными наружными или внутренними кровотечениями, протеканием анемии, онкологических заболеваний. Его основные проявления — побледнение кожных покровов, постоянная слабость, шум в ушах, повышенная утомляемость.

Диагностика и методы терапии

Подсчет эритроцитов выполняют при общем анализе крови. Нормальные показатели уровня красных кровяных клеток:

Источник

Что такое эритроциты: состав, нормы и отклонения

» data-image-caption=»» data-medium-file=»https://i2.wp.com/medcentr-diana-spb.ru/wp-content/uploads/2019/03/eritrotsity1.png?fit=450%2C300&ssl=1″ data-large-file=»https://i2.wp.com/medcentr-diana-spb.ru/wp-content/uploads/2019/03/eritrotsity1.png?fit=827%2C550&ssl=1″ />

В 1673 году в тихом голландском городке Дельфте произошло любопытное событие, которому суждено было стать историческим. Владелец небольшой мануфактурной лавки и служащий местного муниципалитета Антони ван Левенгук, впоследствии всемирно известный ученый-естествоиспытатель, с помощью «магического стекла» обнаружил в капле крови человека «мельчайшие частицы, придающие крови красный цвет».

Первый микроскоп и эритроциты

Тогда в Голландии многие занимались шлифовкой оптических стекол для изготовления линз. Увлекся шлифованием и Левенгук, причем достиг в этом деле высокого мастерства. Его маленькие короткофокусные двояковыпуклые линзы, вставленные в миниатюрную оправу собственной конструкции, давали увеличение в 300 раз и очень отчетливое изображение.

С помощью этого нехитрого прибора три века назад А. Левенгуку удалось увидеть красные клетки крови — эритроциты, выполняющие самую важную ее функцию — снабжение тканей кислородом, функцию, без которой невозможна жизнь.

Многие микроскопы, сделанные руками Левенгука, сохранились до наших дней. Хотя они совсем не похожи на современные микроскопы, тем не менее, с их помощью он не только рассмотрел красные клетки крови, но и составил верное представление об их величине.

Важные факты об эритроцитах

Эритроциты (от греческих слов erythros — красный и kytos — клетка) составляют основную массу крови. В кубическом миллиметре их содержится 4,6—5,5 миллиона у мужчин и 4—5 миллионов — у женщин. А в 5—6 литрах крови, циркулирующей в организме взрослого человека, находится примерно 25 триллионов эритроцитов!

В отличие от других клеток эритроцит не имеет ядра, весь его объем заполнен гемоглобином — белком красного цвета, особым дыхательным пигментом. Этот белок обладает поразительной способностью легко соединяться с кислородом, превращаясь в оксигемоглобин.

Соединение происходит в легочных капиллярах, где эритроциты соприкасаются с вдыхаемым нами воздухом. Обогащенная кислородом алая кровь идет из легких в сердце, а оттуда по артериям — ко всем органам и тканям. Быстро отдав им кислород, гемоглобин так же быстро соединяется с углекислым газом, образуя карбоксигемоглобин.

В легких эритроциты отдают углекислый газ (он удаляется из организма во время выдоха) и вновь забирают кислород, поступающий в легкие. За одни сутки эритроциты взрослого человека переносят около 800 литров кислорода и 200 литров углекислого газа.

Форма эритроцита — в виде двояковогнутого диска — обеспечивает относительно большую поверхность для соприкосновения гемоглобина с газами. Любопытно, что суммарная поверхность эритроцитов — около трех тысяч квадратных метров, то есть в полторы тысячи раз больше поверхности нашего тела.

Нормы эритроцитов в крови

Нормальное содержание гемоглобина — 13—18 граммов на 100 миллилитров крови, в среднем около 16. Когда в лабораториях проводят необходимые анализы, такое соотношение принимают за 100 процентов. Как правило, у женщин гемоглобина меньше, чем у мужчин, а у полных людей больше, чем у худых.

Уменьшение числа эритроцитов или снижение содержания в них гемоглобина приводит к кислородному голоданию. Оно бывает, например, у человека, поднявшегося без специальной подготовки высоко в горы. У него развивается так называемая «горная болезнь»: резко учащается дыхание, появляются головная боль, чувство усталости и ощущение, похожее на опьянение — с тошнотой, головокружением, рвотой.

