Что такое базис системы векторов
Базис системы векторов
Определение. Максимальная линейно независимая подсистема S’ системы векторов S называется базисом системы S.
Ранее было доказано, что всякая максимально линейно независимая подсистема n-мерного пространства состоит из n векторов. Отсюда можно сделать выводы:
1) базис любой системы векторов пространства Rn всегда содержит не более чем n векторов;
2) в любой системе векторов может содержаться несколько базисов, однако число векторов в каждом базисе одно и тоже;
3) любой базис пространства Rn содержит n векторов;
4) любая линейно независимая система из n векторов является базисом пространства Rn.
Примером базиса пространства Rn могут служить векторы
Для нахождения базиса системы векторов удобно использовать полученные ранее результаты:
составляем из координатных строк данных векторов матрицу (не нарушая общности доказательства, можем считать, что координатные строки векторов являются строками матрицы); приводим матрицу к диагональному виду и вычисляем ее ранг. Ранг матрицы равен числу векторов базиса. Если в ходе преобразований матрицы не менять местами строки и не производить действий над столбцами, тогда те векторы, в координатных строках которых после приведения матрицы к диагональному виду остались ненулевые элементы, и составляют один из базисов системы векторов-строк.
Пример. Найти базис системы векторов
Составляем из векторов-строк матрицу А и приводим ее к диагональному виду
,
rang A=3, базис образуют векторы a1, a2, a4.
Векторное пространство: размерность и базис, разложение вектора по базису
Введем некоторые определения.
Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.
Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.
Переставив местами в исходной системе другие векторы, получим еще один базис.
Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.
Рассмотрим применение данной теории на конкретных примерах.
Исходные данные: векторы
Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.
Решение
Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.
Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.
Ответ: указанные векторы являются базисом векторного пространства.
Исходные данные: векторы
Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.
Решение
Ответ: указанная система векторов не является базисом.
Исходные данные: векторы
Могут ли они являться базисом четырехмерного пространства?
Решение
Cоставим матрицу, используя в качестве строк координаты заданных векторов
A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7
По методу Гаусса определим ранг матрицы:
A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7
Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.
Ответ: заданные векторы являются базисом четырехмерного пространства.
Исходные данные: векторы
Составляют ли они базис пространства размерностью 4?
Решение
Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.
Ответ: нет, не составляют.
Разложение вектора по базису
Таким образом, мы пришли к формулировке важнейшей теоремы:
Докажем эту теорему:
Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:
Вектор x → будет представлен следующим образом:
Запишем это выражение в координатной форме:
Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x
Матрица этой системы будет иметь следующий вид:
e 1 ( 1 ) e 1 ( 2 ) ⋯ e 1 ( n ) e 2 ( 1 ) e 2 ( 2 ) ⋯ e 2 ( n ) ⋮ ⋮ ⋮ ⋮ e n ( 1 ) e n ( 2 ) ⋯ e n ( n )
Применим рассмотренную теорию на конкретном примере.
Исходные данные: в базисе трехмерного пространства заданы векторы
Решение
Используем метод Гаусса:
Пусть в базисе вектор x → имеет координаты x
Применим значения согласно условиям задачи:
Решим систему уравнений методом Крамера:
Связь между базисами
Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:
Указанные системы являются также базисами заданного пространства.
n ( 1 ) e 1 ( n ) с 2 ( 1 ) = c
n ( 1 ) e 2 ( n ) ⋮ с n ( 1 ) = c
В виде матрицы систему можно отобразить так:
n ( 1 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )
Сделаем по аналогии такую же запись для вектора c ( 2 ) :
n ( 2 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )
И, далее действуя по тому же принципу, получаем:
n ( n ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )
Матричные равенства объединим в одно выражение:
c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n ) = c
n ( n ) · e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n )
Оно и будет определять связь векторов двух различных базисов.
e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n ) = e
n ( n ) · c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n )
Дадим следующие определения:
Линейная зависимость. Базис системы векторов
В геометрии вектор понимается как направленный отрезок, причем векторы, полученные один из другого параллельным переносом, считаются равными. Все равные векторы рассматриваются как один и тот же вектор. Начало вектора можно поместить в любую точку пространства или плоскости.
