Что такое бета распад
Бета-распад: что это такое и что происходит в процессе бета-распада
Содержание:
Радиоактивность не столь страшна, как полагает большинство людей, вспоминая о Чернобыле и Фукусиме. Под понятием подразумевается процесс спонтанного распада нестабильного атомного ядра с испусканием элементарной частицы. От вида последних зависит тип распада, его протекание, особенности. Сегодня рассмотрим, что такое бета-распад в физике, какие виды бывают, чем отличаются.
Что такое бета-распад
В основу процесса заложена особенность протонов с нейтронами. Они способны превращаться один в другой при определённых условиях. Свободный нейтрон тяжелее электрона с протоном, он может самопроизвольно трансформироваться в протон (p), испуская при этом антинейтрино (v) с одновременным увеличением заряда ядра на единичку. Формула электронного бета-распада:
Ядро, появившееся вследствие трансформации, становится ядром нового элемента, с порядковым номером на единицу больше, чем до протекания процесса. Калий, например, идущий в периодической таблице Менделеева под номером 19, становится кальцием с зарядом 20. Математически это выглядит так:
Количество нуклонов (нейтроны и протоны) остаётся статичным, поэтому массовое число не изменяется в отличие от α-распада. Процесс может сопровождаться гамма-излучением, если часть энергии расходуется, чтобы возбудить образовавшееся ядро (продукт). Будучи возбуждённым, оно вскоре стабилизируется, отдавая один или пару гамма-квантов. γ-излучение имеет дискретный энергетический спектр, у бета-частиц он сплошной, начиная от нуля и заканчивая максимальной энергией β-спектра.
Разнообразие явлений
Отдельно стоит так называемый электронный или e-захват, когда электрон из собственной оболочки захватывает ядро с последующим испусканием нейтрино. Последний и его антипод, в противовес электронам с позитронами, отличаются весьма слабым взаимодействием с материей, частицу появившейся вследствие распада энергии забирают с собой.
Кратко о роли нейтрона
В начале XX века физики окончательно убедились, на что распадается нейтрон, демонстрирующий крайне низкую устойчивость. Продуктами его разрушения стали протон с электроном и антинейтрино. Если первые обнаруживаются посредством специальных детекторов, третий почти не взаимодействует с материей.
Бета-распад
Полезное
Смотреть что такое «Бета-распад» в других словарях:
БЕТА-РАСПАД — бета распад, радиоактивные превращения атомных ядер, в процессе к рьхх ядра испускают электроны и антинейтрино (бета распад) либо позитроны и нейтрино (бета+ распад). Вылетающие при Б. р. электроны и позитроны носят общее назв. бета частиц. При… … Большой энциклопедический политехнический словарь
БЕТА-РАСПАД — (b распад), вид радиоактивности, при котором распадающееся ядро испускает электроны или позитроны. При электронном бета распаде (b ) нейтрон (внутриядерный или свободный) превращается в протон с испусканием электрона и антинейтрино (смотри… … Современная энциклопедия
Бета-распад — (b распад), вид радиоактивности, при котором распадающееся ядро испускает электроны или позитроны. При электронном бета распаде (b ) нейтрон (внутриядерный или свободный) превращается в протон с испусканием электрона и антинейтрино (смотри… … Иллюстрированный энциклопедический словарь
Бета-распад — (β распад) радиоактивные превращения атомных ядер, в процессе которых ядра испускают электроны и антинейтрино (β распад) либо позитроны и нейтрино (β+ распад). Вылетающие при Б. р. электроны и позитроны носят общее название бета частиц (β частиц) … Российская энциклопедия по охране труда
БЕТА-РАСПАД — (b распад). самопроизвольные (спонтанные) превращения нейтрона n в протон р и протона в нейтрон внутри ат. ядра (а также превращение в протон свободного нейтрона), сопровождающиеся испусканием эл на е или позитрона е+ и электронных антинейтрино… … Физическая энциклопедия
Бета-распад — самопроизвольные превращения нейтрона в протон и протона в нейтрон внутри атомного ядра, а также превращение свободного нейтрона в протон, сопровождающееся испусканием электрона или позитрона и нейтрино или антинейтрино. двойной бета распад… … Термины атомной энергетики
бета-распад — (см. бета) радиоактивное превращение атомного ядра, при котором испускаются электрон и антинейтрино или позитрон, и нейтрино; при бета распаде электрический заряд атомного ядра изменяется на единицу, массовое число не меняется. Новый словарь… … Словарь иностранных слов русского языка
бета-распад — бета лучи, бета распад, бета частицы. Первая часть произносится [бэта] … Словарь трудностей произношения и ударения в современном русском языке
бета-распад — сущ., кол во синонимов: 1 • распад (28) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
бета-распад — бета распад, бета распада … Орфографический словарь-справочник
БЕТА-РАСПАД — (ß распад) радиоактивное превращение атомного ядра (слабое взаимодействие), при котором испускаются электрон и антинейтрино или позитрон и нейтрино; при Б. р. электрический заряд атомного ядра изменяется на единицу, массовое (см.) не меняется … Большая политехническая энциклопедия
Что такое бета распад
Считалось даже, что в β-распаде не выполняется закон сохранения энергии. Объяснение непрерывного характера β-спектра было дано В. Паули, который высказал гипотезу, что при β-распаде вместе с электроном рождается ещё одна частица с маленькой массой, т.е. β-распад − трехчастичный процесс. В конечном состоянии образуется ядро (A,Z±1), электрон и лёгкая нейтральная частица – нейтрино (антинейтрино). Т.к. масса ядра (A,Z±1) гораздо больше масс электрона и нейтрино, энергия β-распада уносится лёгкими частицами. Распределение энергии β-распада Qβ между электроном и этой нейтральной частицей приводит к непрерывному β-спектру электрона.
Из закона сохранения энергии следует, что спектр антинейтрино зеркально симметричен спектру электронов.
где Nν(E) − число антинейтрино с энергией Е, Ne(Qβ – E) − число электронов с энергией (Qβ – E), Qβ − энергия β-распада, равная суммарной энергии, уносимой электроном и антинейтрино (энергия ядра отдачи 40 Ca не учитывается).
Наряду с законами сохранения энергии, импульса, момента количества движения в процессе β-распада выполняются законы сохранения барионного B и электронного лептонного Le квантовых чисел.
Спектр электронов, образующихся при β-распаде в отличие от дискретного спектра α-частиц имеет непрерывный характер, т.е. их ядра вылетают электроны различных энергий вплоть до энергии β-распада. Непрерывный спектр электронов некоторыми физиками интерпретировался как невыполнение закона сохранения энергии в β-распаде. Впервые гипотеза о ещё одной частице, которая образуется при β-распаде высказал В. Паули в 1930 г. в письме участникам физической конференции в г. Тюбингене. |
«Дорогие радиоактивные дамы и господа.
Имея в виду… непрерывный β-спектр, я предпринял отчаянную попытку спасти обменную статистику и закон сохранения энергии. Именно имеется возможность того, что в ядрах существуют электрически нейтральные частицы, которые я буду называть «нейтронами» и которые обладают спином 1/2. Масса «нейтрона» по порядку величины должна быть сравнимой с массой электрона и во всяком случае не более 0.01 массы протона. Непрерывный β-спектр тогда стал бы понятным, если предположить, что при распаде вместе с электроном испускается ещё и «нейтрон» таким образом, что сумма энергий «нейтрона» и электрона остаётся постоянной».
После открытия в 1932 г. нейтрона Э.Ферми предложил называть частицу В.Паули «нейтрино». В 1933 г. на Сольвеевском конгрессе В. Паули выступил с докладом о механизме β-распада с участием нейтральной частицы со спином J = 1/2. Гипотеза Паули спасла не только закон сохранения энергии, но и законы сохранения импульса и момента. Антинейтрино было экспериментально обнаружено в 1956 г. в экспериментах Ф. Райнеса и К. Коэна.
На малую интенсивность слабых взаимодействий указывает большое среднее время жизни нейтрона (τ ≈ 15 мин).
β-распад разрешен при выполнении соотношений (3.2). В этих соотношениях фигурируют массы исходного и конечного ядер, лишенных электронных оболочек, т.к. в масс-спектроскопических измерениях определяются не массы ядер, а массы атомов ат M. Поэтому в справочных таблицах обычно приводятся массы атомов. Массы исходного и конечного атомов связаны с массами ядер соотношениями
В (3.3) не учитываются энергии связи электронов в атомах, т.к. они находятся на границе точности самых прецизионных измерений. Подставив (3.3) в (3.2), получим условия нестабильности атома по отношению к β-распаду
Она заключена в интервале от 18.61 кэВ при распаде трития
до 13.4 МэВ при распаде тяжелого изотопа бора
Нами было недавно показано методом камеры Вильсона, что некоторые лёгкие элементы (бериллий, бор, алюминий) испускают положительные электроны при бомбардировке их α-лучами полония.
Испускание положительных электронов некоторыми лёгкими элементами, облучёнными α-лучами полония, сохраняется в течение некоторого более или менее продолжительного времени после удаления источника α-лучей; в случае бора это время превосходит полчаса. Алюминиевая фольга помещается на расстоянии 1 мм от полониевого источника. После облучения в течение приблизительно 10 минут фольга помещается над счётчиком Гейгера-Мюллера с окошком, толщина которого 7/100 мм алюминия. При этом фольга испускает излучение, интенсивность которого уменьшается экспоненциально со временем с периодом 3 мин. 15 сек. Аналогичные результаты получены с бором и магнием, причём периоды полураспада различны, а именно: 14 мин. для бора и 2 мин. 30 сек. для магния.
Эти, опыты указывают на существование нового типа радиоактивности, сопровождаемой испусканием, положительных электронов. Мы полагаем, что в случае алюминия реакция происходит следующим образом:
27 Al + 4 He → 30 P + n.
Изотоп 30 P является радиоактивным с периодом в 3 мин. 15 сек. и испускает положительные электроны согласно реакции
При е-захвате в результате взаимодействия протона с электроном атомной оболочки происходит превращение протона в нейтрон с испусканием из ядра электронного нейтрино νe.
Разрешенные и запрещенные β-распады
Бета-распады разделяются на разрешенные и запрещенные, различающиеся вероятностями переходов. К разрешенным переходам относятся переходы, при которых суммарный орбитальный момент l, уносимый электроном и нейтрино, равен нулю. Запрещенные переходы подразделяются по порядку запрета, который определяется орбитальным моментом l.
l = 1 − запрещенный переход первого порядка,
l = 2 − второго порядка и т. д.
Отношения вероятностей вылета частицы с орбитальными моментами l = 0 (w0) и l ≠ 0 (wl)
R − радиус ядра, − длина волны.
Бета-распады также делятся на переходы типа Ферми, при которых спины вылетающих лептонов антипараллельны, и переходы типа Гамова-Теллера, при которых спины вылетающих лептонов параллельны.
Сильную зависимость вероятности бета-переходов от орбитального момента вылетающих лептонов можно понять из следующего качественного рассмотрения. На ядро с радиусом R налетает частица с импульсом p и прицельным параметром b. Классический момент импульса pb равен величине орбитального момента
pb = .
Для прицельного параметра b в классическом приближении должно выполняться условие
для различных энергий β-распада Qβ.
е-захват в изотопа 7 Be
Если массы начального Mi и конечного Mf ядер удовлетворяют условиям
β-распад внутринуклонный процесс. В ядре распадается одиночный нуклон. Однако в процессе β-распада происходит перестройка ядра. Поэтому период полураспада а также другие характеристики β-распада в значительной степени зависят от того насколько сложна эта перестройка. Стабильные по отношению к β-распаду ядра при всех А располагаются вокруг значений Z равн с возможным небольшим разбросом в обе стороны за счет индивидуальных особенностей ядер.
Отношение вероятности ω l /ω 0 вылета частицы с орбитальными моментами l и 0 из ядра радиуса R определяется соотношением
что сильно подавляет вылет частиц низких энергий и c большими орбитальными моментами.
Основные состояния изотопов 14 С, 14 O и первое возбужденное состояние 14 N
E* = 2.31 МэВ J P = 0 + образуют изотопический триплет
Зависимость изменения масс атомных ядер-изобар от заряда ядра Z для нечетных и четных массовых чисел A.
При β-распаде ядра с нечетным массовым числом A происходит превращение четно-нечетного по протонам и нейтронам ядра в нечетно-четное или, наоборот, нечетно-четного в четно-нечетное. При β-распаде ядер с четным массовым числом A происходит превращение четно-четного ядра в нечетно-нечетное или, наоборот, нечетно-нечетного в четно-четное.
Поэтому из-за сил спаривания в атомных ядрах зависимость масс ядер-изобар с четным массовым числом A от заряда Z описывается двумя параболами. На верхней параболе располагаются менее устойчивые ядра с нечетным Z, на нижней − более устойчивые с четным Z. Это может приводить к существованию до 3 стабильных ядер-изобар, т.к. ядро с зарядом (Z0+2) в некоторых случаях из-за разности энергий не может перейти в результате β-распада в ядро (Z0+1), а ядро (Z0-2) в ядро (Z0-1). Однако при этом появляется принципиальная возможность β-распада с изменением заряда ядра на 2 единицы с испусканием двух электронов и двух антинейтрино или двух позитронов и двух нейтрино.
Этот тип радиоактивного распада называется двойным β-распадом.
Двойной β-распад возможен также при одновременном захвате двух атомных электронов. Ядра с нечетным массовым числом A располагаются на одной параболе.
β-распад ядер-изобар с массовым числом A = 89.
β-распад ядер-изобар с массовым числом A = 122.
В ядрах-изобарах с четным массовым числом A возможны два стабильных изотопа. В данном случае это 122 Sn (содержание в естественной смеси изотопов 4.63%) и 122 Te (содержание в естественной смеси изотопов 2.55%). Изотоп 122 Sb распадается в основном в результате β-распада (≈ 97%). β-распады часто происходят на возбужденные состояния ядер-изобар.
β-распад ядер-изобар с массовым числом A = 27.
β-распад ядер-изобар с массовым числом A = 34.
Распад ядер-изобар A = 210.
В тяжелых ядрах α-распад и β-распад часто конкурируют. На рис. показана энергетическая диаграмма α- и β-распадов ядер-изобар A = 210 Pb (Z = 82), Bi (Z = 83) и Po (Z = 84).
Особенности распадов ядер-изобар A = 210:
Бета-распад на связанное состояние атома
Накопители тяжелых ионов открывают принципиально новые возможности в исследовании свойств экзотических ядер. В частности, они позволяют накапливать и в течение длительного времени использовать полностью ионизованные атомы – «голые» ядра. В результате становится возможным исследовать свойства атомных ядер, у которых нет электронного окружения и в которых отсутствует кулоновское воздействие внешней электронной оболочкис атомным ядром.
Рис. 3.2 Схема e-захвата в изотопе (слева) и полностью ионизованных атомах
и
(справа)
10 4 лет. Однако это справедливо только если рассматривать ядро в окружении электронной оболочки. Для полностью ионизированных атомов картина принципиально другая. Теперь основное состояние ядра 163 Dy оказывается по энергии выше основного состояния ядра 163 Ho и открывается возможность для распада 163 Dy (рис. 3.2)
Образующийся в результате распада электрон может быть захвачен на вакантную К или L-оболочку иона . В результате распад (3.8) имеет вид
Несохранение четности в слабых взаимодействиях. Опыт Ву
Ориентации спинов и импульсов при β-распаде кобальта.
испущенных по направлению магнитного поля (спинов ядер) и в противоположном направлении. Вся установка зеркально симметрична относительно плоскости, в которой расположен круговой ток.
При зеркальном отражении импульс (полярный вектор) изменяет направление на противоположное, а напряженность магнитного поля, магнитный момент, спин (аксиальные вектора) направления не изменяют. Из закона сохранения пространственной четности в сферических координатах для квадрата модуля волновой функции
следует, что вероятности испускания частиц под углами θ и π-θ равны. Если бы пространственная четность сохранялась, что эквивалентно зеркальному отражению, должно было бы регистрироваться одинаковое количество электронов, как по направлению магнитного поля, так и в противоположном направлении. Оказалось, что электроны испускаются преимущественно в направлении противоположном направлению спинов ядер (магнитного поля), т.е. тем самым было доказано, что в слабых распадах четность не сохраняется. Спин антинейтрино всегда направлен по импульсу (положительная или правая спиральность), спин нейтрино − против импульса (отрицательная или левая спиральность).
Слабые взаимодействия и несохранения четности
Цзун-дао Ли
Первым экспериментом, в котором однозначно установлено несохранение четности, был эксперимент по изучению углового распределения β-электронов от ядер поляризованного кобальта-60. Ядра кобальта-60 поляризовались в магнитном поле при очень низких температурах. Действительно, в этом эксперименте направление кругового электрического тока в соленоиде, создающем поляризующее магнитное поле, совместно с направлением предпочтительного испускания β-электронов однозначно отделяют правую систему координат от левой. Таким образом, несохранение четности (или, другими словами, неинвариаптность относительно зеркального отражения) может быть установлено без каких-либо теоретических соображении…
Теория является неинвариантной относительно оператора четности P, который, по определению, изменяет знаки у всех пространственных координат, но не переводит частицу в античастицу. Под влиянием этого оператора изменяется на обратное направление импульса частицы, но не изменяется направление спина частицы. Так как в двухкомпонентной теории спин и импульс всегда антипараллельны для нейтрино, то применение оператора P к нейтринному состоянию переводит нейтрино в несуществующее состояние. Следовательно, теория неинвариантна относительно преобразования зеркального отражения.
Подобным же образом можно показать, что теория неинвариантна относительно преобразования зарядового сопряжения, которое переводит частицу в античастицу, но не изменяет направлений импульса и спина.
УФН, т. 66, вып. 1, стр. 89 (1958)
Закон сохранения четности и другие законы симметрии
Чень-ин Янг
Открытие закона сохранения четности восходит к 1924 г., когда Лапорт нашел, что в сложных атомах энергетические уровни могут быть разбиты на два класса: «штрихованные» уровни и «нештрихованные» уровни, или, говоря современным языком, четные и нечетные уровни.
В 1927 г. Вигнер сделал решающий шаг в доказательстве, что эмпирическое правило Лапорта является следствием инвариантности электромагнитных сил и атомах относительно зеркального отражения (или, что то же самое, относительно симметрии правого и левого). Эта фундаментальная идея быстро вошла в плоть и кровь физики. Так как наличие и в других взаимодействиях симметрии между правым и левым не вызывало сомнения, то эта идей была распространена на другие области физики: на ядерные реакции, β-распад, взаимодействие мезонов и взаимодействие странных частиц. Почему так случилось, что среди множества экспериментов по β-распаду – наиболее исчерпывающе исследованному процессу из числа слабых взаимодействий – не было указаний на сохранение четности в слабых взаимодействиях? Это случилось благодаря комбинации двух причин. Во-первых, потому, что у нейтрино отсутствует масса, что приводит к неопределенности, не позволяющей получить косвенных указаний о выполнении закона сохранения четности из таких простых экспериментов, как изучение β-спектра. Во-вторых, чтобы непосредственно проверить выполнение закона сохранения четности в β-распаде, недостаточно изучать только четности ядерных уровней, как это всегда делалось. Надо изучать сохранение четности в целом во всем процессе распада. Другими словами, надо было предложить эксперимент, который бы проверил симметрию правого и левого в β-распаде. Такие эксперименты не были сделаны.
УФН, т. 66, вып. 1, стр. 79 (1958)
Hecoхранениe четности
Новые открытия, касающиеся симметрии законов природы
В. Вейспопф и Л. Родберг
Новые недавно выполненные в ядерной физике опыты свидетельствуют о том, что некоторые основные свойства природы имеют далеко не тот характер, который им приписывали. В истории физики редко случалось, чтобы изменение основных принципов следовало из результатов всего лишь нескольких опытов.
Прежде чем обсудить сами опыты, мы рассмотрим основной закон, ли который посягают полученные результаты. Это закон четности. Он может быть выражен в следующей форме: каждый процесс, происходящий в природе, может протекать и так, каким он виден отраженным в зеркале. Это значит, что природа зеркально симметрична. Зеркальное изображение любого объекта есть также возможный объект природы; движение любого объекта, рассматриваемого в зеркале, есть также движение, разрешаемое законами природы. Любой выполненный в лаборатории опыт может быть выполнен таким образом, каким он кажется в зеркале, и любой полученный при этом эффект должен быть зеркальным изображением действительного эффекта. Выражаясь кратко, законы природы инвариантны относительно отражения.
Опыт был выполнен в Государственном Бюро стандартов в Вашингтоне, где имеется криогенная техника для опытов при очень низких температурах. Опыт осуществили By из Колумбийского университета и Амблер, Хейворд, Хоппс и Хадеон из Государственного Бюро стандартов. Они ориентировали вращение ядер кобальта и сравнили электронные интенсивности в двух противоположных относительно оси вращения направлениях.
Этот опыт имеет несколько замечательных особенностей. Он принадлежит к тем опытам, произвести которые отважились бы немногие физики, ибо его результат «с очевидностью» следовал из зеркальной симметрии. Большие открытия всегда связаны с тем, что «очевидное» подвергается сомнению. В этом случае заслуга принадлежит двум физикам теоретикам – Ли из Колумбийского университета и Янгу из Института проблемных исследований, которые указали экспериментаторам на необходимость этого опыта. Ли и Янг предположили, что для некоторых слабых взаимодействий, подобных β-распаду, принцип четности может оказаться неверным.