Примерно десяти дней достаточно для акклиматизации на высоте, скажем, 4 500 метров. За это время в организме начинают усиленно вырабатываться эритроциты, и повышается содержание в них гемоглобина, а, следовательно, возрастает способность крови переносить кислород.

Так происходит не только при акклиматизации. Обследования спортсменов показали, что у бегунов на длинные дистанции, лыжников, велогонщиков, гребцов способность организма поглощать кислород может увеличиваться вдвое и более. Соответственно изменяются и показатели крови: увеличивается ее объем, растет число эритроцитов, уровень гемоглобина.

Состав эритроцитов

За последние два десятилетия ученые достигли особенно больших успехов в изучении красных клеток крови. Удалось выяснить структуру молекулы гемоглобина. Определены не только все 150 аминокислот, входящих в состав этой молекулы, но и точно установлено их расположение.

Эти данные пролили свет на причину опасного врожденного заболевания — серповидно-клеточной анемии, распространенной в странах Средиземноморья. Оказалось, что эта тяжелая болезнь обусловлена заменой одной из аминокислот в молекуле гемоглобина.

Было обнаружено также, что недостаток лишь одного фермента в эритроците приводит к непереносимости некоторых пищевых и лекарственных веществ. Результаты исследований на молекулярном уровне расширяют возможности лечения и профилактики многих тяжелых заболеваний.

Гибель эритроцитов

Красные клетки крови образуются непрерывно в течение всей жизни человека в костном мозге грудины, костей таза и в длинных трубчатых костях рук и ног. Процесс созревания эритроцитов хорошо изучен. Его продолжительность — 3-4 суток. За это время сравнительно крупные костномозговые клетки с большим ядром, почти не содержащие гемоглобина, размножаются путем ряда последовательных делений. Постепенно утрачивая ядро, они уменьшаются в размерах, в них синтезируется гемоглобин, и они превращаются в эритроциты.

Но в процессе своей жизнедеятельности эритроциты «изнашиваются». Они живут не более 100—120 дней, а затем разрушаются и удаляются из крови клетками селезенки и печени. Каждые сутки человек теряет в среднем 115 миллионов эритроцитов в минуту. На смену им в таком же темпе костный мозг вырабатывает новые.

Клетки красной крови, открытые впервые Левенгуком, обладают многими замечательными свойствами. Об одном из них нельзя умолчать. В эритроцитах были открыты факторы, определяющие групповые свойства крови.

Группы крови

Основных групп крови четыре. Оказалось, что красные клетки людей разных групп крови отличаются присутствием или отсутствием в этих клетках особых белков — агглютиногенов (антигенов), обозначаемых латинскими буквами А и В.

У одних антигены А и В отсутствуют (1 группа, «универсальный» донор), эритроциты других содержат только антиген А (II группа), у третьих — только антиген В (III группа), а у четвертых — и А и В (IV группа, «универсальный» реципиент).

Таким образом, кровь не всех групп совместима. И если перелить человеку кровь несовместимой группы, наступит тяжелое осложнение — склеивание (агглютинация) эритроцитов, а затем и их разрушение (гемолиз).

Идеально совместимой для реципиента (человека, которому производят переливание) является кровь той же группы. Но при необходимости можно использовать и кровь «универсального» донора. «Универсальному» реципиенту практически можно переливать кровь любой группы.

Переливание, хранение крови

Переливание крови стало возможным благодаря открытию ее групповых свойств. Миллионы доноров без всякого вреда для своего здоровья регулярно сдают кровь. Надежно упакованная и сохраняемая в специальных флаконах, она поступает во все лечебные учреждения нашей страны.

Успешно была решена проблема консервации и длительного хранения крови, научились заготавливать и применять плазму и сыворотку. Они удобны, так как при их переливании не нужно учитывать совместимость групп. Ученые нашли возможность сохранять в особых условиях и эритроциты, годами не теряющие своих драгоценных свойств.

Переливание крови — это гуманное и могучее средство восстановления здоровья человека — получило очень широкое распространение. Кровь доноров несет спасение людям.

Триста лет назад А. Левенгук сделал первый шаг в изучении крови, которую еще в глубокой древности считали символом жизни. На протяжении последующих веков ученые всего мира отдали много сил и энергии для того, чтобы дать в руки врачам животворное лекарство — донорскую кровь.

Источник

Что такое безъядерные эритроциты

Эритроциты (красные кровяные клетки) – самые многочисленные клетки крови, содержащие гемоглобин. Их основная функция – доставлять кислород к тканям и органам.

Определение количества эритроцитов является неотъемлемой частью общего анализа крови и отдельно не производится.

Число эритроцитов, количество эритроцитов, подсчет количества эритроцитов.

Синонимы английские

Red blood cell count, RBC count, RCC, red cell count, erythrocyte count, red count.

*10 12 /л (10 в ст. 12 на литр).

Какой биоматериал можно использовать для исследования?

Венозную, капиллярную кровь.

Общая информация об исследовании

В ходе этого теста подсчитывается количество эритроцитов в определенном объеме крови – в литре или в микролитре.

Эритроциты, которые образуются в костном мозге, доставляют кислород к органам и тканям, а также способствуют переносу углекислого газа от органов и тканям к легким, где он выдыхается. Это происходит за счет того, что они содержат белок гемоглобин, который легко вступает в связь с кислородом и углекислым газом.

Изменение количества эритроцитов, как правило, сопряжено с изменениями уровня гемоглобина. Когда количество эритроцитов и уровень гемоглобина снижены – у пациента анемия, когда повышена – полицитемия.

В норме продолжительность жизни эритроцита – около 120 дней. Организм старается поддерживать примерно одинаковое число циркулирующих эритроцитов. При этом старые эритроциты уничтожаются в селезенке, а новые образуются в костном мозге.

Если баланс между образованием и разрушением эритроцитов нарушается из-за потери эритроцитов, их разрушения или уменьшения их образования, то развивается анемия. Наиболее частые причины потери эритроцитов – это острое или хроническое кровотечение либо гемолиз (разрушение в кровяном русле). Организм возмещает такие потери, увеличивая производство эритроцитов в костном мозге. Этот процесс регулирует гормон эритропоэтин, образующийся в почках.

Снижаться продукция эритроцитов может, когда нарушается нормальная работа костного мозга. Причиной подобного нарушения может быть инфильтрация мозга опухолевыми клетками или угнетение его функции под воздействием радиации, химиотерапии, из-за нехватки эритропоэтина (образующегося в почках вещества, которое стимулирует образование эритроцитов) или из-за недостатка веществ, необходимых для образования гемоглобина (железа, витамина B12, фолиевой кислоты).

Снижение производства эритроцитов приводит к уменьшению их циркуляции в кровяном русле, недостатку гемоглобина и его способности переносить кислород, а следовательно, к слабости и утомляемости.

В свою очередь, число эритроцитов увеличивается при более активной работе костного мозга. К этому могут приводить разные причины, например чрезмерный уровень эритропоэтина, повышающее число эритроцитов хроническое расстройство (истинная полицитемия) или курение.

Для чего используется исследование?

Когда назначается исследование?

Обычно исследование входит в рутинный общий анализ крови, который делается как планово, так и при различных болезнях и патологических состояниях, перед хирургическими вмешательствами.

Повторно его обычно назначают пациентам, страдающим от кровотечений или хронической анемии.

Что означают результаты?

Возраст

Эритроциты, *10^12/л

Источник

Эритроциты в крови: норма по возрасту, причины повышенных и пониженных значений

Эритроциты – красные кровяные тельца, самые многочисленные клетки крови. Формально они не являются клетками, так как в процессе созревания теряют многие необходимые для клеток структуры. Например, в них отсутствуют ядра, и они не синтезируют никакие белковые молекулы, в отличие от остальных клеток организма. Так что название «клетка» в данном случае используется для удобства. Эритроциты образуются в костном мозге и постоянно циркулируют в организме, выполняя важнейшую функцию поддержания жизни – они переносят кислород из легких к тканям и органам и удаляют углекислый газ.

Кроме эритроцитов, кровь содержит плазму, тромбоциты, лейкоциты. Однако количество эритроцитов так велико, что всего пара капель крови содержит около одного миллиарда этих клеток. Они составляют около 40% всего объема крови. Собственно, именно эритроциты и придают нашей крови характерный красный цвет за счет содержания гемоглобина.

Эритроциты не вечны, со временем они изнашиваются и в конечном итоге умирают. Средний жизненный цикл эритроцита составляет примерно 120 дней – всего четыре месяца. Однако не стоит переживать, костный мозг постоянно производит новые клетки и поддерживает нужный уровень красных кровяных телец. Различные неблагоприятные обстоятельства могут сокращать или, наоборот, увеличивать их скорость воспроизводства и влиять на продолжительность их жизни – таким образом, нарушается баланс состава крови. Повышение или понижение красных кровяных телец связано с разными патологическими состояниями. Рассмотрим этот вопрос подробнее.

Эритроциты в крови в норме

Границы нормы различаются в зависимости от пола, возраста и других особенностей.

Так, для взрослого мужчины она составляет от 4,0 до 5,1×10¹² единиц на литр крови, а для женщин — 3,7 до 4,7×10¹² в 1 л.

У беременных женщин эритроциты могут снижаться до 3–3,5 х 10¹² в 1 л.

У детей до года концентрация красных кровяных телец постоянно меняется, поэтому для оценки состава их крови существует специальная таблица, которой руководствуются врачи при расшифровке анализов.

В детском возрасте после года еще существуют небольшие отклонения от «взрослой» нормы, но к подростковому возрасту уровень эритроцитов выравнивается.

Повышенные эритроциты

Эритроциты могут быть повышены из-за множества причин, начиная от банального обезвоживания и заканчивая эритремией – хроническим лейкозом. Поэтому при любых отклонениях в результатах анализов необходимо проконсультироваться со специалистом, чтобы определить причину.

Увеличение числа эритроцитов называют эритроцитозом, который бывает:
1. Первичный. Редкое наследственное заболевание, характеризующееся упадком сил, головокружением и более темным цветом слизистых оболочек.
2. Вторичный. Вызван другими заболеваниями или состояниями (например, курением или пребыванием в высокогорных районах) и связан с кислородным голоданием клеток.

Часто повышенный уровень эритроцитов объясняется обезвоживанием, жаркой погодой, сильным стрессом или чрезмерными физическими нагрузками. Патологическое повышение эритроцитов – достаточно редкая патология. Намного чаще пациенты сталкиваются с их пониженным уровнем.

Пониженные эритроциты

Есть много форм анемии, каждая из которых имеет свою причину. Анемия может быть временной или приобретенной; в зависимости от выраженности – от легкой до тяжелой степени. Согласно публикации журнала The Lancet от 2015 года, около одной трети населения мира страдает анемией.

Отклонение от нормы – не всегда болезнь

Если уровень эритроцитов при первом анализе несколько выходит за границы нормы, не стоит паниковать. Врач поможет интерпретировать результаты верным образом, учитывая ваши индивидуальные особенности и историю болезни. Единичный слегка повышенный или слегка пониженный результат может не иметь медицинского значения.

Анализы на эритроциты в крови

Подсчет красных кровяных телец и оценка их строения обычно производятся как часть общего анализа крови (ОАК). Общий анализ крови – самый частый анализ, информативный практически при любых патологических процессах. Этот тест также может использоваться для диагностики и/или мониторинга ряда заболеваний, которые влияют на выработку или продолжительность жизни эритроцитов.

Сдать общий анализ крови с определением 5 фракций лейкоцитов вы можете в любом медицинском центре Ситилаб.

Источник

ЭРИТРОЦИТЫ

ЭРИТРОЦИТЫ (erythrocytus, единственное число; греческий erythros красный + kytos вместилище, здесь — клетка) — безъядерные форменные элементы крови, содержащие гемоглобин.

О существовании эритроцитов стало известно более 300 лет назад, когда в 1658 году Сваммердам (J. Swammerdam) обнаружил «красные шарики» в крови лягушки. Затем А. Левенгук в 1673 году нашел их в крови человека. Основное функциональное значение эритроцитов было выяснено во второй половине 19 веке. Не малая заслуга в этом принадлежит И. М. Сеченову.

Что такое безъядерные эритроциты. Смотреть фото Что такое безъядерные эритроциты. Смотреть картинку Что такое безъядерные эритроциты. Картинка про Что такое безъядерные эритроциты. Фото Что такое безъядерные эритроциты

Содержание

Строение, форма, размеры и функция эритроцитов

При исследовании эритроцитов с помощью трансмиссионного электронного микроскопа отмечается высокая однородная электронно-оптическая плотность цитоплазмы за счет содержащегося в ней гемоглобина (см.); органеллы отсутствуют. Плазмолемма (клеточная мембрана) эритроцитов имеет сложное строение и состоит из четырех слоев. Наружный слой образован гликопротеидами и содержит разветвленные комплексы олигосахаридов, которые представляют собой концевые отделы групповых антигенов крови (см. Группы крови). В этот же слой частично входят адсорбированные протеины плазмы. Средние два слоя образуют классическую двойную липидную мембрану (см. Мембраны биологические), включающую глобулярные белки. Основная часть липидов состоит из фосфолипидов, холестерина и глицеридов. Внутренний, обращенный к цитоплазме слой состоит из белков — спектрина и актина. Спектрин обладает сократительной способностью и К+, Na+-зависимой АТФ-азной активностью, с ним связаны молекулы гликолитических ферментов и гемоглобина. Реологические свойства эритроцитов, пластичность их плазмолеммы во многом определяются структурно-функциональным состоянием этого белка. Из других структурных белков эритроцитов были выделены и идентифицированы гликофорин и сиалогликопротеин.

При сканирующей электронной микроскопии выявляются эритроциты различной формы (см. рис. 1 и 2 к ст. Кровь). Среди циркулирующих эритроцитов основную массу составляют дискоциты; встречаются также сферические формы — стоматоциты, эхиноциты, сфероциты. Дискоцит представляет собой двояковогнутый диск с ровной поверхностью. Площадь его поверхности примерно в 1,7 раза превышает площадь поверхности сферического эритроцита при равном объеме клеток. Считают, что эритроциты в виде диска наиболее адаптированы к диффузии газов и транспорту различных веществ через плазмолемму; подавляющее большинство эритроцитов легко проходит по капиллярам, имеющим вдвое меньший диаметр, чем сама клетка. Эти свойства эритроцитов обусловлены их высокой способностью изменять свою конфигурацию за счет дископодобной формы клетки, относительно низкой вязкости нормального гемоглобина и эластичности клеточной мембраны. Сферические формы эритроцитов имеют пониженную эластичность, в связи с этим они задерживаются в фильтрационном ложе селезенки и уничтожаются макрофагами.

Что такое безъядерные эритроциты. Смотреть фото Что такое безъядерные эритроциты. Смотреть картинку Что такое безъядерные эритроциты. Картинка про Что такое безъядерные эритроциты. Фото Что такое безъядерные эритроциты

Эхиноцит образуется из дискоцита; при этом сначала по окружности дискоцита, а затем по всей поверхности клетки появляются грубые выросты (на этом этапе дискоцит имеет вид ежа или тутовой ягоды), после чего он приобретает сферическую форму (рис. 2). Трансформация дискоцита в эхиноцит обратима до тех пор, пока не происходит потери части выростов плазмолеммы. Конечным этапом такой трансформации является образование сфероцита. Образование эхиноцитов вызывает ряд факторов, как внутриклеточных (снижение концентрации АТФ, накопление ионов кальция и лизолецитина в эритроцитах), так и внеклеточных (изменение электролитного состава плазмы крови, pH, температуры, концентрации жирных и желчных кислот, а также воздействие нек-рых лекарственных средств, в частности салицилатов и барбитуратов). В норме количество эхиноцитов не превышает 1%. При длительном хранении консервированной донорской крови количество эхиноцитов возрастает до 70—80% в результате потери эритроцитами АТФ.

Стоматоцит развивается из дискоцита в результате метаболических нарушений в клетке. Трансформация начинается со сглаживания контура дискоцита с одной стороны; эритроцит становится куполообразным, затем вогнутая часть клетки уменьшается, и эритроцит принимает сферическую форму (рис. 2). Этот процесс обратим до стадии потери участков плазмолеммы. В нормальных условиях стоматоциты составляют 2—5% эритроцитов.

Сфероцитоз — увеличение количества сферических форм эритроцитов в крови — свидетельствует о патологических отклонениях в организме, детерминированных наследственными или приобретенными повреждающими факторами. Для выявления повышенной сферуляции эритроцитов определяют сфероцитарный индекс, или показатель сферичности (см. Эритро-цитометрия). При необратимой трансформации дискоцита в сфероцит выросты плазмолеммы превращаются в миелиноподобные фигуры или произвольные микросферулы (рис. 1, г).

Что такое безъядерные эритроциты. Смотреть фото Что такое безъядерные эритроциты. Смотреть картинку Что такое безъядерные эритроциты. Картинка про Что такое безъядерные эритроциты. Фото Что такое безъядерные эритроциты

В зависимости от формы эритроцитов выделяют также планоциты (рис. 1,6) — тонкие дискоциты с широким, но относительно мелким углублением, характерные для железодефицитной анемии (см.); дрепаноциты — серповидные эритроциты, выявляемые при серповидно-клеточной анемии (см.); мишеневидные эритроциты (рис. 3) — дискоциты с центрально расположенным возвышением, наиболее часто встречающиеся при талассемии (см.); овалоциты (эллиптоциты) — дискоциты овальной или эллипсоидной формы, характерные для овалоцитарной гемолитической анемии (см.). При анемиях эритроциты могут приобретать различные причудливые формы, это явление получило название «пойкилоцитоз».

Основной функцией эритроцитов является транспорт кислорода и углекислоты. Эритроциты участвуют в регуляции кислотно-щелочного равновесия в организме, а также ионного равновесия плазмы, водно-солевом обмене организма. Они играют важную роль в регуляции активности свертывающей системы крови (см. Свертывающая система крови). Целые эритроциты, так же как и тромбоциты (см.), влияют на образование тромбопластина. Появление в циркулирующей крови разрушенных эритроцитов может способствовать гиперкоагуляции и тромбообразованию. Эритроциты активно обмениваются липидами с плазмой крови, адсорбируют и транспортируют к тканям различные аминокислоты, биологически активные вещества и др.

Биохимия, иммунология, старение и разрушение эритроцитов

Средняя продолжительность жизни эритроцитов составляет примерно 120 дней. При патологических состояниях может происходить относительное укорочение средней продолжительности жизни эритроцитов, обусловленное не только случайным разрушением клеток, но и ускорением самого процесса старения. В связи с этим следует различать среднюю продолжительность жизни эритроцитов и среднюю потенциальную жизнеспособность клетки. На жизнеспособность и биоэнергетику эритроцитов существенно влияет структурная модификация липидов плазмолеммы эритроцитов, заключающаяся в увеличении относительного количества фосфолипидов (см. Фосфатиды), содержащих ненасыщенные жирные кислоты (см.). Установлено, что средняя продолжительность жизни эритроцитов находится в обратной зависимости от интенсивности перекисного окисления липидов в плазмолемме эритроцитов, поэтому средняя продолжительность жизни эритроцитов и суточный эритроцитопоэз у жителей различных географических регионов, а также при экстремальных нагрузках на здоровый организм имеют значительные различия. При этом физиологическое количественное содержание эритроцитов в крови достигается уравновешиванием процессов разрушения и регенерации эритроцитов.

По мере старения эритроцитов метаболизм клетки нарушается; снижается содержание белков, липидов и гликопротеидов. Утилизация глюкозы уменьшается примерно в 3 раза, концентрация АТФ, НАД-Н, НАДФ-Н,2,3-дифосфоглицериновой кислоты и глутатиона снижается, что приводит к вторичным деструктивным изменениям эритроцитов (сферуляции и потере эластичности). Снижение количества сиаловой кислоты в составе гликопротеидов влечет за собой изменение важнейших свойств поверхности эритроцитов (плотности электрического заряда, антигенности и рецепции). В этом случае повышается способность эритроцитов к агглютинации.

При созревании и старении эритроцитов изменяются антигенные свойства его поверхности. Плотность антигенных детерминант на поверхности старых эритроцитов значительно выше, чем на поверхности молодых. Предполагают, что с потерей сиаловой кислоты «демаскируются» гликопротеиновые комплексы, обладающие способностью связываться с IgG, после чего макрофаги и лимфоциты-киллеры (см. Иммунокомпетентные клетки) «узнают» «маркированные» эритроциты и уничтожают их. В крови нередко можно наблюдать сферические эритроциты, несущие на своей поверхности адсорбированные белковые комплексы (рис. 1, в). Аутоиммунный клеточный механизм физиологического разрушения эритроцитов изучен не полностью.

При повторных переливаниях крови могут образоваться антиэритроцитарные изоантитела (см. Группы крови, Резус-фактор), являющиеся по своей серологической характеристике агглютининами. Агглютинация эритроцитов наблюдается при ряде вирусных заболеваний, так как вирусы содержат специфичные гемагглютинины (см. Агглютинация, Гемагглютинация).

Методы исследования эритроцитов

Подсчет числа эритроцитов крови производят различными способами. Общее количество эритроцитов подсчитывают в 1 мкл крови в счетной камере под микроскопом (см. Камеры счетные), колориметрическим методом, с помощью автоматических счетчиков. Общий объем циркулирующих эритроцитов определяют исходя из объема циркулирующей крови и гематокритного числа (см.). Объем циркулирующей крови чаще устанавливают радиоизотопными методами путем введения в кровь радиоактивного фосфора ( 32 P), хрома ( 51 Cr), альбумина, меченного 131 I, и др. Показатели объема циркулирующей крови и объема циркулирующих эритроцитов имеют большое диагностическое значение при различного рода кровопотерях и нарушении кровообращения.

Оценка состояния красной крови может быть дана на основании комплекса исследований: установления количества гемоглобина, числа эритроцитов, их морфологии и интенсивности окраски. В связи с этим определяют среднее содержание гемоглобина в одном эритроците и цветной показатель (см. Гемограмма). Морфологию изучают в окрашенных мазках крови с помощью светооптических и электронных микроскопов. Наиболее распространенными являются методы окраски по Романовскому — Гимзе (см. Романовского — Гимзы метод) и по Нохту. Большое значение в клин, практике имеет определение РОЭ (см. Оседание эритроцитов) и резистентности эритроцитов к гипотоническим растворам, химическим и физическим воздействиям (см. Гемолиз). Цитохимические, биохимические и иммунологические исследования эритроцитов проводят для выявления патологии красного кроветворения и определения ее характера (см. Костный мозг, Кровь).

Изменения эритроцитов в норме и при патологии

Количество эритроцитов в 1 мкл крови новорожденных, по данным различных исследователей, колеблется от 4,5 до 7,5 млн.; наибольшее число эритроцитов наблюдается в первые часы жизни (7,5 млн.), затем количество их быстро уменьшается и к 12—14-му дню жизни обычно достигает 4,9—5,0 млн. В первые 5— 7 дней жизни у детей отмечается отчетливый анизоцитоз, часто возникают пойкилоцитоз и полихроматофилия. У детей от 1 года до 2 лет, а также от 5 до 7 лет и от 12 до 14 лет выявляются большие индивидуальные колебания числа эритроцитов. Постепенно с возрастом (обычно после 16 лет) устанавливаются стабильные величины для всех параметров эритроцитов. У лиц пожилого и старческого возраста число эритроцитов снижается в среднем до 3,8—4,0 млн. в 1 мкл крови. Осмотическая резистентность эритроцитов в гипотонических солевых растворах у новорожденных и детей грудного возраста выше, чем у детей старшего возраста и у взрослых. Гемоглобин эритроцитов у новорожденных состоит в основном из фетального гемоглобина (70—90%). К 2 годам жизни он почти полностью замещается гемоглобином «взрослых». Несмотря на высокую метаболическую активность эритроцитов, у новорожденных средняя продолжительность жизни эритроцитов снижена за счет усиленной оксидации и пероксидации клеточных структур, в первую очередь фосфолипидов плазмолеммы. Для всей популяции эритроцитов стареющего организма характерно снижение АТФ, НАД-Н,2,3-дифосфоглицериновой кислоты, осмотической и кислотной резистентности эритроцитов, однако укорочения средней продолжительности жизни эритроцитов у лиц пожилого и старческого возраста не наблюдается. Функциональная и структурная неравнозначность эритроцитов и связанная с ней вариабельность содержания эритроцитов в крови в онтогенезе, а также у различных индивидуумов определяется метаболической активностью клеток, антиокислительной защитой клеточных структур и устойчивостью эритроцитов к гемолизу. В связи с этим на количественные и качественные параметры эритроцитов практически здорового человека большое влияние оказывают генетические и экологические факторы.

Эритроциты при их патологической регенерации или повышенной деструкции могут содержать различные включения. Так, базофильная пунктация эритроцитов, открытая П. Эрлихом в 1886 году, имеет цитоплазматическое происхождение; в отличие от базофильной субстанции ретикулоцитов она располагается по периферии эритроцитов и окрашивается всеми красителями, используемыми при обработке мазков крови. Базофильная пунктация выявляется как мелкоточечная зернистость синего цвета; наиболее часто она встречается при отравлениях свинцом.

В эритроцитах обнаруживают так называемые тельца Жолли и кольца Кебота, которые являются остатками ядер. Тельца Жолли встречаются в эритроцитах в виде отдельных зернышек величиной 1—2 мкм, они, как и кольца Кебота, окрашиваются азурофильно и базофильно. Появление их обусловлено нарушением энуклеации (выталкивания) ядра из нормобласта. Тельца Жолли встречаются наиболее часто после удаления селезенки. Кольца Кебота имеют иногда форму восьмерки или ракетки, встречаются при пернициозной анемии.

При различных видах малярии в эритроцитах выявляется шюффнеровская зернистость, имеющая вид мелкого азурофильного крапа, и более крупная неравномерная зернистость темно-фиолетового цвета — пятнистость Маурера.

Тельца Гейнца — Эрлиха определяются в эритроцитах при обычной окраске мазков крови как небольшие округлые образования (включения) ярко-красного цвета, при суправитальной окраске они имеют синий цвет. Образование этих телец обусловлено коагуляцией полипептидных цепей молекулы гемоглобина при различных патологических состояниях, связанных с интоксикацией организма, в частности при отравлении анилиновыми красителями, гемолитическими ядами, а также при энзимопатиях (см. Энзимопеническая анемия) или в случае присутствия в эритроцитах нестабильных гемоглобинов (см. Гемоглобин; Гемоглобинопатии).

Иногда в эритроцитах встречаются зерна гемосидерина, такие эритроциты называют сидероцитами, увеличение их количества наблюдается при некоторых заболеваниях, например при железорефрактерной анемии (см.).

При различных патологических состояниях количество эритроцитов может снижаться, например при анемиях, или повышаться (например, см. Полицитемия, Эритроцитозы, Эритроцитоз наследственно-семейный).

Библиогр.: Ашкинази И. Я. Эритроцит и внутреннее тромбопластинообразование, Л., 1977; Возрастная физиология, под ред. В. Н. Никитина, с. 68, Л., 1975; Истаманова Т. С., Алмазов В. А. и Канаев С. В. Функциональная гематология, Л., 1973; Кинетические аспекты гемопоэза, под ред. Г. И. Козинца и Е. Д. Гольдберга, с. 80, Томск, 1982; Клиорин А. И. и Тиунов Л. А. Функциональная неравнозначность эритроцитов, Л.,1974; Коржуев П. А. Гемоглобин, М., 1964; Крымский Л. Д., Нестайко Г. В. и Рыбалов А. Г. Растровая электронная микроскопия сосудов и крови, М., 1976; Марачев А. Г., и д р. Взаимосвязь процессов эритропоэза, эритродиереза и перекисного окисления липидов мембран эритроцитов, Вестн. АМН СССР, № 11, с. 65, 1983; Мембраны и болезнь, под ред. Л. Волиса и др., пер. с англ., М., 1980; Мосягина E. Н. Эритроцитарное равновесие в норме и патологии, М., 1962; Наследственные анемии и гемоглобинопатии, под ред. Ю. Н. Токарева и др., с. 23, М., 1983; Нормальное кроветворение и его регуляция, под ред. Н. А. Федорова, М., 1976; Пухова Я. И. Аутоиммунный клеточный механизм фйзиологического разрушения эритроцитов, Новосибирск, 1979; Рябов С. И. Основы физиологии и патологии эритропоэза, Л., 1971; Соколов В. В. и Грибова И. А. Показатели периферической крови у здоровых людей, Лаб. дело, № 5, с. 259, 1972; Физиология системы крови, Физиология эритропоэза, под ред. В. Н. Черниговского, с. 211, 274, Л., 1979; Человек, Медико-биологические данные, пер. с англ., с. 45, М., 1977; К а у М. М.,а. о. Antigenicity, storage and ageing,physiologic autoantibodies to cell membrane and serum proteins and the senescent cell antigen, Molec. cell. Biochem., v. 49, p. 65, 1982; Red cell shape, ed. by M. Bessis а. о., N. Y., 1973.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *