Что такое бериллий в химии
Бериллий: способы получения и химические свойства
Бериллий Be — это cветло-серый, легкий, хрупкий металл. На воздухе покрывается оксидной пленкой. Восстановитель.
Относительная молекулярная масса Mr = 9,012; относительная плотность для твердого и жидкого состояния d = 1,85; tпл = 1287º C; tкип = 2507º C.
Способ получения
1. В результате электролиза расплава хлорида бериллия образуются бериллий и хлор :
3. Оксид бериллия легко восстанавливается магнием при 700 — 800º С, образуя бериллий и оксид магния:
BeO + Mg = MgO + Be
4. Фторид бериллия также легко восстанавливается магнием при 700 — 750º С с образованием бериллия и фторида магния:
BeF2 + Mg = Be + MgF2
Качественная реакция
Качественная реакция на бериллий — окрашивание пламени горелки в коричнево — красный цвет.
Химические свойства
1.1. Бериллий взаимодействует с азотом при 700 — 900º С образуя нитрид бериллия:
1.2. Бериллий сгорает в кислороде (воздухе) при 900º С с образованием оксида бериллия:
2Be + O2 = 2BeO
Be + Br2 = BeBr2
1.4. С серой бериллий реагирует при температуре 1150º C с образованием сульфида бериллия:
Be + S = BeS
1.5. С углеродом бериллий реагирует при 1700 — 1900º С и вакууме, образуя карбид бериллия:
2Be + C = Be2C
2. Бериллий активно взаимодействует со сложными веществами:
2.2. Бериллий взаимодействует с кислотами:
2.2.1. Бериллий реагирует с разбавленной соляной кислотой, при этом образуются хлорид бериллия и водород :
Be + 2HCl = BeCl2 + H2 ↑
2.2.2. Реагируя с разбавленной и горячей азотной кислотой бериллий образует нитрат бериллия, газ оксид азота (II) и воду:
2.2.3. В результате реакции концентрированной фтороводородной кислоты и бериллия образуется осадок тетрафторобериллат водорода и газ водород:
2.3. Бериллий может взаимодействовать с основаниями:
2.3.1. Бериллий взаимодействует с гидроксидом натрия в расплаве при температуре 400 — 500º С, при этом образуется бериллат натрия и водород:
2.4. Бериллий вступает в реакцию с газом аммиаком при 500 — 700º С. В результате данной реакции образуется нитрид бериллия и водород:
2.5. Бериллий может вступать в реакцию с оксидами :
В результате взаимодействия бериллия и оксида магния при температуре 1075º С образуется оксид бериллия и магний:
Be + MgO = BeO + Mg
3. Бериллий взаимодействует с органическими веществами :
Бериллий может вступать в реакцию с ацетиленом при 400 — 450º С, образуя карбид бериллия и водород:
БЕРИЛЛИЙ — металл настоящего и будущего
Бериллий — металл удивительный. Скромный (долго прятался в «тени» алюминия и его соединений); уже обнаруженный, был объявлен непригодным к использованию. Хотя гениальный Ферсман назвал «скромника» металлом будущего.
История
Алюминий и бериллий — близнецы по свойствам. Даже сейчас с современными приборами и методами сложно отличить этих «братьев». Удивительно, что Луи Воклену в конце XVIII удалось открыть новый окисел. Через 30 лет получили некоторое количество нового металла, сильно загрязненного примесями.
А 70 лет спустя методом электролиза получили чистый продукт. На этом история с поиском и выделением чистого бериллия прекратилась. Ведь о нем сказали, что «практического применения не имеет».
Свойства
Бериллий (Beryllium, в формулах Be) — щелочноземельный металл, в таблице Менделеева имеет атомный № 4.
Имеет один стабильный изотоп 9Be.
Свойства атома | |
---|---|
Название, символ, номер | Бери́ллий / Beryllium (Be), 4 |
Атомная масса (молярная масса) | 9,012182(3)[1] а. е. м. (г/моль) |
Электронная конфигурация | [ He ] 2s² |
Радиус атома | 112 пм |
Химические свойства | |
Ковалентный радиус | 90 пм |
Радиус иона | 35 (+2e) пм |
Электроотрицательность | 1,57 (шкала Полинга) |
Электродный потенциал | −1,69 В |
Степени окисления | +2 ; 0 |
Энергия ионизации (первый электрон) | 898,8 (9,32) кДж/моль (эВ) |
Термодинамические свойства простого вещества | |
Плотность (при н. у.) | 1,848 г/см³ |
Температура плавления | 1551 K (1278 °C, 2332 °F) |
Температура кипения | 3243 K (2970 °C, 5378 °F) |
Уд. теплота плавления | 12,21 кДж/моль |
Уд. теплота испарения | 309 кДж/моль |
Молярная теплоёмкость | 16,44[2] Дж/(K·моль) |
Молярный объём | 5,0 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | гексагональная |
Параметры решётки | a=2,286 Å; c=3,584 Å |
Отношение c/a | 1,567 |
Температура Дебая | 1000 K |
Прочие характеристики | |
Теплопроводность | (300 K) 201 Вт/(м·К) |
Номер CAS | 7440-41-7 |
Минералы, добыча
Месторождениями бериллиевых минералов обладают:
В России добычу этих минералов можно производить в Свердловской области и Бурятии.
В природе около 30 бериллийсодержащих минералов:
Россия утратила сырьевую и производственную независимость в производстве бериллиевых концентратов.
Производство
Способы получения чистого бериллия предполагают использование сложных и грязных процессов.
На мировом рынке три страны с полным циклом производства:
Применение
Чистый бериллий имеет стратегическое значение.
Применение этого легкого металла оправдано в аэрокосмической, электронной промышленности, в медицине и ВПК.
Бериллий применяют для:
Плюсы и минусы
Достоинства | Недостатки |
Относится к самым легким и прочным элементам | Хрупкость металла |
Самое низкое (среди металлов) сечение захвата нейтронов, высокое значение их отражения | Вредность, токсичность бериллия и его пыли |
Бериллиевая бронза не искрит; редкое качество, используют для работы в шахтах.
Цена металлического бериллия зависит от продавца: от 7 070 до 10 800 рублей за килограмм.
Стоимость соединений (рублей за килограмм):
Мне 42 года и я специалист в области минералогии. Здесь на сайте я делюсь информацией про камни и их свойства — задавайте вопросы и пишите комментарии!
Бериллий
(молярная масса)
(первый электрон)
Бериллий (Be, лат. beryllium ) — химический элемент второй группы, второго периода периодической системы с атомным номером 4. Как простое вещество представляет собой относительно твёрдый металл светло-серого цвета, имеет очень высокую стоимость. Высокотоксичен.
Содержание
История
Открыт в 1798 году французским химиком Луи Никола Вокленом, который назвал его глюцинием. Современное название элемент получил по предложению химиков немца Клапрота и шведа Экеберга.
Большую работу по установлению состава соединений бериллия и его минералов провёл русский химик Иван Авдеев. Именно он доказал, что оксид бериллия имеет состав BeO, а не Be2O3, как считалось ранее.
В свободном виде бериллий был выделен в 1828 году французским химиком Антуаном Бюсси и независимо от него немецким химиком Фридрихом Вёлером. Чистый металлический бериллий был получен в 1898 году французским физиком Полем Лебо с помощью электролиза расплавленных солей.
Происхождение названия
Название бериллия произошло от названия минерала берилла (др.-греч. βήρυλλος ) (силикат бериллия и алюминия, Be3Al2Si6O18), которое восходит к названию города Белур (Веллуру) в Южной Индии, недалеко от Мадраса; с древних времён в Индии были известны месторождения изумрудов — разновидности берилла. Из-за сладкого вкуса растворимых в воде соединений бериллия элемент вначале называли «глиций» (др.-греч. γλυκύς — сладкий).
