Что такое бэр в радиации
Основы радиационной безопасности,единицы
Теперь это актуально: 100 Бэр = 100 Рентген = 100 Рад = 1 Зиверту = 1 Грэю Микро(мк,µ)=0,000 001; Милли(м,m)=0,001 Нано(н)=0,000 000 001
1 Зв = 1 Гр = 100 рад
1 Зв = 100 рентген(вообще,
102) Чем «измеряется радиация» Активность вещества, то есть его мощность. Смысл величины — сколько полураспадов делается в 1 секунду. Измеряется в Бк (Беккерелях) на кг или м3. Например, нормальная вода имеет активность не выше 100 Бк\час. Международная норма по цезию от 1000 до 10 000 беккерелей на килограмм пищевых продуктов, в наших нормах радиационной безопасности они такие же. Так что японцам волноваться не стоит, а нам и подавно». Экспозиционная доза. Полураспады создают ионизационное излучение. Мерой ионизационного воздействия этого излучения на вещество и называется экспозиционной дозой. Измеряется в рентгенах. Просто в рентгенах, без «в час». Простыми словами, насколько сильно летит уран в атмосферу и портит вокруг себя воздух. Мощность экспозиционной дозы. А эта хрень имеет уже более практический смысл. Означает величину экспозиционной дозы за единицу времени – т.е. простыми словами «сколько радиации выдается в час». Измеряется рентгенами в час. Эквивалентная и эффективная доза. Несмотря на то, что это два разных понятия, я объединил их в один пункт. Простыми словами это не объяснить, но на пальцах эти величины обозначают биологическую воздействие «величины радиации» на организм человека. То есть, сколько радиации впитал организм. Измеряется в Зивертах. Есть еще внесистемная единица Бэр (равная 1бэр=0,01 Зв), чернобыльцам к примеру в военных билетах указывали сколько они получили в Бэрах. Мощность эквивалентной и эффективной доз – это сколько зивертов в час или год воспринимает наше тело. Данные Википедии 26 апреля 1986г произошла Чернобыльская катастрофа. город Припять-город Чернобыльских энергетиков,обслуживающих станцию.Расположен в 3 км от станции. 26 апреля к 21:00 гамма-фон на улицах Припяти (3км от станции) достигал 140 мР/ч (примерно 1,3 мЗв/ч), 27 апреля к 7:00 утра 360 мР/ч ( то бишь 3,4мЗ\ч) В Киеве (110км от станции) к 16 мая доходил до 0,8 мР/ч.. Общее число жителей Припяти составило 47 тыс. человек, из них 17 тыс. детей и 80 лежачих больных. 27 апреля утром эвакуация началась. К 18 часам эвакуация была завершена В первые дни аварию начали ликвидировать несколько тысяч человек Ликвидаторы работали в опасной зоне посменно: те, кто набрал максимально допустимую дозу радиации, уезжали, а на их место приезжали другие. Основная часть работ была выполнена в 1986—1987 годах, в них приняли участие примерно 240 000 человек. Общее количество ликвидаторов (включая последующие годы) составило около 600 000. Гринпис и Международная организация « Врачи против ядерной войны » утверждают, что в результате аварии только среди ликвидаторов умерли десятки тысяч человек, в Европе зафиксировано 10 000 случаев уродств у новорождённых, 10 000 случаев рака щитовидной железы и ожидается ещё 50 000. А вот табличка для переводов зивертов в рентгены/бэры и наоборот. И напоследок, ещё вот такая брошюрка полезная о радиации в качестве ликбеза: http://www.antigreen.org/lib/koshelev/index.html
Воздействие различных доз облучения на человеческий организм
Единицы измерения радиоактивного излучения
Многие сталкиваются с трудностями при определении единиц измерения радиоактивного излучения и практическом использовании полученных значений. Сложности возникают не только из-за их большого разнообразия: беккерели, кюри, зиверты, рентгены, рады, кулоны, ремы и др., но и из-за того, что не все используемые величины связаны между собой кратными соотношениями и при необходимости могут переводиться из одних в другие.
Как разобраться?
Все довольно просто, если отдельно рассматривать единицы, связанные с радиоактивностью, как физическим явлением, и величины, измеряющие воздействие этого явления (ионизирующего излучения) на живые организмы и окружающую среду. А также, если не забывать о внесистемных единицах и единицах радиоактивности, действующих в системе СИ (Международная система единиц), которая была введена в 1982 году и обязательна к использованию во всех учреждениях и предприятиях.
Внесистемная (старая) единица измерения радиоактивности
Кюри (Ки) – первая единица радиоактивности, измеряющая активность 1 грамма чистого радия. Введенная с 1910 года и названная в честь французских ученых К. и М. Кюри, она не связана с какой-либо системой измерения и в последнее время утратила свое практическое значение. В России же кюри, несмотря на действующую систему СИ, разрешенная к использованию в области ядерной физики и медицины без срока ограничения.
Единицы радиоактивности в системе СИ
В СИ используется другая величина – беккерель (Бк), которая определяет распад одного ядра в секунду. Беккерель более удобен в расчетах, чем кюри, поскольку имеет не такие большие значения и позволяет без сложных математических действий по радиоактивности радионуклида определить его количество. Высчитав количество распадов 1 г радона, легко установить соотношение между Ки и Бк: 1 Ки = 3,7*1010 Бк, а также определить активность любого другого радиоактивного элемента.
Измерение ионизирующих излучений
С открытием радия было обнаружено, что излучение радиоактивных веществ влияет на живые организмы и вызывает биологические эффекты, сходные с действием рентгеновского облучения. Появилось такое понятие, как доза ионизирующего излучения – величина, которая позволяет оценивать воздействие радиационного облучения на организмы и вещества. В зависимости от особенностей облучения, выделяют эквивалентную, поглощенную и экспозиционную дозы:
В системе СИ используется зиверт – эквивалентная доза конкретного ионизирующего излучения, поглощенная одним килограммом биологической ткани. Для пересчета греев в зиверты следует учесть коэффициент относительной биологической активности (ОБЭ), который равен:
Бэр (биологический эквивалент рентгена) или рем (в английском языке rem – Roentgen Equivalent of Man) – внесистемная единица эквивалентной дозы. Поскольку альфа-излучение наносит больший ущерб, то для получения результата в ремах, необходимо измеренную радиоактивность в радах умножить на коэффициент, равный двадцати. При определении гамма- или бета-излучения перевод величин не требуется, поскольку ремы и рады равны друг другу.
Чему соответствуют различные дозы облучения в зивертах.
– 0,005 мЗв (0,5 мбэр) – ежедневный в течение года трехчасовой просмотр телепередач;
– 10 мкЗв (0,01 мЗв или 1 мбэр) – перелет самолетом на расстояние 2400 км;
– 1 мЗв (100 мбэр) – фоновое облучение за год;
– 5 мЗв (500 мбэр) – допустимое облучение персонала в нормальных условиях;
– 0, 03 Зв (3 бэр) – облучение при рентгенографии зубов (местное);
– 0, 05 Зв (5 бэр) – допустимое облучение персонала атомных электростанций в нормальных условиях за год;
– 0,1 Зв (10 бэр) – допустимое аварийное облучение населения (разовое);
– 0,25 Зв (25 бэр) – допустимое облучение персонала (разовое);
– 0,3 Зв (30 бэр) – облучение при рентгеноскопии желудка (местное);
– 0,75 Зв (75 бэр) – кратковременное незначительное изменение состава крови;
– 1 Зв (100 бэр) – нижний уровень развития легкой степени лучевой болезни;
– 4,5 Зв (450 бэр) – тяжелая степень лучевой болезни (погибает 50% облученных);
– 6 – 7 Зв (600 – 700 бэр) и более – однократно полученная доза считается абсолютно смертельной. (Вместе с тем в медицинской практике имеются случаи выздоровления больных, которые получили радиационное облучение в 6 – 7 Зв (600 – 700 бэр)).
Наиболее вероятные эффекты при различных значениях доз облучения и мощностей дозы, отнесенные к целому телу
Между 2000 и 10000 мЗв (2 – 10 Зв) ‑ При кратковременном облучении причинили бы острую лучевую болезнь с вероятным фатальным исходом
1000 мЗв (1 Зв) ‑ При кратковременном облучении, вероятно, причинили бы временное недомогание, но не привели бы к смерти. Поскольку доза облучения накапливается в течение времени, то облучение в 1000 мЗв, вероятно, привело бы к риску появления раковых заболеваний многими годами позже
50 мЗв/в год ‑ Самая низкая мощность дозы, при которой возможно появление раковых заболеваний. Облучение при дозах выше этой приводит к увеличению вероятности заболевания раком
20 мЗв/в год ‑ Усредненный более чем за 5 лет – предел для персонала в ядерной и горнодобывающих отраслях промышленности.
10 мЗв/в год ‑ Максимальный уровень мощности дозы, получаемый шахтерами, добывающими уран
3 – 5 мЗв/в год ‑ Обычная мощность дозы, получаемая шахтерами, добывающими уран
3 мЗв/в год ‑ Нормальный радиационный фон от естественных природных источников ионизирующего излучения, включая мощность дозы почти в 2 мЗв/в год от радона в воздухе. Эти уровни радиации близки к минимальным дозам, получаемым всеми людьми на планете.