Если в пространстве заданы координаты концов вектора : A(x1, y1, z1), B(x2, y2, z2), то
= (x2 – x1, y2 – y1, z2 – z1). (1)
Аналогичная формула имеет место на плоскости. Это значит, что вектор можно записать в виде координатной строки. Операции над векторами, – сложение и умножение на число, над строками выполняются покомпонентно. Это дает возможность расширить понятие вектора, понимая под вектором любую строку чисел. Например, решение системы линейных уравнений, а также любой набор значений переменных системы, можно рассматривать как вектор.
Над строками одинаковой длины операция сложения выполняется по правилу
Умножение строки на число выполняется по правилу
Множество векторов-строк заданной длины n с указанными операциями сложения векторов и умножения на число образует алгебраическую структуру, которая называется n-мерным линейным пространством.
Система векторов называется линейно зависимой, если существует ее линейная комбинация, равная
, в которой есть хотя бы один ненулевой коэффициент.
Система векторов называется линейно независимой, если в любой ее линейной комбинации, равной
, все коэффициенты нулевые.
Таким образом, решение вопроса о линейной зависимости системы векторов сводится к решению уравнения
x1 + x2
+ … + xm
=
. (4)
Если у этого уравнения есть ненулевые решения, то система векторов линейно зависима. Если же нулевое решение является единственным, то система векторов линейно независима.
Для решения системы (4) можно для наглядности векторы записать не в виде строк, а в виде столбцов.
Тогда, выполнив преобразования в левой части, придем к системе линейных уравнений, равносильной уравнению (4). Основная матрица этой системы образована координатами исходных векторов, расположенных по столбцам. Столбец свободных членов здесь не нужен, так как система однородная.
Базисом системы векторов (конечной или бесконечной, в частности, всего линейного пространства) называется ее непустая линейно независимая подсистема, через которую можно выразить любой вектор системы.
Пример 1.5.2.Найти базис системы векторов = (1, 2, 2, 4),
= (2, 3, 5, 1),
= (3, 4, 8, –2),
= (2, 5, 0, 3) и выразить остальные векторы через базис.
Решение. Строим матрицу, в которой координаты данных векторов располагаем по столбцам. Это матрица системы x1 + x2
+ x3
+ x4
=.
. Приводим матрицу к ступенчатому виду:
Базис данной системы векторов образуют векторы ,
,
, которым соответствуют ведущие элементы строк, выделенные кружками. Для выражения вектора
решаем уравнение x1
+ x2
+ x4
=
. Оно сводится к системе линейных уравнений, матрица которой получается из исходной перестановкой столбца, соответствующего
, на место столбца свободных членов. Поэтому при приведении к ступенчатому виду над матрицей будут сделаны те же преобразования, что выше. Значит, можно использовать полученную матрицу в ступенчатом виде, сделав в ней необходимые перестановки столбцов: столбцы с кружками помещаем слева от вертикальной черты, а столбец, соответствующий вектору
, помещаем справа от черты.
= –
+ 2
.
Замечание. Если требуется выразить через базис несколько векторов, то для каждого из них строится соответствующая система линейных уравнений. Эти системы будут отличаться только столбцами свободных членов. При этом каждая система решается независимо от остальных.
У п р а ж н е н и е 1.4. Найти базис системы векторов и выразить остальные векторы через базис:
а) = (1, 3, 2, 0),
= (3, 4, 2, 1),
= (1, –2, –2, 1),
= (3, 5, 1, 2);
б) = (2, 1, 2, 3),
= (1, 2, 2, 3),
= (3, –1, 2, 2),
= (4, –2, 2, 2);
в) = (1, 2, 3),
= (2, 4, 3),
= (3, 6, 6),
= (4, –2, 1);
= (2, –6, –2).
Прямые на плоскости
Задача аналитической геометрии – применение к геометрическим задачам координатного метода. Тем самым задача переводится в алгебраическую форму и решается средствами алгебры.
В прямоугольной декартовой системе координат каждой точке соответствует пара чисел – ее координаты.
Рассмотрим произвольное уравнение от двух переменных F(x, y) = 0. Изобразив на плоскости точки координаты которых (x, y) удовлетворяют уравнению, получим некоторую фигуру. Исходное уравнение является уравнением этой фигуры. Вместо уравнения может фигурировать неравенство или другое условие – каждое такое условие всегда можно записать в виде уравнения.