Нахождение в природе
Среднее содержание бериллия в земной коре 3,8 г/т и увеличивается от ультраосновных (0,2 г/т) к кислым (5 г/т) и щелочным (70 г/т) породам. Основная масса бериллия в магматических породах связана с плагиоклазами, где бериллий замещает кремний. Однако наибольшие его концентрации характерны для некоторых тёмноцветных минералов и мусковита (десятки, реже сотни г/т). Если в щелочных породах бериллий почти полностью рассеивается, то при формировании кислых горных пород он может накапливаться в постмагматических продуктах постколлизионных и анорогенных гранитоидов — пегматитах и пневматолито-гидротермальных телах. В кислых пегматитах образование значительных скоплений бериллия связано с процессами альбитизации и мусковитизации. В пегматитах бериллий образует собственные минералы, но часть его (ок. 10 %) находится в изоморфной форме в породообразующих и второстепенных минералах (микроклине, альбите, кварце, слюдах, и др.). В щелочных пегматитах бериллий устанавливается в небольших количествах в составе редких минералов: эвдидимита, чкаловита, анальцима и лейкофана, где он входит в анионную группу. Постмагматические растворы выносят бериллий из магмы в виде фторсодержащих эманаций и комплексных соединений в ассоциации с вольфрамом, оловом, молибденом и литием.
Содержание бериллия в морской воде чрезвычайно низкое — 6⋅10 −7 мг/л.
Известно более 30 собственно бериллиевых минералов, но только 6 из них считаются более-менее распространёнными: берилл, хризоберилл, бертрандит, фенакит, гельвин, даналит. Промышленное значение имеет в основном берилл, в России (Республика Бурятия) разрабатывается фенакит-бертрандитовое Ермаковское месторождение.
Разновидности берилла считаются драгоценными камнями: аквамарин — голубой, зеленовато-голубой, голубовато-зелёный; изумруд — густо-зелёный, ярко-зелёный; гелиодор — жёлтый; известны ряд других разновидностей берилла, различающихся окраской (темно-синие, розовые, красные, бледно-голубые, бесцветные и др.). Цвет бериллу придают примеси различных элементов.
Месторождения
Месторождения минералов бериллия присутствуют на территории Бразилии, Аргентины, Африки, Индии, Казахстана, России (Ермаковское месторождение в Бурятии, Малышевское месторождение в Свердловской области, пегматиты восточной и юго-восточной части Мурманской области) и др.
Физические свойства
Химические свойства
Для бериллия характерны две степени окисления +1 и +2. Гидроксид бериллия (II) амфотерен, причём как основные (с образованием Be 2+ ), так и кислотные (с образованием [Be(OH)4] 2− ) свойства выражены слабо. Степень окисления +1 у бериллия была получена при исследовании процессов испарения бериллия в вакууме в тиглях из оксида бериллия BeO с образованием летучего оксида Be2O в результате сопропорционирования BeO + Be = Be2O.
По многим химическим свойствам бериллий больше похож на алюминий, чем на находящийся непосредственно под ним в таблице Менделеева магний (проявление «диагонального сходства»).
Металлический бериллий относительно мало реакционноспособен при комнатной температуре. В компактном виде он не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600 °C. Порошок бериллия при поджигании горит ярким пламенем, при этом образуются оксид и нитрид. Галогены реагируют с бериллием при температуре выше 600 °C, а халькогены требуют ещё более высокой температуры. Аммиак взаимодействует с бериллием при температуре выше 1200 °C с образованием нитрида Be3N2, а углерод даёт карбид Ве2С при 1700 °C. С водородом бериллий непосредственно не реагирует.
Бериллий легко растворяется в разбавленных водных растворах кислот (соляной, серной, азотной), однако холодная концентрированная азотная кислота пассивирует металл. Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов:
При проведении реакции с расплавом щелочи при 400—500 °C образуются бериллаты:
Изотопы бериллия
Происхождение бериллия
В процессах как первичного, так и звёздного нуклеосинтеза рождаются лишь лёгкие нестабильные изотопы бериллия. Стабильный изотоп 9 Be может появиться как в звёздах, так и в межзвёздной среде в результате распада более тяжелых ядер, бомбардируемых космическими лучами.
Получение
В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия:
BeCl2 + 2K ⟶ Be + 2KCl
В настоящее время бериллий получают, восстанавливая фторид бериллия магнием:
Производство и применение
По состоянию на 2000 год основными производителями бериллия являлись: США (с большим отрывом), а также Китай, Казахстан. В 2014 году произвела первый образец бериллия и Россия. В России планируется строительство нового комбината по производству бериллия к 2019 году На долю остальных стран приходилось менее 1 % мировой добычи. Всего в мире производится 300 тонн бериллия в год (2016 год).
Легирование сплавов
Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твёрдость и прочность сплавов, коррозионную устойчивость поверхностей, изготовленных из этих сплавов изделий. В технике довольно широко распространены бериллиевые бронзы типа BeB (пружинные контакты). Добавка 0,5 % бериллия в сталь позволяет изготовить пружины, которые остаются упругими до температуры красного каления. Эти пружины способны выдерживать миллиарды циклов значительной по величине нагрузки. Кроме того, бериллиевая бронза не искрится при ударе о камень или металл. Один из сплавов носит собственное название рандоль. Благодаря его сходству с золотом рандоль называют «цыганским золотом».
Рентгенотехника
Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубок (через которые излучение выходит наружу) и окошки рентгеновских и широкодиапазонных гамма-детекторов, через которые излучение проникает в детектор.
Ядерная энергетика
Оксид бериллия наряду с металлическим бериллием служит в атомной технике как более эффективный замедлитель и отражатель нейтронов, чем чистый бериллий. Кроме того, оксид бериллия в смеси с окисью урана применяется в качестве очень эффективного ядерного топлива. Фторид бериллия в сплаве с фторидом лития применяется в качестве теплоносителя и растворителя солей урана, плутония, тория в высокотемпературных жидкосолевых атомных реакторах.
Фторид бериллия используется в атомной технике для варки стекла, применяемого для регулирования небольших потоков нейтронов. Самый технологичный и качественный состав такого стекла − (BeF2 — 60 %, PuF4 — 4 %,AlF3 — 10 %, MgF2 — 10 %, CaF2 — 16 %). Этот состав наглядно показывает один из примеров применения соединений плутония в качестве конструкционного материала (частичное).
Лазерные материалы
В лазерной технике находит применение алюминат бериллия для изготовления твердотельных излучателей (стержней, пластин).
Аэрокосмическая техника
В производстве тепловых экранов и систем наведения с бериллием не может конкурировать практически ни один конструкционный материал. Конструкционные материалы на основе бериллия обладают одновременно и лёгкостью, и прочностью, и стойкостью к высоким температурам. Будучи в 1,5 раза легче алюминия, эти сплавы в то же время прочнее многих специальных сталей. Налажено производство бериллидов, применяемых как конструкционные материалы для двигателей и обшивки ракет и самолётов, а также в атомной технике.
Ракетное топливо
Стоит отметить высокую токсичность и высокую стоимость металлического бериллия, и в связи с этим приложены значительные усилия для выявления бериллийсодержащих топлив, имеющих значительно меньшую общую токсичность и стоимость. Одним из таких соединений бериллия является гидрид бериллия.
Огнеупорные материалы
Оксид бериллия является наиболее теплопроводным из всех оксидов, его теплопроводность при комнатной температуре выше, чем у большинства металлов и почти всех неметаллов (кроме алмаза и карбида кремния). Он служит высокотеплопроводным высокотемпературным изолятором и огнеупорным материалом для лабораторных тиглей и в других специальных случаях.
Акустика
Ввиду своей легкости и высокой твёрдости бериллий успешно применяется в качестве материала для электродинамических громкоговорителей. Однако, его высокая стоимость, трудность обработки (из-за хрупкости) и токсичность (при несоблюдении технологии обработки) делают возможным применение динамиков с бериллием только в дорогих профессиональных аудиосистемах. Из-за высокой эффективности бериллия в акустике некоторые производители в целях улучшения продаж заявляют о применении бериллия в своих продуктах, в то время как это не так.
Большой Адронный Коллайдер
В точках столкновения пучков на Большом Адронном Коллайдере (БАК) вакуумная труба сделана из бериллия. Он одновременно практически не взаимодействует с частицами, произведенными в столкновениях (которые регистрируют детекторы), но при этом достаточно прочен.
Биологическая роль и физиологическое действие
В живых организмах бериллий не несёт какой-либо значимой биологической функции. Однако бериллий может замещать магний в некоторых ферментах, что приводит к нарушению их работы. Ежедневное поступление бериллия в организм человека с пищей составляет около 0,01 мг.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |||||||||||||||
1 | H | He | ||||||||||||||||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||
6 | Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
7 | Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og |
8 | Uue | Ubn | Ubu | Ubb | Ubt | Ubq | Ubp | Ubh | Ubs |
Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au