0.3 – 0.6 мЗв/в год ‑ Типичный диапазон мощности дозы от искусственных источников излучения, главным образом медицинских
0.05 мЗв/в год ‑ Уровень фоновой радиации, требуемый по нормам безопасности, вблизи ядерных электростанций. Фактическая доза вблизи ядерных объектов намного меньше.
Уровни радиоактивного облучения. Справка
Уровень радиации на входе в аварийную АЭС «Фукусима-1» более чем в два раза превышает максимум, когда-либо зарегистрированный на ней, сообщило в понедельник агентство Киодо со ссылкой на заявление представителей компании-оператора АЭС Tokyo Electric Company (TEPCO).
Зиверт (Зв) ‑ единица эквивалентной дозы излучения в системе СИ, равная эквивалентной дозе в случае, если доза поглощенного ионизирующего излучения, умноженная на условный безразмерный фактор, составляет 1 Дж/кг.
Так как различные виды излучения вызывают разное воздействие на биологическую ткань, то используется взвешенная поглощенная доза излучения, называемая также эквивалентной дозой; она получается путем модифицирования поглощенной дозы за счет ее умножения на условный безразмерный фактор, принятый Международной комиссией по защите от рентгеновского излучения.
В настоящее время зиверт все больше вытесняет выходящий из употребления физический эквивалент рентгена (ФЭР).
1 Зв = 100 бэр, где бэр – единица эквивалентной дозы, под которой понимается поглощенная доза любого вида ионизирующего излучения, имеющая такую же биологическую эффективность, как 1 рад рентгеновского излучения со средней удельной ионизацией 100 пар ионов на 1 мкм пути в воде.
– 0,005 мЗв (0,5 мбэр) – ежедневный в течение года трехчасовой просмотр телепередач;
– 10 мкЗв (0,01 мЗв или 1 мбэр) – перелет самолетом на расстояние 2400 км;
– 1 мЗв (100 мбэр) – фоновое облучение за год;
– 5 мЗв (500 мбэр) – допустимое облучение персонала в нормальных условиях;
– 0, 03 Зв (3 бэр) – облучение при рентгенографии зубов (местное);
– 0, 05 Зв (5 бэр) – допустимое облучение персонала атомных электростанций в нормальных условиях за год;
– 0,1 Зв (10 бэр) – допустимое аварийное облучение населения (разовое);
– 0,25 Зв (25 бэр) – допустимое облучение персонала (разовое);
– 0,3 Зв (30 бэр) – облучение при рентгеноскопии желудка (местное);
– 0,75 Зв (75 бэр) – кратковременное незначительное изменение состава крови;
– 1 Зв (100 бэр) – нижний уровень развития легкой степени лучевой болезни;
– 4,5 Зв (450 бэр) – тяжелая степень лучевой болезни (погибает 50% облученных);
– 6 – 7 Зв (600 – 700 бэр) и более – однократно полученная доза считается абсолютно смертельной. (Вместе с тем в медицинской практике имеются случаи выздоровления больных, которые получили радиационное облучение в 6 – 7 Зв (600 – 700 бэр)).
Наиболее вероятные эффекты при различных значениях доз облучения и мощностей дозы, отнесенные к целому телу
Между 2000 и 10000 мЗв (2 – 10 Зв) ‑ При кратковременном облучении причинили бы острую лучевую болезнь с вероятным фатальным исходом
1000 мЗв (1 Зв) ‑ При кратковременном облучении, вероятно, причинили бы временное недомогание, но не привели бы к смерти. Поскольку доза облучения накапливается в течение времени, то облучение в 1000 мЗв, вероятно, привело бы к риску появления раковых заболеваний многими годами позже
50 мЗв/в год ‑ Самая низкая мощность дозы, при которой возможно появление раковых заболеваний. Облучение при дозах выше этой приводит к увеличению вероятности заболевания раком
20 мЗв/в год ‑ Усредненный более чем за 5 лет – предел для персонала в ядерной и горнодобывающих отраслях промышленности.
10 мЗв/в год ‑ Максимальный уровень мощности дозы, получаемый шахтерами, добывающими уран
3 – 5 мЗв/в год ‑ Обычная мощность дозы, получаемая шахтерами, добывающими уран
3 мЗв/в год ‑ Нормальный радиационный фон от естественных природных источников ионизирующего излучения, включая мощность дозы почти в 2 мЗв/в год от радона в воздухе. Эти уровни радиации близки к минимальным дозам, получаемым всеми людьми на планете.
0.3 – 0.6 мЗв/в год ‑ Типичный диапазон мощности дозы от искусственных источников излучения, главным образом медицинских
0.05 мЗв/в год ‑ Уровень фоновой радиации, требуемый по нормам безопасности, вблизи ядерных электростанций. Фактическая доза вблизи ядерных объектов намного меньше.
Материал подготовлен на основе информации открытых источников
Что такое бэр в радиации
Моя паранойя наконец вышла на новый уровень. В неравной борьбе я таки победил Жабу, отсчитал 532 американских бумажки из своих сбережений и стал счастливым обладателем прибора с интригующим названием «дозиметр-радиометр». Ознакомиться с техническими характеристиками и описанием прибора вы можете на сайте изготовителя.
Притащил добычу домой, включил. Работает! Попискивает, цифирьки какие-то мне показывает. Радости моей не было предела — теперь я чувствовал себя матёрым сталкером, держащим руку на пульсе радиационного фона. Но через пару часов первая волна эйфории прошла, поскольку понять результаты показаний я не мог… Прибор исправно пищал, обозначая каждый запеленгированый гамма-фотон. Я даже попервах удивился, что они так часто пролетают! Пытался взглядом найти тот предмет, который в моей комнате так фонил. Обошёл квартиру, тыкая дозиметром в каждый угол… Пока не понял, что это и есть то самое «фоновое излучение». Понял, что пришла пора почитать инструкцию…
Инструкция по эксплуатации оказалась толщиной в сантиметр! Я добросовестно проштудировал её от корки до корки, но почувствовал себя ещё тупее, чем до чтения. Страницы изобировали цифрами и «заклинаниями» на подобие «микрозиверт/час».
Я понял, что пока я не изучу хотя бы азы науки измерения ионизирующего излучения, дозиметр в моих руках так и останется безумно дорогим реквизитом для игры в Сталкера. Перелопачивая в сети горы информации о интересующей меня теме, я видел очень много этих же и других подобных заклинаний, но чем дальше искал — тем больше стал запутываться в дебрях этих единиц измерений. Но когда я уже начал было терять интерес к моим изысканиям, я нашёл в сети вот эту статью. Там в доступной и понятной форме описаны те самые азы. Статья настолько мне понравилась, что я сперва подумал скопипастить её сюда. Но решил всё-таки сперва распечатать на бумаге, поработать над текстом, и аж тогда своими словами поделиться с вами тем, что сам понял.
Итак, насколько мне удалось узнать, вся эта путаница с таким количеством единиц измерений связана с тем, что некоторые из них устарели и были заменены новыми. Но поскольку большое количество измерительных приборов отградуировано под устаревшие единицы, они порой используются наравне с новыми. По этому, порой бывает трудно переводить постсоветские рентгены, бэры и рады, знакомые нам по плакатам ГО, в новомодные зиверты и грэи. Поскольку в дозиметрах всё чаще встречаются системные единицы измерения, будем отталкиваться от них.
Попробую выдать вам результаты деятельности моего закипающего мозга. Доза бывает экспозиционная (такая, которая рассчитана из степени ионизации воздуха изотопом) и поглощённая (которая являет собой величину энергии, которую поглотило вещество от излучения). Экспозиционную дозу меряли рентгенами (несистемная единица) и кулонами на килограм (системная). Но дозиметрия работает фактически со значениями поглощённой дозы, поскольку для нас более важно влияние излучённой энергии на вещество, а не просто количество излучённой энергии.
Поглощённую дозу меряют в грэях. «Советский» аналог грэя — рад. Таким образом:
1 грэй (русс.-Гр; англ.-Gy) = 100 рад
Грэями обозначают дозу, поглощённую произвольным веществом. Для биологического вещества надо дополнительно учитывать два фактора: эквивалентность влияния и эфективность его. Эквивалентность указывает на разную вредность разных типов излучения (альфа-частицы в двадцать раз вреднее гамма-фотонов). Эфективность подразумевает разную степень восприимчивости разных тканей организма к ионизирующему излучению (клетки спинного мозга намного более чувствительны к радиации, чем клетки печени).
Поглощённую эквивалентную эфективную дозу измеряют в зивертах. Устаревший аналог зиверта — бэр (биологический эквивалент рентгена). Их соотношение:
1 зиверт (русс.-Зв; англ.-Sv) = 100 бэр (англ.-rem)
Фактически, если имеется ввиду влияние только гамма- или рентгеновского излучения (их коефициент эквивалентности равен единице) на человека, то можно с некоторой погрешностью сказать:
1 Гр = 1 Зв = 100 бэр = 100 рад
*Эта погрешность составляет 15-20% и обусловлена тем, что экспозиционная доза 1 рентген соответствует поглощённой дозе в воздухе около 0,85 рад.
Есть ещё одна муть. Она называется мощностью поглощённой дозы. Она показывает текущую дозу, делённую на единицу времени.
В следующей статье попробую рассказать уже более интересные вещи. Речь пойдёт о дозах, их предельных показателях и последствиях их превышения.