Пересечение двух фигур задается системой уравнений, определяющих эти фигуры.
. (1)
Пример 1.4.1.Построить уравнение окружности с центром в точке А(a, b) и радиусом r.
Обозначим произвольную точку окружности через M(x, y), тогда, согласно определению, окружность задается уравнением АМ = r. Воспользовавшись формулой (1), получаем алгебраическое уравнение , или
. (2)
Что такое базис системы векторов
Определение 1. Рангом системы векторов называется максимальное число линейно независимых векторов системы.
.
Определение 2. Базисом системы векторов называется максимальная линейно независимая подсистема данной системы векторов.
Теорема. Любой вектор системы можно представить в виде линейной комбинации векторов базиса системы. (Всякий вектор системы можно разложить по векторам базиса.) Коэффициенты разложения определяются для данного вектора и данного базиса однозначно.
.
Докажем, что разложение вектора по базису единственно. Предположим противное: имеется два разложения вектора по базису.
Вычитая эти равенства, получим
.
Учитывая линейную независимость векторов базиса, получим
.
Следовательно, разложение вектора по базису единственно.
Количество векторов в любом базисе системы одинаково и равно рангу системы векторов.
Пример. Дана система векторов: (2, 0),
(5, 5),
(4, 3).
Базис векторов и линейные действия над векторами аналитическим путём (теория и решение задач)
Базис – это неопределённое количество векторов в векторном пространстве, и абсолютно любой из этих векторов может создавать линейную комбинацию.
Базис векторов
Так, согласно доказательству (3), произвольные три некомпланарные векторы ,
,
, образуют в трёхмерном пространстве базис, по которому, согласно формуле (2) можно единственным образом разложить произвольный вектор
пространства. Векторы
,
,
, которые образуют базис называются базисными.
Будем считать, что базисные векторы ,
,
сведены к точке
.
Числ , про которые упоминалось в разделах “линейно зависимая и линейно независимые системы векторов”, называют координатами вектора в заданном базисе, и пишут:
.
Аналогично, на плоскости базис образуют какие-то два неколлинеарные векторы, а любой некомпланарный с ними может быть разложен по этому базису.
Базисным вектором на прямой линии может быть любой ненулевой вектор.\Согласно свойствам линейных операций над векторами, следует, что при сложении и вычитании векторов в данном базисе прибавляются и отнимаются их соответствующие координаты, а при умножении вектора на число умножаются не это число координаты вектора, то есть:
Линейные действия над векторами аналитическим путём
Если раньше линейные действия над векторами осуществлялись графически, то теперь эти операции можно выполнять аналитически, не пользуясь рисунком. Давайте вспомним и сформулируем линейные действия:
Чтобы прибавлять (отнимать) два вектора, необходимо прибавить (отнять) их соответствующие координаты, то есть:
Найти сумму векторов и
, заданных на плоскости
.
Решение:
Согласно правилу 1 у нас получается:
= (6, 3).
Построим эти векторы: .
Мы видим, что четырёхугольник OABC – параллелограмм. Координаты вектора мы сначала получили путём вычислений (аналитически), без помощи рисунка. Рисунок только подтверждает правило параллелограмма при прибавлении векторов, поэтому дальше рисунками будем пользоваться для наглядности.
Чтобы умножить вектор на число, необходимо каждую из его координат умножить на это число:
Дан вектор Найти
Решение:
Согласна правилу 2 у нас получается:
Геометрическое изображение смотрите на рис. 4.
Два вектора равны, если у них равны соответствующие координаты:
.
Теперь вы понимаете, как получить координаты вектора не только графическим путём, но и аналитическим. В дальнейшем у вас не возникнет сложностей по этому поводу.
Как найти базис вектора, пример
В некотором базисе заданы своими координатами векторы и
Разложить вектор
по базису, который образовался из векторов
и
Решение:
Разложение вектора по базису
и
имеет такой вид:
где числа и
– неизвестные. Чтобы их найти, подставим в последнее равенство координаты векторов
и
, а тогда воспользуемся свойствами 1 и 2:
Согласно свойству 3 про равенство векторов, получим систему уравнений:
Первое равенство умножаем на 1, а второе на (- 2) и в итоге у на получается:
.
Значит, ответ у нас выходит: